MATH 233 LECTURE 2 (§§12.3-4): DOT AND CROSS PRODUCTS

Dot product.

- If $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then $\vec{a} \cdot \vec{b}:=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$. This is a number (scalar). Notice that $\vec{a} \cdot \vec{a}=\|\vec{a}\|^{2}$, and that dot product satisfies commutative and distributive laws.
- Geometric interpretation: $\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta$, where θ is the angle between \vec{a} and \vec{b}. (In class, I explained one way to check this.) In particular, $\vec{a} \cdot \vec{b}=0 \Longleftrightarrow$ $\vec{a} \perp \vec{b}$. More generally, this formula gives you a way to find θ.
- "Direction angles" are the angles α, β, γ that \vec{a} makes with the standard basis vectors $\hat{i}=\langle 1,0,0\rangle, \hat{j}=\langle 0,1,0\rangle, \hat{k}=\langle 0,0,1\rangle$. The "direction cosines" are (you guessed it) $\cos \alpha, \cos \beta, \cos \gamma$. The sum of their squares is 1 (why?).
- The "vector projection of \vec{b} onto \vec{a} " is the vector $\operatorname{proj}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^{2}} \vec{a}$, and its length $\operatorname{comp}_{\vec{a}} \vec{b}=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|}$ is called the "scalar projection" or "component of \vec{b} along \vec{a} ":

- In physics, work is computed by taking the dot product $W=\vec{F} \cdot \vec{D}$ of force and distance, assuming the force is constant over that distance. (Distance here is a vector pointing from start to finish.)

Cross-product.

- In the same notation as above (for \vec{a} and \vec{b}),

$$
\vec{a} \times \vec{b}:=\left\langle a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right\rangle=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right| .
$$

Unlike the dot product, this is a vector.

- Since $\vec{a} \cdot(\vec{a} \times \vec{b})=0, \vec{a} \times \vec{b}$ is perpendicular to \vec{a} and \vec{b}, in the direction according to the right-hand rule:

- The length

$$
\begin{equation*}
\|\vec{a} \times \vec{b}\|=\|\vec{a}\|\|\vec{b}\||\sin \theta| \tag{1}
\end{equation*}
$$

depends on the angle between \vec{a} and \vec{b}. This is biggest when they are perpendicular, and zero when they are parallel.

Quick proof of equation (1). This is better than Stewart's if you like summation notation. (If you don't, read Stewart's, or skip it.) In the sums, i and j run from 1 to 3.

$$
\begin{aligned}
\|\vec{a} \times \vec{b}\|^{2}+(\vec{a} \cdot \vec{b})^{2} & =(\vec{a} \times \vec{b}) \cdot(\vec{a} \times \vec{b})+\left(\sum_{i} a_{i} b_{i}\right)^{2} \\
& =\sum_{i<j}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}+\left(\sum_{i} a_{i}^{2} b_{i}^{2}+\sum_{i \neq j} a_{i} b_{i} a_{j} b_{j}\right) \\
& =\sum_{i<j} a_{i}^{2} b_{j}^{2}+\sum_{i<j} a_{j}^{2} b_{i}^{2}-2 \sum_{i<j} a_{i} b_{j} a_{j} b_{i}+\left(\sum_{i} a_{i}^{2} b_{i}^{2}+2 \sum_{i<j} a_{i} b_{i} a_{j} b_{j}\right) \\
& =\left(\sum_{i} a_{i}^{2}\right)\left(\sum_{j} b_{j}^{2}\right) \\
& =\|\vec{a}\|^{2}\|\vec{b}\|^{2} .
\end{aligned}
$$

Since $\vec{a} \cdot \vec{b}=\|\vec{a}\|\|\vec{b}\| \cos \theta$, we have

$$
\|\vec{a} \times \vec{b}\|^{2}=\|\vec{a}\|^{2}\|\vec{b}\|^{2}\left(1-\cos ^{2} \theta\right)=\|\vec{a}\|^{2}\|\vec{b}\|^{2} \sin ^{2} \theta
$$

and taking square roots on both sides gives (1).

