MATH 233 LECTURE 31: CHANGE OF VARIABLE

- Recall how u-substitutions go in single-variable integrals: given a continuously differentiable function $u \mapsto x(u)$ mapping $[A, B]$ to $[a, b]$ in 1-to-1 fashion, we have

$$
\int_{a}^{b} f(x) d x=\int_{A}^{B} f(x(u)) \frac{d x}{d u} d u
$$

- Next, suppose that $T: D \rightarrow D^{\prime}$ is a 1-to-1, continuously differentiable map of regions, sending

$$
(u, v) \mapsto T(u, v)=(x(u, v), y(u, v))
$$

Then for any continuous function $f: D \rightarrow \mathbb{R}$, we have

$$
\iint_{D} f(x, y) d A=\iint_{D^{\prime}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A^{\prime}
$$

where $d A$ is $d x d y, d A^{\prime}$ is $d u d v$, and

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

is the Jacobian of T. (The bars mean to take absolute value.)

