MATH 233 LECTURE 7 (§13.1): VECTOR-VALUED FUNCTIONS

- The vector-valued functions we will consider have domain in \mathbb{R} and range in \mathbb{R}^{3} : that is, they take the form

$$
\vec{r}(t)=\langle f(t), g(t), h(t)\rangle .
$$

Unless f, g, h are constant, this is really just a way to repackage the parametric equations of a curve.

- Limits and continuity: $\lim _{t \rightarrow a} \vec{r}(t):=\left\langle\lim _{t \rightarrow a} f(t), \lim _{t \rightarrow a} g(t), \lim _{t \rightarrow a} h(t)\right\rangle$; and $\vec{r}(t)$ is continuous at a if $\lim _{t \rightarrow a} \vec{r}(t)=\vec{r}(a)$.
- Provided limits of $\vec{v}(t)$ and $\vec{u}(t)$ at a exist, $\lim _{t \rightarrow a} \vec{u}(t) \cdot \vec{v}(t)=\lim _{t \rightarrow a} \vec{u}(t)$. $\lim _{t \rightarrow a} \vec{v}(t)$ (and similarly for cross-product).
- Derivatives: $\vec{r}^{\prime}(t):=\lim _{h \rightarrow 0} \frac{\vec{r}(t+h)-\vec{r}(t)}{h}=\left\langle f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right\rangle$ (provided f, g, h differentiable)
- Key skill: writing down vector-valued functions that "represent" (i.e. parametrize) a given space curve, which might for example be presented as the intersection of two surfaces.

