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VI.B. The normal form of a polynomial matrix

We now turn to the algorithm associating to M ∈ Mn(F[λ]) a
matrix in normal form,

M → nf (M),

using certain row and column operations, as promised in §VI.A. This
is similar in spirit to the algorithm

A → rref (A)

we have used throughout for A ∈ Mn(F).
Why introduce column operations? Because we lose a row op-

eration when we are dealing with polynomials: we can only divide
a row by a scalar (not a polynomial), and this makes taking rref of
matrices with polynomial entries a lost cause. (In particular, there is
no “rref (λI − A).”) It also means that multiplying a row by λ is not
invertible (of course, you can undo it on that row, but there isn’t an
elementary matrix for that “undo”).

Here are the operations we shall permit:

VI.B.1. DEFINITION. The elementary row and column operations
on M ∈ Mn(F[λ]) are the same as for Mn(F), except you can’t multi-
ply a row or column by a polynomial. You may

(i) replace: add a polynomial multiple of a row (column) to a different
row (column)

(ii) swap two rows (columns).
(iii) scale: multiply a row (column) by a scalar (= an element of F)

The elementary matrices representing these operations are the same
as in §I.C, except in Rij(b) (for operation (i)) the “b” is allowed to be
a polynomial. As before, they are invertible (by the same formulas),
with inverses in Mn(F[λ]) — reflecting the invertibility of the op-
erations. They have scalar determinants, as can be seen from their
explicit form, or from the more general
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VI.B.2. PROPOSITION. A polynomial matrix M ∈ Mn(F[λ]) has
polynomial matrix inverse M−1 ∈ Mn(F[λ]) if and only if det(M) is a
nonzero scalar.

PROOF. Suppose M has an inverse M−1 ∈ Mn(F[λ]). A priori
det(M) and det(M−1) are polynomials. But as det(M)det(M−1) =

det(MM−1) = det(In) = 1, and degrees of polynomials add under
multiplication, the degree of det(M) must be 0.

Conversely, if det(M) ∈ F \ {0}, then 1
det(M)

adj(M) ∈ Mn(F[λ])

provides an explicit inverse with polynomial entries. (See Exercise
VI.A.5.) □

VI.B.3. DEFINITION. If one passes from M to N using elementary
row and column operations, then M and N are called equivalent.

The Algorithm. Now let M be any nonzero matrix with entries
in F[λ]. Some notation:
• We say g(λ) | M if it divides every entry of M
• ℓ(M) := lowest degree of any nonzero (polynomial) entry of M (if
M contains a nonzero scalar, say 3, then of course ℓ(M) = 0)
• The “first” entry of M with a certain property will just mean the
first you come upon if you read M like a page of a book.

Define an operation (∗) on M as follows: say m = mij is the “first”
nonzero entry of M with deg m = ℓ(M) (it’s an entry of least degree);
perform row/column swaps to bring it to the (1, 1) position. Using
the division algorithm, write all other entries in the first column as
qim + ri, where deg ri < deg m; subtract qi × (1st row) from the ith

row (for i = 2, . . . , n), to reduce these entries (in the 1st column) to ri.
Do the same for the first row. This concludes the operation (∗).

The matrix now looks like
!

""""#

m ′r2 · · · ′rn

r2
... ∗

rn

$

%%%%&
,
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with all r’s of lower degree than m. If they are not all zero then we
have reduced ℓ(M).

If we apply the algorithm (∗) repeatedly

M = M0

(∗)
−→ M1

(∗)
−→ M2 −→ · · ·

then we reach a matrix of the form
!

"""#

g1 0 ↔ 0
0
↕ S1

0

$

%%%&
=: (g1, S1)

in a finite number of steps, because we cannot continue to reduce

ℓ(M0) > ℓ(M1) > ℓ(M2) > . . .

for very long. At the end of this process, divide g1 by the coefficient
of its highest power of λ to make it monic. (We still denote the result
by g1.) Call the whole sequence we have performed so far (∗∗).7

If deg g1 > ℓ(S1) (i.e. g1 is not of minimal degree in this ma-
trix) then applying (∗∗) again to (g1, S1) will produce (g2, S2) with
deg g2 ≤ ℓ(S1) < deg g1. (The reason: if there is an entry s ∈ S1 with
lower degree than g1, then (∗∗) will begin by swapping this element
[or another, of degree ≤ deg s] to the (1, 1) position. From then on
each application of (∗) within (∗∗) cannot increase the degree of the
upper left-hand entry.) Since

deg g1 > deg g2 > . . .

cannot continue forever, we eventually must reach (gk, Sk) having
deg gk ≤ ℓ(Sk), i.e. such that gk has the lowest degree in the matrix,
excluding 0’s.

However, gk still may not divide all the entries of Sk, even if it is
of lower degree. If gk ∤ Sk then let s be the first entry of Sk such that
gk ∤ s, and use the division algorithm to write s = gkq + r, deg r <

7Note that if S1 is the zero matrix, we stop here, as the matrix is in normal form.
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deg gk. Add the column containing s to the first column, changing
the matrix to !

""""#

gk 0 ↔ 0
...

gkq + r Sk
...

$

%%%%&
,

and subtract q times the first row from the row of s, to obtain
!

""""#

gk 0 ↔ 0
...
r Sk
...

$

%%%%&
.

Since deg r < deg gk, applying (∗∗) produces (gk+1, Sk+1) such that
deg gk+1 ≤ deg r < deg gk (same argument as in the last paragraph).
Continuing on as long as gi ∤ Si we have once again

deg gk > deg gk+1 > deg gk+2 > . . .

and the process must terminate with (gk, Sk) such that gk | Sk.
We have produced from M, using a well-defined algorithm,

!

"""#

f(1) 0 ↔ 0
0
↕ M(1)

0

$

%%%&

with f(1) a polynomial in λ dividing the entries of M(1). Assum-
ing M(1) is nonzero,8 we perform the whole sequence of steps again
on M(1) to get f(2), M(2) (with f(2) | M(2)!) both still divisible by f(1)
(why?), and so on — until we have a diagonal matrix N with diago-
nal entries f(1), f(2), . . . , f(n). Thus N is a normal matrix (see §VI.A)
and is equivalent to M; we write N = nf (M).

8If you are putting M = λI − A into normal form, this will always be the case. All
of your f(k) will be nonzero, as their product has to be the characteristic polyno-
mial (see below).
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Uniqueness and Invariant factors. If R (resp. C) is the product
of elementary matrices corresponding to the row (resp. column) op-
erations performed in the computation, then the relationship is

R · M · C = nf (M) = N.

What if we used a different algorithm to put M in normal form, say

′R · M · ′C = ′N ?

Then according to the following proposition, N and ′N are the same
(getting deja vu yet?):

VI.B.4. PROPOSITION. There is exactly one matrix in normal form
“equivalent” to a given matrix M.

So you don’t have to do things in the rigid order specified above
when finding nf (M). The value of the rigid algorithm is that it has
already proved the existence part of this proposition (“there is a nf
matrix equivalent to M”). Before proving uniqueness we turn to the

PROOF OF THEOREM VI.A.10. Recall that

δk(M) := monic gcd of determinants of k × k submatrices of M.

These are invariant under row and column operations (ergo the ter-
minology “invariant factors” for their ratios). This is because “re-
place” operations don’t alter determinants,9 while the scale and swap
operations only change them by scalars (which are then wiped out
by taking monic gcd, since this ignores scalar multiples). So if M and
N are equivalent, then ∆k(M) = ∆k(N).

Moreover, it is really easy to compute the invariant factors for

N =

!

"#
f1(λ) 0

. . .
0 fn(λ)

$

%& .

9This is a wee bit disingenuous, since we are taking determinants of submatrices,
and adding a polynomial multiple of column i to column j can certainly affect the
determinant of any k × k submatrix meeting column j but not column i. The easy
fix is given in Exercise (5).
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Clearly, since all the fi are monic, δn(N) = det(N) = f1 · · · · · fn.
Next, the gcd of the determinants of all (n − 1)× (n − 1) minors is
simply δn−1(N) = f1 · · · · · fn−1. In general δk(N) = f1 · · · · · fk and
so ∆k(N) = fk. We conclude that the diagonal entries of nf (M) are
the invariant factors ∆k(M). □

PROOF OF PROPOSITION VI.B.4. We only need to prove unique-
ness: say N and ′N are matrices in normal form, both equivalent to
M. Then N and ′N are equivalent, hence have the same invariant
factors, and thus the same diagonal entries! That is, N = N′. □

Notice that the invariant factors are playing here very much the
same role as (the standard basis of) the row space did, back in §§II.C-
II.D, in our proof that there was exactly one rref matrix row-
equivalent to a given matrix in Mn(F).

Now let M = λI − A. In general nf (M) is going to look like
!

"""""""""#

1 0
. . .

1
h1(λ)

. . .
0 hr(λ)

$

%%%%%%%%%&

= R · (λI − A) · C

where hr(λ) = mA(λ). Taking determinants of both sides, since det R
and det C are (nonzero) scalars, say det R · det C = k ∈ F, we have

h1(λ) · · · · · hr(λ) = k · det(λI − A) = k · fA(λ).

Since the degree of the right-hand side = n,

∑ deg(hi(λ)) = n.

This is one way you can check you’ve done everything right.

VI.B.5. REMARK. Since fA and h1, . . . , hr are all monic polynomi-
als, k = 1. So we’ve proved directly that the characteristic polyno-
mial of A is the product of the (diagonal) entries of nf (λI − A), i.e.
∏ hi(λ) = fA(λ) (Corollary VI.A.11).
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VI.B.6. EXAMPLE. We compute nf (λI − A) for

A =

!

"#
1 1 1
1 1 1
1 1 1

$

%& ,

by applying the algorithm to

λI − A =

!

"#
λ − 1 −1 −1
−1 λ − 1 −1
−1 −1 λ − 1

$

%& −→

I−→

!

"#
−1 λ − 1 −1

λ − 1 −1 −1
−1 −1 λ − 1

$

%& II−→

!

"#
1 0 0
0 λ2 − 2λ −λ

0 −λ λ

$

%&

III−→

!

"#
1

−λ λ2 − 2λ

0 λ2 − 3λ

$

%& IV−→

!

"#
1

λ

λ2 − 3λ

$

%& .

Note that mA(λ) = λ2 − 3λ is exactly the minimal polynomial we
had found before, while λ · (λ2 − 3λ) = λ2(λ − 3) = fA(λ).

An application. To get a quick sense of the depth of the results
of this section, consider the striking

VI.B.7. COROLLARY. Any matrix M ∈ Mn(F[λ]) which is invertible
in Mn(F[λ]) is a product of elementary matrices.

PROOF. By the algorithm, we have RMC = N, with N normal
and R and C products of elementary matrices. By Proposition VI.B.2,
the determinants of R, M, and C are nonzero scalars; hence so is
that of N. But since N is diagonal, and degrees of polynomials add
under multiplication, this forces its entries to be scalars. So N is a
product of matrices of “scale” type, and M = R−1NC−1 is a product
of elementary matrices. □

A more general statement, which follows from VI.A.9-VI.A.10, is
that det(M) ∈ F[λ] is always the product of invariant factors (times
a nonzero scalar). So if det(M) is not the zero polynomial, then the
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diagonal entries of nf (M) are all nonzero, and vice versa. This justi-
fies a claim made previously about the case M = λI − A, since then
det(M) = fA(λ) is never the zero polynomial.

Exercises
(1) What are the elementary matrices (of which R and C are prod-

ucts) involved in the application of the normal form algorithm in
Example VI.B.6?

(2) For

A =

!

"#
7 12 −12
−2 −3 4
2 4 −3

$

%& ,

compute nf (λI − A) via the algorithm above, and use it to deter-
mine mA and fA.

(3) (a) Determine the invariant factors of

A =

!

"""#

1 0 0 0
0 1 0 0
−2 −2 0 1
−2 0 −1 −2

$

%%%&

by putting λI − A in normal form.
(b) Repeat for the matrix given by replacing the −2 in the lower
right-hand corner of A by 2.

(4) Prove that A ∈ Mn(C) is diagonalizable if and only if mA has no
repeated roots, via the following steps:
(a) Show that similar matrices have the same minimal polyno-
mial.
(b) Show that the minimal polynomial of a diagonal matrix is the
product of the (λ − λi) where {λi} are the distinct eigenvalues.
(With (a), this gives the “only if” part.)
Henceforth assume mA has no repeated roots.
(c) Show that if A has eigenvalue λ, then p(A) has eigenvalue
p(λ), for any polynomial p.
(d) Using part (c), prove that mA is equal to the product ∏(λ −
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λi) over distinct eigenvalues of A. [Hint: First show that this
product divides mA. Note that A is not assumed diagonalizable!]
(e) Now the nullity of ∏(A − λiI) is ≤ the sum of the nullities of
(A − λiI) (why?). [Hint: see Exercise III.A.9(b).] The latter nul-
lities are the geometric multiplicities of the eigenvalues. Using
this, show that A is diagonalizable.

(5) Show that δk(M) is invariant under “replace” operations (type
(i)), by arguing as follows. Let S [resp. S′] be the k × k sub-
matrix of M obtained by removing the rows other than i1, . . . , ik

[resp. i0, . . . , ik−1] and columns other than j1, . . . , jk. Given f (λ) ∈
F[λ], let M̃ be the result of adding f (λ) times row i0 to row ik in
M, and S̃ the k × k submatrix of M̃ obtained by omitting rows
other than i1, . . . , ik and columns other than j1, . . . , jk.
(a) Show that det S̃ = det(S)± f (λ)det(S′).
(b) Check that, for polynomials g, g′, f ∈ F[λ], we have

gcd(g, g′) = gcd(g + f g′, g′).
(c) Prove that δk(M̃) = δk(M).


