MATH 233 LECTURE 8 (§13.2): CALCULUS FOR VECTOR-VALUED FUNCTIONS

- One may regard a vector-velued function $\vec{r}(t)=\langle f(t), g(t), h(t)\rangle$ as describing the position of an object in space (pointing from the origin to the point $(f(t), g(t), h(t))$, i.e. as tracing out a curve C in \mathbb{R}^{3}.
- We call its derivative $\vec{r}^{\prime}(t)$ the tangent or veclocity vector, $\left\|\vec{r}^{\prime}(t)\right\|$ the speed, and $\vec{T}(t)=\frac{\vec{r}^{\prime}(t)}{\left\|\vec{r}^{\prime}(t)\right\|}$ the unit tangent vector (defined so long as $\left.\vec{r}^{\prime}(t) \neq \overrightarrow{0}\right)$.
- The tangent line to C at $\vec{r}(a)$ is represented (traced out, parametrized) by

$$
\vec{\ell}_{a}(u)=\vec{r}(a)+u \vec{r}^{\prime}(a)=\left\langle f(a)+f^{\prime}(a) u, g(a)+g^{\prime}(a) u, h(a)+h^{\prime}(a) u\right\rangle .
$$

Here a different parameter u is used instead of t because we have set $t=a$.

- The curve C is smooth at $\vec{r}(a)$ if and only if $\lim _{t \rightarrow a} \vec{T}(t)$ exists. We say C is smooth if it is smooth at every point. A smooth curve C in \mathbb{R}^{3} can be parametrized by a continuously differentiable vector function $\vec{r}(t)$ whose speed is never zero. Roughly, this means that the curve has no corners or cusps.
- Rules for differentiating: given vector functions $\vec{u}(t)$ and $\vec{v}(t)$, we have Leibniz rules $(\vec{u} \cdot \vec{v})^{\prime}=\vec{u}^{\prime} \cdot \vec{v}+\vec{u} \cdot \vec{v}^{\prime},(\vec{u} \times \vec{v})^{\prime}=\vec{u}^{\prime} \times \vec{v}+\vec{u} \times \vec{v}^{\prime}$, and the Chain rule $[\vec{u}(F(t))]^{\prime}=F^{\prime}(t) \vec{u}^{\prime}(F(t))$.
- Integrals: $\int_{a}^{b} \vec{r}(t) d t=\left\langle\int_{a}^{b} f(t) d t, \int_{a}^{b} g(t) d t, \int_{a}^{b} h(t) d t\right\rangle$. If $\vec{v}(t)=\vec{r}^{\prime}(t)$, then $\int_{a}^{b} \vec{v}(t) d t=\vec{r}(b)-\vec{r}(a)=:\left.\vec{r}(t)\right|_{a} ^{b}$ (Fundamental theorem).

