MATH 233 LECTURE 25:

 DOUBLE INTEGRALS (HOW TO COMPUTE)- Let $R=[a, b] \times[c, d], f$ a function on R. The volume interpretation of $\iint_{R} f(x, y) d A$ from the last lecture can be used to compute directly some simple integrals (integral of constant function is volume of a box, etc.). We would like something more useful though. For simplicity assume $f \geq 0$.
- Imagine you are thinly slicing the solid S described by $0 \leq z \leq f(x, y)$ over R, parallel to the $x z$-plane, into solid slices S_{j} of width $\Delta y=\frac{d-c}{n}$. Let $A(y)$ be the area of the slice over y, and select $y_{j}^{*} \in\left[y_{j-1}, y_{j}\right]$ (notation as in last lecture). Then the volume $V(S) \approx \sum_{j=1}^{n} V\left(S_{j}\right) \approx \sum_{j=1}^{n} A\left(y_{j}^{*}\right) \Delta y$. Taking a limit gives $V(S)=\int_{c}^{d} A(y) d y$. But $A(y)=\int_{a}^{b} f(x, y) d x$ by single-variable calculus, and so

$$
\iint_{R} f(x, y) d A=V(S)=\int_{c}^{d}\left(\int_{a}^{b} f(x, y) d x\right) d y
$$

- If we repeat the argument with slices parallel to the $y z$-plane, we get

$$
\iint_{R} f(x, y) d A=\int_{a}^{b}\left(\int_{c}^{d} f(x, y) d y\right) d x
$$

The right-hand side of both of these equations is called an iterated integral. The equality (that double integrals can be computed by iterated integrals) is called Fubini's theorem.

- Average values: another interpretation of the double integral is given by

$$
f_{\text {avg }}=\frac{1}{A(R)} \iint_{R} f(x, y) d A
$$

where $A(R)=(b-a)(d-c)$ is the area of R. (You can show that this is the limit of the Riemann sums $\frac{1}{m n} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right)$.)

