MATH 233 LECTURE 6 (CHAPTER 10): PLANE CURVES

The material from Chapter 10 you are responsible for is fairly limited, and basically as described in this lecture. Main point: get hands on some curves in 2-D before we go on to curves in 3-D.

Cartesian representation.

- This means that the curve is presented as the solution set of an equation $F(x, y)=0$ in two variables.

Parametric representation.

- Given by $x=f(t), y=g(t)$; think of this as the motion of a particle on the curve in time.
- Familiar example: $f(t)=x_{0}+a t, g(t)=y_{0}+b t$ traces out a line (with direction vector $\langle a, b\rangle$, through $\left.\left(x_{0}, y_{0}\right)\right)$.
- Two methods for drawing/understanding curves given in parametric form: (i) plot points at a few values of t; (ii) eliminate the parameter t (to get a Cartesian representation of the curve).
- Basic example of (ii): given $x=f(t)=a \cos t, y=g(t)=b \sin t$, write $(x / a)^{2}+$ $(y / b)^{2}=\cos ^{2} t+\sin ^{2} t=1$ (equation of an ellipse). More examples in class.

Polar representation.

- Given by $r=G(\theta)$, e.g. G constant gives a circle centered at the origin. (More examples in class.)
- Relation between polar and Cartesian coordinates is given by $r=\sqrt{x^{2}+y^{2}}$, $\theta=\arctan (y / x)$, and $x=r \cos \theta, y=r \sin \theta$. Use these formulas to convert from polar to Cartesian representation (and vice versa).

