MATH 233 LECTURE 40: THE REST OF VECTOR CALCULUS

Since this material is not on the exam, I just give the briefest of summaries here:

- Recall that the surface integral of a function $g(x, y, z)$ over a surface $S \subset \mathbb{R}^{3}$ parametrized by $\vec{r}: D \rightarrow \mathbb{R}^{3}$ (where $D \subset \mathbb{R}^{2}$) is

$$
\iint_{S} g d S:=\iint_{D} g(\vec{r}(u, v))\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d A .
$$

- As for curves, we have a notion of the flux of a vector field $\vec{F}(x, y, z)$ across S. This is given by

$$
\iint_{S} \vec{F} \cdot \hat{n} d S:=\iint_{D} \vec{F}(\vec{r}(u, v)) \cdot \frac{\vec{r}_{u} \times \vec{r}_{v}}{\left\|\vec{r}_{u} \times \vec{r}_{v}\right\|}\left\|\vec{r}_{u} \times \vec{r}_{v}\right\| d A=\iint_{D} \vec{F}(\vec{r}(u, v)) \cdot\left(\vec{r}_{u} \times \vec{r}_{v}\right) d A
$$

- Gauss's Divergence Theorem then says that for a solid region $V \subset \mathbb{R}^{3}$ with boundary $S=\partial V$,

$$
\iint_{S} \vec{F} \cdot \hat{n} d S=\iiint_{V} \operatorname{div}(\vec{F}) d V .
$$

(We haven't done triple integrals in the course, but they are also computed by iterated integrals and are completely analogous to the 2-D integrals we have done.)

- Stokes's Theorem says that for a parametric surface S with boundary $C=\partial S$,

$$
\oint_{C} \vec{F} \cdot d \vec{r}=\iint_{S} \operatorname{curl}(\vec{F}) \cdot \hat{n} d S .
$$

Both this and Gauss are generalizations of the Fundamental Theorem of Calculus to higher dimensions.

