MATH 233 LECTURE 32: VECTOR FIELDS

- These are vector-valued functions of several real variables. You should visualize a continuum of arrows in the plane (or in space). Mathematically, they are functions from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ (or $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$), and so may be considered as a pair (or triple) of the multivariable functions we have been studying. Notation: $\vec{F}(x, y)=\langle f(x, y), g(x, y)\rangle=f(x, y) \hat{i}+g(x, y) \hat{j}$ (or $\vec{F}(x, y, z)=$ $\langle f(x, y, z), g(x, y, z), h(x, y, z)\rangle)$.
- An example you have already seen is the gradient of a function. In physics they arise as, for example, velocity fields (think of wind or another fluid) and force fields (gravitational, magnetic, electric).
- The flow lines of a velocity field \vec{F} are the paths followed by a particle whose velocity at any point (x, y) is $\vec{F}(x, y)$. (For example, the flow lines of $\vec{F}(x, y)=$ $-y \hat{i}+x \hat{j}$ are circles.) Parametrizing a flow line by $\langle x(t), y(t)\rangle$ leads to the equation $\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle=\vec{F}(x(t), y(t))$.
- A vector field \vec{F} is called conservative if it is the gradient $\vec{\nabla} f$ of a function. Moving all the way around a closed curve (like a circle) against a conservative force field conserves energy, hence the terminology. Conservative fields are rather special: for example, $\vec{F}(x, y)=x \hat{j}$ is not conservative. (Suppose $\vec{F}=\vec{\nabla} f$: can you find a contradiction?)

