MATH 233 LECTURE 1 (§§12.1-2):
 VECTORS IN 3-SPACE

Points.

- rectangular (Cartesian) coordinates of points in 3-space: $P(x, y, z)$.
- distance between points: $\left|P_{1} P_{2}\right|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$

Spheres.

- standard form for the equation of a sphere with center (a, b, c) and radius r : $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$.
- completing the square to put equations in standard form

Lines and planes.

- distance from a point to a coordinate axis
- determining whether points are collinear (i.e. lie on a line)
- problems on planes and triangles (right? isoceles?)

Vectors.

- formally, and ordered pair (2-space) or triple (3-space); informally, given by a magnitude (length) and direction
- vectors from pairs of points $\overrightarrow{P Q}$; adding and subtracting vectors; scalar multiplication
- finding unit vectors in a given direction
- tension in clothesline/related problems (where force vectors must add to the zero vector $\overrightarrow{0}$)

