MATH 233 LECTURE 27: NONRECTANGULAR DOUBLE INTEGRALS

- Let D be a closed, bounded region in the $x y$-plane, with piecewise smooth boundary. Take $R=[a, b] \times[c, d]$ to be a rectangle containing D. If $f(x, y)$ is a function on D, construct a function on R by

$$
F(x, y):=\left\{\begin{array}{cl}
f(x, y) & \text { if }(x, y) \in D \\
0 & \text { if }(x, y) \notin D
\end{array} .\right.
$$

The integral of f over D is then defined to be the integral of F over R.

- How do we evaluate such integrals? It depends on D. For instance, we shall say that D is y-simple if each line parallel to the y-axis intersects D in a single interval (or a point, or not at all) - that is, if there are functions ϕ_{1}, ϕ_{2} on $[a, b]$ such that $D=\left\{(x, y) \mid a \leq x \leq b, \phi_{1}(x) \leq y \leq \phi_{2}(x)\right\}$ is the region sandwiched between their graphs. In this case,

$$
\begin{aligned}
\iint_{D} f(x, y) d A & =\iint_{R} F(x, y) d A=\int_{a}^{b}\left(\int_{c}^{d} F(x, y) d y\right) d x \\
& =\int_{a}^{b}\left(\int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y\right) d x
\end{aligned}
$$

- Similarly, if D is x-simple, i.e. $D=\left\{(x, y) \mid \psi_{1}(y) \leq x \leq \psi_{2}(y)\right\}$, then

$$
\iint_{D} f(x, y) d A=\int_{c}^{d}\left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) d x\right) d y
$$

- Some regions are both x-simple and y-simple, and so you have to judge which is the easier way to perform the iteration, just as in the rectangular case. Some regions are neither x - nor y-simple, but can be cut up into such regions, and the integrals summed at the end.
- Beware of switching the order of integration in these no-rectangular cases: this requires drawing the region. This will be discussed more in the next class.

