
MATH 233 LECTURE 38:
GAUSS AND STOKES THEOREMS IN THE PLANE

More on curl and div.

• Though the title says “plane”, we’ll start with some stuff in space. Recall that

for a vector field ~F on a region D ⊂ R3, div~F = ~∇ · ~F and curl~F = ~∇ × ~F ,

where ~∇ = ∂
∂x

î + ∂
∂y

ĵ + ∂
∂z

k̂.

• By Clairaut’s Theorem (details in class), we have two identities: (1) curl(~∇f) =
~0 for any function f on D; and (2) div(curl~F ) = 0 for any vector field ~F on D.

• By (1), if ~F = ~∇f (i.e. ~F conservative), then curl~F = ~0 (i.e. ~F irrotational).

If D is simply connected, then the converse holds: ~F irrotational =⇒ ~F

conservative.

• By (2), if ~F is the curl of another vector field ~G (i.e. ~F is a “curl field”), then

div~F = 0 (i.e. ~F incompressible). If D has no “solid holes”, then the converse

holds here too.

Vector forms of Green’s Theorem.

• Let C be a simple closed curve in R2, with a smooth parametrization ~r(s) =

x(s)̂i + y(s)ĵ by arclength s, and “positively oriented” (i.e. in the counter-

clockwise direction). The unit tangent vector is T̂ (s) = x′(s)̂i + y′(s)ĵ, and the

outward-pointing unit normal is n̂(s) = y′(s)̂i− x′(s)ĵ.

• Now suppose C = ∂S, and that D ⊂ R2 contains C and S. Let ~F = P î + Qĵ

be a vector field on D (D contains C). Write
˛

C

~F · n̂ds =
˛

C

(P î + Qĵ) · (y′(s)̂i− x′(s)ĵ)ds

=
˛

C

−Qx′(s)ds + Py′(s)ds =
˛

C

−Qdx + Pdy,

1



which by Green’s Theorem

=
¨

S

(Px − (−Qy))dA =
¨

S

(Px + Qy)dA.

This gives Gauss’s Divergence Theorem in the plane:
˛

∂S

~F · n̂ds =
¨

S

div( ~F )dA,

which tells us that the total flux of ~F across the boundary ∂S (the left-hand

side) equals the integral of the “outward flux per unit area” over S, which sounds

completely plausible.

• There is also “Stokes’s Theorem in the plane” which is more or less a restatement

of Green’s theorem: it reads
˛

∂S

~F · T̂ ds =
¨

S

(curl~F ) · k̂dA.

Harmonic functions and Maxwell’s equations.

• The Laplacian is the operator ∇2 := ~∇· ~∇ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . It may be applied

to functions or vector fields. Notice that ∇2f = div(~∇f).

• We say that f is harmonic if ∇2f = 0, and similarly for vector fields.

• Let ~E(x, y, z; t), ~H(x, y, z; t) denote the electric and magnetic fields (vector fields

in space that change in time t). The simplest presentation of Maxwell’s equa-

tions (in a vacuum) is:

~∇ · ~E = 0 = ~∇ · ~H

~∇× ~E = −1
c

∂ ~H

∂t
, ~∇× ~H = 1

c

∂ ~E

∂t



where c is the speed of light. (The units are not natural in this form and I won’t

address them here.) In class, I will say how to derive the wave equations

∇2 ~E = 1
c2

∂2 ~E

∂t2 , ∇2 ~H = 1
c2

∂2 ~H

∂t2

from them. Notice that this says that, for example, ~E is static (doesn’t change

with time) if and only if it is harmonic.


