MATH 233 LECTURE 28: DOUBLE INTEGRALS AND VOLUME

- Recall the definition of the double integral of a function f on a closed bounded region D : one simply fits D into a rectangle R, extends f to a function F on R which is zero outside D, and sets

$$
\iint_{D} f(x, y) d A:=\iint_{R} F(x, y) d A .
$$

We defined x-simple and y-simple regions D and explained how to use this to translate this definition into an iterated integral, e.g. $\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) d y d x$. (See Lecture 27.)

- The main point of this lecture is simply that (for $f \geq 0$) this double integral computes the volume under the graph of $z=f(x, y)$ over D. (This implies also that $\iint_{D} 1 d A$ computes the area of D.) There are various other interpretations: for example, to compute the average value of f over D, you compute $\iint_{D} f d A$ and divide by $\iint_{D} 1 d A$.
- For regions that are more natural in polar coordinates (r, θ) there is a more convenient way to compute these double integrals. Instead of thinking of a "little bit of area" $d A$ as $d x \cdot d y$ (that of a little rectangle), you use an infinitesimal polar rectangle with area $r \cdot d r \cdot d \theta$. (One side has length $r d \theta$, the other $d r$.) Rewriting f as a function of (r, θ) by $f(x, y)=f(r \cos \theta, r \sin \theta)$, this now becomes an iterated integral in r and θ.
- The simplest case is where the region D is itself a (finite, not infinitesimal) polar rectangle: $D=\{(r, \theta) \mid a \leq r \leq b, \alpha \leq \theta \leq \beta\}$. (For exmple, a disk is a "polar rectangle" in this sense, with $\alpha=0, \beta=2 \pi, a=0, b=$ the radius of the disk.)

The integral then becomes

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} F(r, \theta) r d r d \theta
$$

where $F(r, \theta):=f(r \cos \theta, r \sin \theta)$. To be continued in the next lecture . .

