MATH 233 LECTURE 30: APPLICATIONS OF DOUBLE INTEGRALS

- Mass: consider a lamina (flat sheet) covering a region D in the $x y$-plane, with mass density function $\rho: D \rightarrow \mathbb{R}$. The total mass m of the lamina is given by $\iint_{D} \rho(x, y) d A$.
- Center of mass: define "moments" of the lamina about the y - and x-axes by $M_{y}=\iint_{D} x \rho(x, y) d A, M_{x}=\iint_{D} y \rho(x, y) d A$. The center of mass is then given by $(\bar{x}, \bar{y}):=\left(M_{y} / m, M_{x} / m\right)$.
- Moment of inertia: the kinetic energy of a particle of mass m traveling on a circle of radius r with angular velocity ω is given by $\frac{1}{2} m r^{2} \omega^{2}$. The portion $I:=m r^{2}$ is called the moment of inertia. By integrating, we can define moments of inertia of a lamina about the y-axis, x-axis, and origin: $I_{y}=\iint_{D} x^{2} \rho(x, y) d A$, $I_{x}=\iint_{D} y^{2} \rho(x, y) d A, I_{0}=\iint_{D}\left(x^{2}+y^{2}\right) \rho(x, y) d A$. These measure how hard it is to change the angular velocity of the lamina about the y-axis, x-axis, and origin.

Probability.

- Let X be a random variable with probability density (distribution) function $f: \mathbb{R} \rightarrow \mathbb{R}$, then the probability that X lies in the interval $[a, b]$ is given by $P(a \leq X \leq b)=\int_{a}^{b} f(x) d x$. (Of course, the integral over all of \mathbb{R} must give 1, or 100%).
- Expected value: $\bar{X}:=\int_{-\infty}^{\infty} x f(x) d x$.
- More generally, if X and Y are random variables with joint probablity density function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, then the probablity that X and Y lie in some region D is just $P((X, Y) \in D)=\iint_{D} f(x, y) d A$. For example, if this region is $D=$
$\{(x, y) \mid x \leq y\}$, then this integral computes the probability that X is smaller than (or equal to) Y.
- Expected values: $\bar{X}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d x d y, \bar{Y}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x, y) d x d y$.
- Independence: if the joint probability density function is a product, $f(x, y)=$ $F(x) G(y)$, then the two variables are independent: that is, the probability of X being in some range is independent of the value of Y.

