MATH 233 LECTURE 33: LINE INTEGRALS

- Line integrals are integrals over curves, and are sometimes also called "path integrals". More precisely, we will integrate over an oriented curve, which is a plane (or space) curve together with a choice of direction.
- Let $f: D \rightarrow \mathbb{R}$ be a function whose domain includes C. Chopping C into n subarcs of (arc) length $(\Delta s)_{i}$, and letting $\left(x_{i}^{*}, y_{i}^{*}\right)$ be a sample point on the $i^{\text {th }}$ subarc, we define the line integral (with respect to arclength) as a limit of Riemann sums:

$$
\int_{C} f(x, y) d s:=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right)(\Delta s)_{i} .
$$

- To actually calculate the line integral, we will need to choose a smooth parametrization of C. Recall that this is a continuously differentiable function $\vec{r}:[a, b] \rightarrow \mathbb{R}^{2}$ with image $C, \vec{r}(a)=\vec{A}$ and $\vec{r}(b)=\vec{B}$ (where \vec{A} and \vec{B} are the endpoints of C), and such that $\vec{r}^{\prime}(t)$ is never zero on $[a, b]$. Then we have

$$
\int_{C} f(x, y) d s=\int_{a}^{b} f(\vec{r}(t))\left\|\vec{r}^{\prime}(t)\right\| d t
$$

which (for example) for a plane curve $\vec{r}(t)=\langle x(t), y(t)\rangle$ becomes $\int_{a}^{b} f(x(t), y(t)) \sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)}$

- Though we use a choice of parametrization to compute the line integral, its value is independent of the choice we make. (Notice in particular that if f is identically 1 , then the line integral just gives the arclength of C.) In contrast, if two different curves C and C^{\prime} have the same endpoints \vec{A} and \vec{B}, then the integrals of $f(x, y)$ over them may well be different.
- Properties: (a) if $C=C_{1}+C_{2}$ (two smaller arcs joined at a point), then $\int_{C}=\int_{C_{1}}+\int_{C_{2}} ;(\mathrm{b})\left(\right.$ writing $-C$ for C traced backwards) $\int_{-C}=-\int_{C} ;(\mathrm{c})$ $\int_{C}(a f(x, y)+b g(x, y)) d s=a \int_{C} f(x, y) d s+b \int_{C} g(x, y) d s$.
- There are (in the plane) 2 further kinds of line integrals we will need:

$$
\int_{C} f(x, y) d x:=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right)(\Delta x)_{i}=\int_{a}^{b} f(\vec{r}(t)) x^{\prime}(t) d t
$$

and

$$
\int_{C} f(x, y) d y:=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}, y_{i}^{*}\right)(\Delta y)_{i}=\int_{a}^{b} f(\vec{r}(t)) y^{\prime}(t) d t
$$

which once again don't depend on the choice of parametrization (and satisfy the above properties).

