MATH 233 LECTURE 29: MORE POLAR INTEGRATION

- Recall that to integrate a function $f(x, y)$ over a polar rectangle $P=\{(r, \theta) \mid a \leq$ $r \leq b, \alpha \leq \theta \leq \beta\}$, we can write

$$
\iint_{D} f(x, y) d A=\int_{\alpha}^{\beta} \int_{a}^{b} F(r, \theta) r d r d \theta
$$

where $F(r, \theta):=f(r \cos \theta, r \sin \theta)$.

- We can also accomodate more general regions D which are " r-simple" (given by $\left.\alpha \leq \theta \leq \beta, \phi_{1}(\theta) \leq r \leq \phi_{2}(\theta)\right)$ or " θ-simple" $\left(a \leq r \leq b, \psi_{1}(r) \leq \theta \leq \psi_{2}(r)\right)$ via the iterated integrals

$$
\int_{\alpha}^{\beta} \int_{\phi_{1}(r)}^{\phi_{2}(r)} F(r, \theta) r d r d \theta \text { resp. } \int_{a}^{b} \int_{\psi_{1}(r)}^{\psi_{2}(r)} F(r, \theta) d \theta r d r .
$$

The remainder of the lecture will consist of examples, except for:

- An important application (for probability): area under the bell curve $y=e^{-x^{2} / 2}$. Set $I=\int_{0}^{\infty} e^{-x^{2}} d x:=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-x^{2}} d x$, and let V be the volume under the surface $z=e^{-x^{2}-y^{2}}$. On the one hand, we will see that $V=4 I^{2}$. On the other, using polar integration, one easily shows that $V=\pi$. Conclude that $I=\frac{\sqrt{\pi}}{2}$, and so the area under the original bell curve is $\sqrt{2 \pi}$.

