MATH 233 LECTURE 34: LINE INTEGRALS OF VECTOR FIELDS

- Begin with a particle moving in the plane along a curve C (from endpoint A to endpoint B), under the influence of a force field $\vec{F}(x, y)=P(x, y) \hat{i}+Q(x, y) \hat{j}$. To compute the work done by \vec{F}, we chop C into pieces of (arc)length $(\Delta s)_{i}$ with sample points $\left(x_{i}^{*}, y_{i}^{*}\right)$, and write $\hat{T}(x, y)$ for the unit tangent vector to C at a point (x, y) on C; the bit of work along this arc is approximated by $(\Delta W)_{i} \approx \vec{F}\left(x_{i}^{*}, y_{i}^{*}\right) \cdot \hat{T}\left(x_{i}^{*}, y_{i}^{*}\right)(\Delta s)_{i}$. (Here "." is dot product.) Taking the limit of the (Riemann) sum of these $(\Delta W)_{i}$ gives

$$
W=\int_{C} \vec{F}(x, y) \cdot \hat{T}(x, y) d s
$$

a line integral. Notice that we have made no reference to a parametrization in defining this.

- A shorthand for the right-hand side of this last formula is

$$
\int_{C} \vec{F} \cdot \hat{T} d s
$$

It is called the line integral of \vec{F} along C, and the above result says it computes the work done by the force field \vec{F} on the particle as it moves along C from endpoint to endpoint. Of course, we don't always want to think of the vector field \vec{F} as a force field, or of the line integral as computing work; the integral makes sense on its own without these interpretations.

- To actually compute the integral, we need to choose a parametrization $\vec{r}(t)=$ $\langle x(t), y(t)\rangle, t \in[a, b]$, of C. Using this, we get

$$
W=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}\left\|\vec{r}^{\prime}(t)\right\| d t=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t
$$

which we will sometimes write in the shorthand

$$
\int_{a}^{b} \vec{F} \cdot d \vec{r} \text { or } \int_{C} \vec{F} \cdot d \vec{r} .
$$

Or we can expand it by writing $\vec{F}(x, y)=P(x, y) \hat{i}+Q(x, y) \hat{j}$, which gives

$$
\begin{gathered}
\int_{a}^{b}\left(P(x(t), y(t)) x^{\prime}(t)+Q(x(t), y(t)) y^{\prime}(t)\right) d t \\
=\int_{a}^{b} P d x+Q d y
\end{gathered}
$$

- Suppose next that $\vec{F}=\vec{\nabla} f$; that is, that \vec{F} is conservative. Then

$$
\begin{gathered}
\int_{C} \vec{F} \cdot d \vec{r}=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \vec{r}^{\prime}(t) d t=\int_{a}^{b}((\vec{\nabla} f)(\vec{r}(t))) \cdot \vec{r}^{\prime}(t) d t \\
=\int_{a}^{b}\left(\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}\right) d t=\int_{a}^{b} \frac{d}{d t} f(\vec{r}(t)) d t=[f(\vec{r}(t))]_{a}^{b} \\
=f(\vec{r}(b))-f(\vec{r}(a))=f(B)-f(A)
\end{gathered}
$$

where A and B are the endpoints of C. This is the Fundamental Theorem of Calculus for Line Integrals. In particular, it says that the value of the line integral of a conservative vector field depends only upon the endpoints of the curve C of integration - that is, it is independent of the choice of path from A to B.

