MATH 233 LECTURE 16 (§14.5): THE MULTIVARIABLE CHAIN RULE

- For functions of 1 variable, recall how this goes: let $z=f(x)$ be a function and $x=g(t) ;$ so $z=f(g(t))$. Then

$$
\frac{d}{d t} f(g(t))=\frac{d z}{d t}=\frac{d z}{d x} \cdot \frac{d x}{d t}=f^{\prime}(g(t)) \cdot g^{\prime}(t)
$$

- For functions of 2 variables, first suppose $z=f(x, y)$ and $x=g(t), y=h(t)$; so $z=f(g(t), h(t))$. Then

$$
\frac{d}{d t} f(g(t), h(t))=\frac{d z}{d t}=\frac{\partial z}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial z}{\partial y} \cdot \frac{d y}{d t}=f_{x}(g(t), h(t)) \cdot g^{\prime}(t)+f_{y}(g(t), h(t)) \cdot h^{\prime}(t)
$$

The intuition here is that both the change in x and the change in y contribute to the change in z. I will give some explanation of this in class.

- More complicated variants: if $z=f(x, y)$ and $x=g(u, v), y=h(u, v)$, then you get

$$
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} \text { and } \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}
$$

which I won't write out in terms of the functions. Of course, there are versions involving more variables and higher partials.

- It is helpful to draw a sort of flow-chart depicting the dependencies of various variables the first few times you work problems involving these chain rules. Main point is that you have some independent variables (e.g. u and v above), some intermediate variables (e.g. x and y above), and the dependent variable(s) (e.g. z in the above).

