MATH 233 LECTURE 24:

 DOUBLE INTEGRALS (A FIRST LOOK)- Recall the single-variable integral: to integrate a function $f:[a, b] \rightarrow \mathbb{R}$, subdivide $[a, b]=\cup_{i=1}^{m}\left[x_{i-1}, x_{i}\right]$ where $x_{0}=a, \ldots, x_{i}=a+\frac{b-a}{m}, \ldots, x_{n}=b$. (Denote $\frac{b-a}{m}$ by Δx.) Then take any point $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$ in each interval, and write down the Riemann sum $\sum_{i=1}^{m} f\left(x_{i}^{*}\right) \Delta x$. The limit of this sum as $m \rightarrow \infty$ is written $\int_{a}^{b} f(x) d x$ and called the definite integral of $f(x)$ on $[a, b]$. Provided f is bounded with only finitely many discontinuities, this limit exists and is independent of the choice of the x_{i}^{*}. Geometrically, it gives the area over the x-axis and under the graph of $f(x)$ (where f is positive), minus the area under the x-axis and over the graph of $f(x)$ (where f is negative). If $f=F^{\prime}$, then one has the Fundamental Theorem of Calculus: $\int_{a}^{b} f(x) d x=F(b)-F(a)$, since you are adding up $F^{\prime}\left(x_{i}^{*}\right) \Delta x$ (little changes in F).
- Double integrals over rectangles: let $R=[a, b] \times[c, d]$ be a rectangle, $f: R \rightarrow \mathbb{R}$ a function. Subdivide R into subrectangles $R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]$ where (with $\Delta x=\frac{b-a}{m}, \Delta y=\frac{d-c}{n}$) $x_{i}=a+i(\Delta x), y_{j}=c+j(\Delta y)$. Pick a point $\left(x_{i j}^{*}, y_{i j}^{*}\right) \in R_{i j}$ in each rectangle, and add up the volumes of the skinny boxes with base $R_{i j}$ and height $f\left(x_{i j}^{*}, y_{i j}^{*}\right)$. This gives the double Riemann sum

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

where $\Delta A=\frac{(b-a)(d-c)}{m n}$.

- Notice that different kinds of Riemann sums are possible: for example, we could take $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ to be the midpoint of $R_{i j}$, or its upper-right corner, etc. We could also take it to be the point in $R_{i j}$ where f is largest [resp. smallest], which gives the so-called upper and lower Riemann sums.
- We say that f is integrable (on R) if the limit

$$
\iint_{R} f(x, y) d A:=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

exists (and is independent of the choices of the points). In that case this is called the double integral of f over R.

- If f is bounded on R and continuous there (except on finitely many smooth curves), then f is integrable on R.
- $\iint_{R} f(x, y) d A$ gives the volume under the graph of $z=f(x, y)$ and over the $x y$-plane, minus the volume under the $x y$-plane and over the graph. (If f is positive, you may thus view $\iint f(x, y) d A$ as calculating the volume of the solid described by $0 \leq z \leq f(x, y), a \leq x \leq b, c \leq y \leq d$.) By this logic, you can deduce that the upper Riemann sum is bigger than $\iint_{R} f(x, y) d A$, and the lower Riemann sum always smaller.
- Linearity property: $\iint_{R}(a f(x, y)+b g(x, y)) d A=a \iint_{R} f(x, y) d A+b \iint_{R} g(x, y) d A$
- Comparison property: If $f \leq g$ on R, then $\iint_{R} f(x, y) d A \leq \iint_{R} g(x, y) d A$. One consequence is that if $m \leq f(x, y) \leq M$ on R, then $m A(R) \leq \iint_{R} f(x, y) d A \leq$ $M A(R)$ (where $A(R)$ is the area of R).
- Additivity on rectangles: if $R=R_{1} \cup R_{2}$, and R_{1} and R_{2} only meet along a segment, then $\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A$.
- Watch out for functions which go to ∞ along some subset of R. These are (obviously) not bounded and so are not integrable by the above definition. (Though you can successfully integrate them sometimes by taking a limit of integrals over subsets of R that omit the bad subset.)

