
VI. Canonical forms

VI.A. The minimal polynomial of a transformation

The statement that!v0 is an eigenvector of A ∈ Mn(R) with eigen-
value 3 can be written

(3I − A)!v0 = 0 .

That is, if you plug A into the polynomial 3 − x, then the resulting
matrix annihilates !v0. Is there a corresponding statement for all vec-
tors !v ∈ Rn? That is, a polynomial into which we may plug A to get
the zero matrix (which is the only matrix annihilating all vectors)?

Consider Mn(R) as a vector space over R of dimension n2.1 Ap-
parently the n2 + 1 “vectors”

I, A, A2, . . . , A(n2)

cannot all be independent. So there is a relation

α0I + α1A + α2A2 + . . . + α(n2)A(n2) = 0,

where not all αi are zero. That is, A is “annihilated” by a polynomial
q(x) of degree n2, in the sense that q(A) is the zero matrix.

However we should (at least some of the time) be able to do bet-
ter than this. If A is diagonalizable with eigenvalues λ1, λ2, . . . , λn,
then

(λ1I − A)(λ2I − A) · · · (λnI − A)!v = 0

for all!v ∈ Rn. (Write!v = β1!v1 + . . .+ βn!vn in terms of the eigenbasis;
then use the fact that all the (λiI − A) commute with one another.)
Multiplying this out gives a polynomial in A of degree n, not n2.

1The “standard” basis of this vector space would be the matrices with 1 in the ijth

place and 0’s in the other places, i, j = 1, . . . , n. Clearly there are n2 of these.
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Similarly, if A is of the (non-diagonalizable!) form
!

""""#

0 1 ∗
. . . . . .

. . . 1
0 0

$

%%%%&

then we find it satisfies An = 0 (A is nilpotent). In fact, the character-
istic polynomials (= det(λI − A)) in these two cases are

(λ − λ1) · · · (λ − λn) and λn,

so the following more general result should not surprise you:

VI.A.1. THEOREM (Cayley-Hamilton). Let A ∈ Mn(F) be a square
matrix over any field. Then A is annihilated by its own characteristic poly-
nomial, i.e. if fA(λ) := det(λI − A) then fA(A) = 0.

VI.A.2. REMARK. Thus we can always do much better than n2,
since deg fA = n. However, the proof is not as easy as

det(AI − A) = det 0 = 0.

This is cheating. Substituting in A before you take the determinant is
not the same as doing so after taking the determinant. We now give
two correct proofs.

FIRST PROOF OF VI.A.1. We need to introduce (a little more con-
sciously than before) matrices whose entries are polynomials in λ. Let
F[λ] denote polynomials of arbitrary degree in λ with coefficients in
F, and consider M ∈ Mn(F[λ]). The tricky thing is that we must avoid
dividing by λ — polynomials are not invertible like real numbers.

One definition that involved no inverting of anything was that of
the adjugate of A, whose ijth entry was defined to be

det{jith minor of A}× (−1)i+j.
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In §IV.C, we had from Cramer’s rule (assuming A ∈ Mn(F), not
Mn(F[λ])) the relationship

A−1 =
1

det A
adjA , i.e. A

'
1

det A
adjA

(
= I.

Clearing the denominator yields something which still holds2 for M:

M(adjM) = (det M)I.

Now let M = λI − A. We have

(λI − A)[adj(λI − A)] = det(λI − A)I = fA(λ) · I.

One may decompose any M ∈ Mn(F[λ]) into powers of λ, M =

∑ λkBk where Bk ∈ Mn(F): for example,
)

1 λ

0 1

*
=

)
1 0
0 1

*
+ λ

)
0 1
0 0

*
.

We do this for

adj(λI − A) =
n−1

∑
k=0

λkSk,

and write also

fA(λ) =
n

∑
j=0

ajλ
j.

We have

(λI − A)

)
n−1

∑
k=0

λkSk

*
=

n

∑
j=0

ajλ
jI

or

− AS0 + λ(S0 − AS1) + λ2(S1 − AS2) + . . .

+ λn−1(Sn−2 − ASn−1) + λnSn−1

= a0I + a1λI + a2λ2I + . . . + an−1λn−1I + anλnI.

2Technically, applying Cramer as we did in §IV.C requires knowing A is invertible,
which typically won’t be true for M. See Exercise (5) below for a way around this.
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You may equate “coefficients” of like powers of λ, even though they
are matrices (just by doing so entry by entry):

a0I = −AS0 , a1I = S0 − AS1 , a2I = S1 − AS2 , . . . ,

an−1I = Sn−2 − ASn−1 , anI = Sn−1.

To show fA(A) = 0, write

fA(A) = fA(A)I = a0I + a1AI + a2A2I + . . . + an AnI

= a0I + A(a1I) + A2(a2I) + . . . + An−1(an−1I) + An(anI)

= −AS0 + A(S0 − AS1) + A2(S1 − AS2) + . . .

+ An−1(Sn−2 − ASn−1) + AnSn−1

= −AS0 + AS0 − AS1 + AS1 − AS2 + . . .

+ An−1Sn−2 − AnSn−1 + AnSn−1

= 0. □

SECOND PROOF OF VI.A.1. Here’s a more abstract approach.
Start with a basis B = {!v1, . . . ,!vn} of Fn, and a transformation T :

Fn → Fn, with [T]B = A. We show fA(T) is the zero transformation.
By definition

T!vi = ∑
j

Aji!vj ,

which we can rewrite

∑
j

+
δijT − Aji

,
!vj = 0.

Set Bij = δijT − Aji (or B = TI − t A); the entries of B are formal
polynomials in the transformation T. The above equation becomes

∑
j

Bij!vj = 0

while we have also
det(B) = fA(T).
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It is therefore sufficient to show (det B)!vk = 0 for all k.
Let B̃ = adjB, so that

∑
i

B̃kiBij = δkj det B.

This time the calculation is far less messy:

(det B)!vk = ∑
j

δkj(det B)!vj = ∑
j

)

∑
i

B̃kiBij

*
!vj

= ∑
i,j

B̃kiBij!vj = ∑
i

B̃ki

)

∑
j

Bij!vj

*
= ∑ B̃ki · 0 = 0.

□

The obvious question after Cayley-Hamilton is “can we ever do
better than a polynomial of degree n?”, i.e. find a nonzero polyno-
mial of lower degree that annihilates A.

VI.A.3. EXAMPLE. Consider the matrix

A =

!

"#
1 1 1
1 1 1
1 1 1

$

%& .

Since !

"#
1 1 1
1 1 1
1 1 1

$

%&

!

"#
1 1 1
1 1 1
1 1 1

$

%& = 3

!

"#
1 1 1
1 1 1
1 1 1

$

%& ,

or A2 − 3A = 0, we find that q(x) = x2 − 3x annihilates A. No-
tice that x2 − 3x = x(x − 3) divides the characteristic polynomial
fA(x) = x2(x − 3) for this A.

VI.A.4. DEFINITION. The minimal polynomial mA of A is the
(unique) nonzero monic3 polynomial m of lowest possible degree,
such that m(A) = 0. Cayley-Hamilton =⇒ deg mA ≤ n for n × n
matrices A.

3Monic means that the coeffficient of the highest power of λ (or x) in the polyno-
mial is 1.
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Uniqueness of mA. Let d = the lowest possible degree men-
tioned above. If ′m and m are two distinct monic polynomials of
degree d, which annihilate A, then ′m(x)− m(x) =

=
-

xd + ′ad−1xd−1 + . . . + ′a0

.
−

-
xd + ad−1xd−1 + . . . + a0

.

= (′ad−1 − ad−1)xd−1 + . . . + (′a0 − a0).

Dividing by the first nonzero ′ai − ai (reading from left to right) gives
a monic polynomial annihilating A:

′′m(A) =
1

′ai − ai

+′m(A)− m(A)
,
= 0.

But deg(′′m) < d, which contradicts the definition (that is, the mini-
mality) of d.

Further properties of mA. Now recall that long division of poly-
nomials, say of g into f , gives a quotient q and remainder r (where
the remainder has degree strictly less than that of g), such that f

g =

q + r
g . If r = 0 then we write g | f (g divides f ), otherwise g ∤ f . We

may write this “division algorithm” as a polynomial equation

f = gq + r, deg r < deg g.

VI.A.5. PROPOSITION. The minimal polynomial of A divides its char-
acteristic polynomial, mA(λ) | fA(λ).

PROOF. By the division algorithm we may write

fA(λ) = mA(λ) · q(λ) + r(λ), deg r < deg mA.

But then

r(A) = fA(A) − mA(A) · q(A) = 0 − 0 · q(A) = 0,

and r annihilates A. Because its degree is less than that of mA, r
must be zero (as a polynomial) — otherwise we have contradicted
minimality of mA. Therefore fA = mA · q and we’re done. □

VI.A.6. REMARK. By the same proof, mA divides any polynomial
p satisfying p(A) = 0.
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In §VI.B we shall give an algorithm for finding mA. The idea is
to perform elementary row and column operations (suitably defined)
on λI − A to put it in a new form:

VI.A.7. DEFINITION. A matrix M ∈ Mn(F[λ]) (with polynomial
entries) is in normal form iff it looks like this:

!

"#
f1(λ) 0

. . .
0 fn(λ)

$

%&

where f1 | f2 | . . . | fn and each fi is a monic polynomial or zero.4 (So
the only possible nonzero scalar is 1, and in the sorts of normal forms
we’ll encounter the first few { fi} will usually be 1.) A typical exam-
ple is diag{1, 1, 1, λ, λ(λ − 2)2}.

In fact we shall give an algorithm associating to any square ma-
trix M with entries in F[λ], a matrix nf (M) in normal form.

We need one more

VI.A.8. DEFINITION. For M ∈ Mn(F[λ]), let
• δk(M) := the monic gcd (= greatest common divisor) of the deter-
minants of all k × k submatrices5 of M, and
• ∆k(M) := δk(M)/δk−1(M). These ∆k are called the invariant fac-
tors of M.

VI.A.9. REMARK. The ∆k(M) are polynomials (as will be implied
by the Theorem below). Note that

δn−1 = the monic gcd of the entries of adj(M),

and
δn(M) = C−1 · det(M)

4The “zero” possibility will not occur when M = nf (λI − A) (the main applica-
tion), but must be included to state more general results. Note that if fk = 0, then
fk+1 = · · · = fn = 0 as well, as 0 only divides 0.
5The submatrices are obtained by blocking out any (n − k) rows and (n − k)
columns. Their determinants are frequently called k × k minors. If these are all
zero, we put δk = 0 = ∆k; but again, this cannot happen for M = λI − A.
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where C is a scalar – namely, the coefficient of the highest power of
λ in det(M). If M = λI − A then det(M) is monic; thus C = 1 and

δn(λI − A) = det(λI − A) = fA(λ).

VI.A.10. THEOREM. If

nf (M) =

!

"#
f1(λ)

. . .
fn(λ)

$

%&

then ∆k(M) = fk(λ). That is, the invariant factors of M are given by the
diagonal entries of nf (M).

The Theorem will be proved in the next section.
Clearly then f1(λ) · · · · · fn(λ) =

∆1(M) · · · · · ∆n(M) = δ1(M) · δ2(M)

δ1(M)
· · · · · δn(M)

δn−1(M)
= δn(M)

and we have a

VI.A.11. COROLLARY. If M = λI − A then f1(λ) · · · · · fn(λ) =

det(λI − A). That is, the product of the (diagonal) entries of nf (λI − A)

is fA(λ).

Set

δA(λ) := δn−1(λI − A) = monic gcd of entries of adj(λI − A).

What we would like now is to prove the following

VI.A.12. PROPOSITION. The top invariant factor of λI − A is the
minimal polynomial of A:

mA(λ) = ∆n(λI − A) =
fA(λ)

δA(λ)
.

According to this statement, in order to find mA(λ) it suffices
to row/column-reduce λI − A to normal form (as described in the
next section), and pick out the last (diagonal) entry. The proof will
be independent of Theorem VI.A.10.
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For small n, it can actually be practical to apply the Proposition
directly to compute mA. For A as in Example VI.A.3, the entries of
adj(λI − A) are all λ2 − 2λ or λ, whose gcd is λ. Dividing fA(λ) =

λ2(λ − 3) by this gives mA(λ) = λ(λ − 3).

PROOF OF PROP. VI.A.12 (IN FOUR STEPS).

Step I Show fA(λ)/δA(λ) is a polynomial (that is, δA | fA).
Let

(VI.A.13) B := adj(λI − A) = δA(λ)M

where the gcd of the entries of M is 1 (see definition of δA(λ) above).
By “Cramer’s rule” (cf. Exercise (5) below) we know the adjoint gives
a “partial” inverse to (λI − A), i.e.

det(λI − A)I = (λI − A)B

or (using (VI.A.13))

(VI.A.14) fA(λ)I = δA(λ)(λI − A)M.

So (λI − A)M must be of the form ∆(λ) · I (for some polynomial ∆),
and the polynomial equation

fA(λ) = δA(λ)∆(λ)

must hold, and we have finished the first step. (Notice we have
proved directly that ∆n(λI − A) [= ∆(λ)] is a polynomial.)

Step II Show mA(λ) | ∆(λ).
From (VI.A.14) we have that

(δA(λ)∆(λ)) I = δA(λ)(λI − A)M

or

(VI.A.15) ∆(λ)I = (λI − A)M.

Now while one cannot simply substitute A for λ (the entries of M
are polynomials in λ too!), one may essentially repeat the argument
we used in our first proof of Cayley-Hamilton (writing out ∆(λ) =
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∑ bjλ
j and M = ∑ λkBk) to show that

∆(A) = 0.

But then by Remark VI.A.6 above, mA divides any polynomial with
this property, and we are done.

Step III Show ∆(λ) | mA(λ).
Since by definition

mA(A) = 0,

we have for some matrix Q ∈ Mn(F[λ])

mA(λ)I = Q (λI − A).

(See Remark VI.A.16.) Multiplying on the right by M and using
(VI.A.15) gives

mA(λ)M = ∆(λ)Q.

Consider the monic gcd’s of the entries of the matrices on either side:

mA(λ) = ∆(λ) · gcd{entries of Q},

since gcd{entries of M} was 1. This concludes step III.

Step IV The end.
Since mA and ∆ are both monic (∆ is the quotient of two monic poly-
nomials), and both divide each other, they must be equal. □

VI.A.16. REMARK. How do we know that mA(A) = 0 means that
mA(λ)I is “divisible” by (λI − A) in a matrix ring which is not even
commutative? The trick is to look just at the (commutative) subring
R consisting of polynomials in A and λ. If you are comfortable with
rings, then consider the homomorphism θ : R ↠ R/(λ − A), with
kernel simply the ideal (λ − A) consisting of multiples of λ − A. In
the quotient, λ is identified with A; and so θ(mA(λ)) = θ(mA(A)) =

0. Consequently mA(λ) is a multiple of λ − A, as required.
Alternatively, writing mA(λ)I = λµI + ∑

µ−1
k=0 λkαkI and

Q(λI − A) = ∑
µ−1
k=0 λkQk(λI − A),
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with Qk ∈ Mn(F), we can try to solve for Qk such that these two
expressions are equal. One finds that Qµ−1 = I, Qµ−2 = αµ−1I + A,
Qµ−3 = αµ−2I + αµ−1A + A2, . . ., and

Q0 = α1I + α2A + · · ·+ αµ−1Aµ−2 + Aµ−1.

This leaves the equality of the constant terms, which is

α0I = −Q0A.

As you will readily verify, this is just the statement that mA(A) = 0.

Exercises
(1) Verify Cayley-Hamilton for

A =

!

"#
1 0 0
1 1 0
0 0 1

$

%& .

Then use Prop. VI.A.12 and Defn. VI.A.8 to directly find mA.
(2) Same as the last Exercise, for

A =

!

"#
1 0 −1
2 1 0
1 −1 1

$

%& .

(3) Suppose det A ∕= 0. Use Cayley-Hamilton to show that A is in-
vertible and that A−1 is given by a certain polynomial in A.

(4) Let p(x) = xn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial, and V
be a vector space with basis B = {!v1, . . . ,!vn}. Define T : V → V
by T!vi = !vi+1 (i = 1, . . . , n − 1) and

T!vn = −an−1!vn − an−2!vn−1 − · · ·− a1!v2 − a0!v1.

(a) Show that p(T) = 0. [Hint: substitute !v2 = T!v1, etc., into the
equation for T!vn.]
(b) Determine A := [T]B.
(c) Show that p(x) = mA(x) = fA(x). [Hint: suppose that q(T) =
0 for a polynomial q of degree < n.]
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(5) Prove that for a matrix with entries in F[λ] (or really, any com-
mutative ring), we have

M · adj(M) = det(M)I = adj(M) · M.

[Hint: all you need is the fact that by definition, [adj(M)]ij =

(−1)i+j det(M!ji), together with the Laplace expansion formulas

for det and the property of det that a repeated row makes it zero.6

The point is to not use Cramer’s rule.]

6Both of these follow from the definition (IV.A.5) of det for matrices with coeffi-
cients in any commutative ring, like F[λ].


