- Recall the form of a parametric curve in space: $\vec{r}(t)=x(t) \hat{i}+y(t) \hat{j}+z(t) \hat{k}$. If we want to parametrize a surface, we just need to let x, y, z depend on two variables:

$$
\vec{r}(u, v)=x(u, v) \hat{i}+y(u, v) \hat{j}+z(u, v) \hat{k} .
$$

We think of this as a function $\vec{r}: D \rightarrow \mathbb{R}^{3}$ defined on a region $D \subset \mathbb{R}^{2}$ (in the $u v$-plane). Its image $S=\vec{r}(D)$ is the parametrized surface.

- Instead of $\vec{r}^{\prime}(t)$ we now have two partial derivatives $\vec{r}_{u}(u, v)$ and $\vec{r}_{v}(u, v)$ obtained by taking partials of x, y, z with respect to u, v. The surface area of S is given in terms of these:

$$
A(S)=\iint_{D}\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d A
$$

- The integral of a function $f(x, y, z)$ over S is given by

$$
\iint_{S} f(x, y, z) d S:=\iint_{D} f(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d A .
$$

In particular, the surface area is just the integral of the function " 1 " over S.

- In the special case that S is the graph of a function $z=f(x, y)$, you can use $\vec{r}(x, y)=x \hat{i}+y \hat{j}+f(x, y) \hat{k}$, and then (short computation) $\left\|\vec{r}_{x} \times \vec{r}_{y}\right\|=$ $\sqrt{1+f_{x}^{2}+f_{y}^{2}}$.
- To write an equation for the tangent plane to a parametric surface S at a point $\vec{r}\left(u_{0}, v_{0}\right)$ on S, you need (besides that point) a normal vector. This is given by $\vec{n}=\vec{r}_{u}\left(u_{0}, v_{0}\right) \times \vec{r}_{v}\left(u_{0}, v_{0}\right)$.

