MATH 233 LECTURE 12 (§14.1): MULTIVARIABLE FUNCTIONS

A (scalar-valued) function of n variables is a rule assigning a single number to an n-tuple of numbers, viz.

$$
\begin{aligned}
f: \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
\left(x_{1}, \ldots, x_{n}\right) & \longmapsto \underbrace{f\left(x_{1}, \ldots, x_{n}\right)}_{\text {number }}
\end{aligned}
$$

(This is basically the opposite of what we have been doing in Chapter 13.) For us, n will be 2 or 3 , and in this lecture $n=2$.

- That is, we want to discuss functions $f(x, y)$ of two variables, and their graphs $z=f(x, y)$ in 3-dimensional space.
- Level curves: these are the solution sets of equations $f(x, y)=k$ in the $x y$-plane, for k a constant. They aid in visualizing the graph.
- Given a function $f(x, y)$, you should also consider where (in the $x y$-plane) it is defined. The domain $\operatorname{Dom}(f)$ may not be all of \mathbb{R}^{2}.

Graphing functions of 2 variables.

- Linear functions: $f(x, y)=a x+b y+c$. The graph is a plane. Draw it by looking for the x-, y-, and z-intercepts (where $z=f(x, y)$ intersects the axes).
- Quadratic functions: $f(x, y)=a x^{2}+b y^{2}+c x y+d x+e y+f$. The graph is an elliptic or hyperbolic paraboloid.
- There are various other examples that yield quadric surfaces (or part of one), like $f(x, y)=\sqrt{(x-a)^{2}+(y-b)^{2}}$.
- We will look at a couple other examples, including a radially symmetric one.

