MATH 233 LECTURE 33: LINE INTEGRALS

- Line integrals are integrals over curves, and are sometimes also called "path integrals". More precisely, we will integrate over an oriented curve, which is a plane (or space) curve together with a choice of direction.
- Let f : D → ℝ be a function whose domain includes C. Chopping C into n subarcs of (arc)length (Δs)_i, and letting (x^{*}_i, y^{*}_i) be a sample point on the ith subarc, we define the *line integral* (with respect to arclength) as a limit of Riemann sums:

$$\int_C f(x,y)ds := \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*, y_i^*)(\Delta s)_i.$$

• To actually calculate the line integral, we will need to choose a smooth parametrization of C. Recall that this is a continuously differentiable function \vec{r} : $[a, b] \to \mathbb{R}^2$ with image $C, \vec{r}(a) = \vec{A}$ and $\vec{r}(b) = \vec{B}$ (where \vec{A} and \vec{B} are the endpoints of C), and such that $\vec{r}'(t)$ is never zero on [a, b]. Then we have

$$\int_{C} f(x, y) ds = \int_{a}^{b} f(\vec{r}(t)) \|\vec{r}'(t)\| dt,$$

which (for example) for a plane curve $\vec{r}(t) = \langle x(t), y(t) \rangle$ becomes $\int_a^b f(x(t), y(t)) \sqrt{(x'(t))^2 + (y'(t))^2} dt = \langle x(t), y(t) \rangle$

• Though we use a choice of parametrization to compute the line integral, its value is independent of the choice we make. (Notice in particular that if f is identically 1, then the line integral just gives the arclength of C.) In contrast, if two different curves C and C' have the same endpoints \vec{A} and \vec{B} , then the integrals of f(x, y) over them may well be different.

- Properties: (a) if $C = C_1 + C_2$ (two smaller arcs joined at a point), then $\int_C = \int_{C_1} + \int_{C_2}$; (b) (writing -C for C traced backwards) $\int_{-C} = -\int_C$; (c) $\int_C (af(x,y) + bg(x,y))ds = a \int_C f(x,y)ds + b \int_C g(x,y)ds.$
- There are (in the plane) 2 further kinds of line integrals we will need:

$$\int_{C} f(x,y) dx := \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}, y_{i}^{*}) (\Delta x)_{i} = \int_{a}^{b} f(\vec{r}(t)) x'(t) dt$$

and

$$\int_{C} f(x, y) dy := \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}, y_{i}^{*}) (\Delta y)_{i} = \int_{a}^{b} f(\vec{r}(t)) y'(t) dt,$$

which once again don't depend on the choice of parametrization (and satisfy the above properties).