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VI.C. Rational canonical form

Let’s agree to call a transformation T : Fn → Fn semisimple if there
is a basis B = {!v1, . . . ,!vn} such that

T!v1 = λ1!v1 , T!v2 = λ2!v2 , . . . , T!vn = λn for some scalars λi ∈ F.

T is completely transparent when looked at relative to this basis. In
terms of matrices, if A = [T]ê and D = [T]B = diag{λ1, . . . , λn},
then

A = S D S−1,

and A is similar to a diagonal matrix.
What if A is not diagonalizable (⇔ T is not semisimple)? Is there

some basis in terms of which the action of T is still “transparent”? An
equivalent question: is there a “canonical” [= standard] sort of matrix
to which any A is similar? In the next three sections, we present two
distinct solutions to this problem: the rational and Jordan canonical
forms of A. That is, any A is similar to (essentially) unique matrices
R and J obeying certain rules. One warning: in case A is diagonal-
izable, i.e. A ∼ D, the rational form R does not reduce to that (or
any) diagonal matrix. Later we will find that, by contrast, the Jordan
form J does equal D in this case.

Another basic question: when is A diagonalizable? Momentarily
assuming F = C,

• Answer 1: when the geometric multiplicities (of the eigenvalues of
A) equal the algebraic multiplicities.

• Answer 2: when mA (not fA) has no repeated roots (see Exercise
VI.B.4). Although this avoids the computation involved in Answer 1
(with which you are by now familiar), finding nf (λI − A) ain’t easy
either.

• Answer 3: the Spectral Theorem, to be discussed later in this text.

Now we go over a couple of basic building blocks we’ll need for our
discussion of rational canonical form.
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Direct-Sum Decomposition. The notation

(VI.C.1) V = V1 ⊕ · · ·⊕ Vr

means that

(i) V = V1 + · · ·+ Vr

(ii) ∑i dim Vi = dim V, or equivalently
(ii’) there is only one way of writing a given !v ∈ V as !v1 + . . . +!vr

(with !vi ∈ Vi).

We say that V is the direct sum of the Vi. If this holds then there exists
a basis B = {B1, . . . ,Br} for V such that Bi are (respectively) bases
for Vi. A linear transformation T : V → V is said to respect the direct
sum decomposition if T(Vi) ⊆ Vi (for each i); that is, if each Vi is
closed under the action of T. In that case,

(VI.C.2) [T]B =

!

""#

$
T
%%V1

&
B1

0
. . .

0 [T |Vr ]Br

'

(()

— that is, the matrix of T (with respect to B) consists of blocks10 along
the diagonal, representing its behavior on each subspace Vi.

Cyclic Subspaces and Vectors. Let T : V → V be a transforma-
tion, and look at the successive images (under T) of !v ∈ V:

!v , T!v , T2!v, . . . .

Now V is finite-dimensional, so the collections {!v, T!v, . . . , Ti!v} have
to stop being independent at some point: i.e., there is some m such
that

!v, T!v, . . . , Tm−1!v are independent,

but
!v, T!v, . . . , Tm−1!v, Tm!v are dependent

and so

0 = αmTm!v + αm−1Tm−1!v + . . . + α1T!v + α0!v,

10smaller matrices: evidently the dimensions of the ith block are dim Vi × dim Vi.
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where not all αi = 0. In fact αm ∕= 0, because otherwise we would
contradict independence of !v, . . . , Tm−1!v. Dividing by αm, we see
that

0 = p(T)!v

where p is the monic polynomial

p(λ) = λm +
αm−1

αm
λm−1 + . . . +

α0

αm
=: λm + am−1λm−1 + . . . + a0.

Let
W = span{!v, T!v, . . . , Tm−1!v};

it is called a (T-)cyclic subspace of V with cyclic vector !v, and we say
that !v “generates” W (under the action of T).

VI.C.3. REMARK. Clearly Tm!v ∈ W since p(T)!v = 0 =⇒

Tm!v = −am−1Tm−1!v − . . . − a1T!v − a0!v.

In fact W contains Tm+1!v, Tm+2!v, . . . simply by applying T to both
sides of this equation repeatedly. So if we “cut off” at the degree
(= m) of the first polynomial relation amongst the Ti!v and consider
the span (= W) of the first m of these, we have already the space
spanned by all the Ti!v.

Let’s look at the matrix of T |W with respect to the basis B =

{!v, T!v, . . . , Td−1!v} =: {!v1, . . . ,!vm}. Clearly

T!v1 = !v2 , T!v2 = !v3 , . . . , T!vm−1 = !vm ,

while

T!vm = T(Tm−1!v) = Tm!v = −am−1Tm−1!v − am−2Tm−2!v − . . . − a0!v

= −am−1!vm − am−2!vm−1 − . . . − a0!v1.

Therefore

(VI.C.4) [T |W ]B =

!

""""#

0 · · · 0 −a0

1 0 −a1
. . . ...

0 1 −am−1

'

(((()
=: M(p) ;
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this is called the companion matrix of the (monic) polynomial

(VI.C.5) p(λ) = λm + am−1λm−1 + . . . + a0.

VI.C.6. PROPOSITION. p(λ) is both the minimal and characteristic
polynomial of its companion matrix.

PROOF. We proceed by computing nf (λI − M(p)): starting with

λI − M(p) =

!

"""""""""#

λ 0 a0

−1 λ a1
. . . . . . ...

. . . λ am−3

−1 λ am−2

0 −1 λ + am−1

'

((((((((()

,

add λ times the bottom row to the 2nd row from bottom, to obtain
!

"""""""""#

λ 0 a0

−1 λ a1
. . . . . . ...

. . . λ am−3

−1 0 λ2 + am−1λ + am−2

0 −1 λ + am−1

'

((((((((()

;

repeat all the way up (add λ times (i + 1)st row to the ith) to get
!

"""""""""#

0 0 λm + am−1λm−1 + . . . + a0

−1 0 λm−1 + am−1λm−1 + . . . + a1
. . . . . . ...

. . . 0 λ3 + am−1λ2 + am−2λ + am−3

−1 0 λ2 + am−1λ + am−2

0 −1 λ + am−1

'

((((((((()

.

Noting that the top-right entry is p(λ), add multiples of the 1st thru
(m− 1)st columns to the right-hand column to kill all the other entries
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(in that column), obtaining
!

""""#

0 · · · 0 p(λ)
−1 0 0

. . . ...
0 −1 0

'

(((()
.

Finally, multiplying the first (m − 1) columns by (−1) and perform-
ing row swaps, we arrive at

!

""""#

1 0
. . .

1
0 p(λ)

'

(((()
= nf (λI − M(p)).

Thus mM(p) [= lower-right-hand entry]= p(λ) and fM(p)(λ) [= prod-
uct of diagonal entries]= p(λ), as claimed. □

VI.C.7. REMARK. Since p(λ) is the minimal polynomial of T |W ,
p(T |W) = 0; in other words, p(T) annihilates W, which is also clear
from the fact that it annihilated W’s cyclic vector !v above.

Rational Canonical Form. For simplicity let V = Fn, A ∈ Mn(F)

be any matrix, and T : V → V be the corresponding transformation
(A = [T]ê as usual). Recall that the diagonal entries of nf (λI − A)

give the invariant factors ∆k(λ) of λI − A, and let {∆r, . . . , ∆n} be
the nontrivial ( ∕= 1) ones among them. We now show that to each
(nontrivial) ∆k there is associated a T-cyclic subspace Wk ⊆ V having
∆k(λ) as both characteristic and minimal polynomial, and moreover
that V = Wr ⊕ · · ·⊕ Wn. The rational canonical form is then just the
reflection of this decomposition of V (into cyclic subspaces) in matrix
form.

In §VI.B we showed how to use row and column operations to
transform (λI − A) ∈ Mn(F[λ]) into a matrix in normal form:
(VI.C.8)

P(λI − A)Q = nf (λI − A) = diag{1, . . . , 1, ∆r(λ), . . . , ∆n(λ)}

where P, Q ∈ Mn(F[λ]) are invertible, and ∑k deg ∆k(λ) = n.
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Set mk := deg ∆k(λ). By swapping rows and columns one may
change the right-hand side of (VI.C.8) to

diag{1, . . . , 1, ∆r(λ)* +, -; . . . ; 1, . . . , 1, ∆n(λ)* +, -}.

mr + . . . + mn = n

Reversing the row/column operations we did on the companion ma-
trices, we may change this to a matrix

diag{λImr − M(∆r), . . . , λImn − M(∆n)}

consisting of blocks of dimensions mr × mr, . . . , mn × mn down the
diagonal. So we have

(VI.C.9) ′P (λI − A) ′Q = λIn − diag{M(∆r), . . . , M(∆n)}

where ′P, ′Q ∈ Mn(F[λ]) are still invertible.
Now suppose we could replace the left-hand side of (VI.C.9) by

S−1(λIn − A)S for S ∈ Mn(F) with scalar entries. Here is what that
would tell us. Let B = {!v1, . . . ,!vn} be the basis given by the columns
of S. Then since S−1(λIn − A)S = λIn − S−1AS,

λIn − S−1AS = λIn − diag{M(∆r), . . . , M(∆n)}

=⇒ S−1AS = diag{M(∆r), . . . , M(∆n)},

or

(VI.C.10) [T]B =

!

""#

M(∆r)
. . .

M(∆n)

'

(() .

Combined with what we have seen about cyclic subspaces and direct
sums, this tells us that V decomposes into a direct sum of T-cyclic
subspaces as described.

Namely, if the columns of our proposed S yield

B = {!v1, . . . ,!vmr ; !vmr+1, . . . ,!vmr+mr+1 ; . . . ; !vn−mn+1, . . . ,!vn }

=: {Br;Br+1; . . . ;Bn},
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then define Wk = span{Bk}, and V = Wr ⊕ · · ·⊕ Wn. From the sup-
posed form of [T]B, it is clear that:

• ∆k(T) annihilates the subspace Wk (cf. Remark VI.C.7);
• !v1, !vmr+1, . . . , !vn−mr+1 are cyclic vectors for Wr, Wr+1, . . . , Wn; and
• Br = {!v1, . . . ,!vmr} = {!v1, T!v1, . . . , Tmr−1!v1} (etc. for the other Bk).

All of this should be regarded as provisional and tentative, since we
shall soon present the basis differently. After all, we still have to
prove it exists!

VI.C.11. EXAMPLE. Before things get more technical, we need
some light at the end of the tunnel. Let

A =

!

"""#

1 0 0 0
0 1 0 0
−2 −2 0 1
−2 0 −1 2

'

((()
,

and consider the basis B given by

!v1 =

!

"""#

1
0
−2
0

'

((()
, !v2 =

!

"""#

0
1
0
0

'

((()
, !v3 =

!

"""#

0
1
−2
0

'

((()
, !v4 =

!

"""#

0
1
−2
2

'

((()
.

You can easily check that A!v1 = !v1, A!v2 = !v3, A!v3 = !v4, and A!v4 =

3!v4 − 3!v3 + !v2. Taking S to be the matrix with these vectors as its
columns, we therefore have

S−1AS = [T]B =

!

"""""#

1 0 0 0

0
0
0

0 0 1
1 0 −3
0 1 3

$

%%%%%&
.

If you did Exercise VI.B.3(b), you know that the two nontrivial in-
variant factors of A are ∆3(A) = λ − 1 and ∆4(A) = (λ − 1)3 =

λ3 − 3λ2 + 3λ − 1. The boxed submatrices are their companion ma-
trices, M(∆3) and M(∆4).
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Finding the Basis. We now embark on the quest to find the ba-
sis B in general so that [T]B takes the form (VI.C.10). We’ll need to
work with a space of “vectors” with polynomial coefficients, namely
(F[λ])n. (This is really not a vector space, but a module over the ring
F[λ].) There is a map

(F[λ])n η−→ Fn

given by writing out a “vector” in components and formally replac-
ing λ by T:11

!c = g1(λ)ê1 + . . . + gn(λ)ên +−→ η(!c) := g1(T)ê1 + . . . + gn(T)ên.

Recall that the row operations P = PM · · · P1 used to put (λI −
A) in normal form were invertible, so we may consider12 P−1 =

P−1
1 · · · P−1

M . Let C, Γ be the bases {!c1, . . . ,!cn}, {!γ1, . . . ,!γn} for (F[λ])n

consisting of the “column vectors” of P−1 and Q, respectively. We
write S−1

C = C [I]ê = P, SΓ = ê[I]Γ = Q, and also [λI − T]ê for
λIn − A; now (VI.C.8) becomes
(VI.C.12)!

""""""""#

1
. . .

1
∆r(λ)

. . .

∆n(λ)

'

(((((((()

= S−1
C ([λI − T]ê)SΓ = C [λI − T]Γ.

We are going to use (VI.C.12) to show that the vectors η(!cr), . . . , η(!cn)

generate V(= Fn) under the action of T.
To this end let

• Wk := space generated by η(!ck) under the action of T, and
• mk := deg ∆k(λ) (which we do not yet know = dim Wk).

11Here gi(T)êi is just a polynomial in the transformation T [or matrix A] acting on
the ith standard basis vector ∈ Fn.
12Finding P−1 means taking the product of the elementary matrices corresponding
to the reverse of the operations you did — only the row operations!
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Noting that!ck (resp. !γk) are the columns of SC (resp. SΓ), denote the
entries of SC , SΓ by Cij, Γij ∈ F[λ], so that

!γj = Γ1j ê1 + . . . + Γnj ên , !cj = C1j ê1 + . . . + Cnj ên.

Now observe that according to (VI.C.12), λI − T takes

!γ1 +→ !c1, . . . , !γr−1 +→ !cr−1 ; !γr +→ ∆r(λ)!cr, . . . , !γn +→ ∆n(λ)!cn.

We expand this as follows for all j = 1, . . . , r − 1, k = r, . . . , n:

(λI − T)
.
Γ1j(λ)ê1 + . . . + Γnj(λ)ên

/
= C1j(λ)ê1 + . . . + Cnj(λ)ên ,

(λI − T) (Γ1k(λ)ê1 + . . . + Γnk(λ)ên) =

∆k(λ)C1k(λ)ê1 + . . . + ∆k(λ)Cnk(λ)ên.

(VI.C.13)

One can employ a formal argument like that in our proof of Cayley-
Hamilton, to show it is valid to substitute in T for λ to get (since
TI − T = 0)

(VI.C.14) 0 = C1j(T)ê1 + · · ·+Cnj(T)ên = η(!cj), j = 1, . . . , r− 1,

and

(VI.C.15) 0 = ∆k(T) (C1k(T)ê1 + · · ·+ Cnk(T)ên)

= ∆k(T)η(!ck), k = r, . . . , n.

Basically, this amounts to taking η of both sides of both equations
(VI.C.13).13

13Unfortunately, justifying this is a bit ugly — unless you use theory of modules
which makes such things automatic. (Think of it as motivation to learn abstract
algebra!) The formal argument (without module theory) for

η(!cj) = 0 , 1 ≤ j ≤ r − 1

goes as follows: Since Têℓ = ∑i Aiℓ êi,

(λI − T)
!
∑i Γij(λ)êi

"
= ∑i Cij(λ)êi =⇒

∑i
!
λΓij(λ)− Cij(λ)

"
êi = ∑ℓ Γℓj(λ)Têℓ = ∑i,ℓ Γℓj(λ)Aiℓ êi =⇒

for each i, j (1 ≤ j ≤ r − 1) the polynomial equation

λΓij(λ)− Cij(λ) = ∑ℓ AiℓΓℓj(λ)
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So we may discard the first r − 1 columns of SC = P−1, since
their images under η are zero by (VI.C.14). For the remaining !ck,
∆k(T) annihilates η(!ck) by (VI.C.15) so that

{η(!ck), Tη(!ck), . . . , Tmk η(!ck)} are dependent.

We do not yet know that
0

η(!ck) , Tη(!ck), . . . , Tmk−1η(!ck)
1

are independent,

but we do know that Wk = their span and so

dim Wk ≤ mk = deg ∆k(λ).

Since ∑k deg ∆k = n,

∑
k

dim Wk ≤ n.

Moreover, ∆k(T) annihilates Wk (since it annihilates η(!ck)).
Now let Rij be the (polynomial) entries of P = S−1

C = C [I]ê, so
that for all i = 1, . . . , n

êi = R1i(λ)!c1 + . . . + Rni(λ)!cn.

Applying η to both sides, we have

êi = R1i(T)η(!c1) + . . . + Rni(T)η(!cn)

= Rri(T)η(!cr) + . . . + Rni(T)η(!cn)

since the first (r − 1) {η(!cj)} are zero. Therefore (sums of) pow-
ers of T acting on the {η(!cr), . . . , η(!cn)} give all the {ê1, . . . , ên}, and
thereby span all of V = Fn! In other words,

Wr + . . . + Wn = V,

holds. That is, the two sides are the same polynomial. It now makes perfect sense
to substitute in T for λ to obtain

TΓij(T)− Cij(T) = ∑ℓ AiℓΓℓj(T) =⇒ Cij(T) = ∑ℓ (Tδiℓ − Aiℓ) Γℓj(T).

Therefore η(!cj) :=

∑i Cij(T)êi = ∑i,ℓ (Tδiℓ − Aiℓ) Γℓj(T)êi = ∑ℓ Γℓj(T) [∑i (Tδiℓ − Aiℓ) êi] = 0

because ∑i(Tδiℓ − Aiℓ)êi = Têℓ − ∑i Aiℓ êi = 0.
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and so
∑k dim Wk ≥ dim V = n.

Combining our inequalities,

(VI.C.16) ∑
k

dim Wk = n

and so the sum is direct:

V = Wr ⊕ · · ·⊕ Wn.

Also (VI.C.16) forces dim Wk = deg ∆k(λ), so that

Bk =
0

η(!ck), Tη(!ck), . . . , Tmk−1η(!ck)
1

is a basis for Wk (i.e., it was an independent set after all). Thus
$
T
%%Wk

&
Bk

= M(∆k)

as promised, and
B = {Br, . . . ,Bn}

is the basis for V = Fn.
Let’s sum up, in terms of a theorem about transformations, and

an algorithm for the corresponding matrices:

VI.C.17. THEOREM. For T : V → V (dim V = n) there is a decom-
position

V = Wr ⊕ · · ·⊕ Wn

into T-cyclic subspaces, such that the minimal and characteristic polyno-
mials of T

%%Wk are both just the kth invariant factor ∆k of λI − T.

Algorithm. Given A ∈ Mn(F), apply the normal form procedure
to λI − A to obtain

P(λI − A)Q =

!

"""""""""#

1 0
. . .

1
∆r(λ)

. . .
0 ∆n(λ)

'

((((((((()

.
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Find the inverse P−1 of the row operations, call its entries Cij (some
will be polynomials in λ) and columns !ck. Throw out !c1, . . . ,!cr−1;
write each of the remaining people component-by-component

!ck = C1k(λ)ê1 + . . . + Cnk(λ)ên,

and compute

η(!ck) = C1k(T)ê1 + . . . + Cnk(T)ên :

after applying the T’s to the êi’s rewrite the result as a column vector.
(This sounds hard, but in actual practice, is not: e.g., if !ck happens
only to have scalar entries, then η(!ck) = !ck.)

Let mk = deg ∆k, and write (for k = r, . . . , n)

Bk =
0

η(!ck), Tη(!ck), . . . , Tmk−1η(!ck)
1

;

put these together to form a basis

B = {Br, . . . ,Bn} for Fn.

Set

S := SB =

2
matrix whose columns

are the vectors of B

3
,

and write
A = S · R · S−1,

where
R = diag{M(∆r), . . . , M(∆n)}

consists of companion-matrix blocks along the diagonal (cf. (VI.C.4)
and (VI.C.10)).

VI.C.18. REMARK. You should of course think of this as a change
of basis: (A =)[T]ê = ê[I]B · [T]B · B [I]ê , where T is “transparent”
relative to B.

VI.C.19. EXAMPLE. We now put our favorite example

A =

!

"#
1 1 1
1 1 1
1 1 1

'

()
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into rational canonical form. At the end of §VI.B, we put (for this A)
λI − A into normal form,

nf (λI − A) =

!

"#
1

λ

λ2 − 3λ

'

() ,

in 4 (somewhat condensed) steps. We list the row operations in-
volved in each of these steps, numbering them in the order in which
they occur:
Step I : R1 = swapping rows 1 and 2
Step II : (Involves three row operations.) R2 = multiplying row 1 by
(−1), R3 = adding (1 − λ)× {row 1} to row 2, R4 = adding row 1
to row 3
Step III : R5 = adding row 2 to row 3
Step IV : R6 = multiplying row 2 by (−1).

What are the inverses of these row operations? This is routine
by now! For example, R−1

5 = subtracting row 2 from row 3, while
R−1

3 = adding (λ − 1) × {row 1} to row 2. Things like R1 and R6

are the same in reverse. To find C = P−1 one simply writes out the
corresponding product of matrices14

C = R−1
1 R−1

2 R−1
3 R−1

4 R−1
5 R−1

6

=

!

"#
1

1
1

$

%&

!

"#
−1

1
1

$

%&

!

"#
1

λ − 1 1
1

$

%&

!

"#
1

1
−1 1

$

%&

!

"#
1

1
−1 1

$

%&

!

"#
1

−1
1

$

%&

=

!

"#
λ − 1 −1 0
−1 0 0
−1 1 1

$

%& =⇒ !c1 =

!

"#
λ − 1
−1
−1

$

%& , !c2 =

!

"#
−1
0
1

$

%& , !c3 =

!

"#
0
0
1

$

%& .

Now according to the entries of nf (λI − A), the invariant factors of
A are ∆1 = 1, ∆2 = λ, ∆3 = λ2 − 3λ. This means that we keep
!c2 = η(!c2) and !c3 = η(!c3), which will generate R3 under the action
of A (recall that η(!c) = !c if !c has only scalar entries); and we throw
out!c1 because ∆1 = 1 =⇒ η(!c1) = 0.

14As an alternative (to avoid multiplying matrices), one could perform these as
row operations on the identity matrix: R−1

1 (· · · (R−1
6 I)).
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Let’s check this, in order to see a computation of η(!c) where !c
has actual polynomial entries! First break !c1 into components with
respect to the standard basis:

!c1 = (λ − 1)ê1 + (−1)ê2 + (−1)ê3.

Next substitute T for λ:

η(!c1) = (T − 1)ê1 + (−1)ê2 + (−1)ê3

= Tê1 − (ê1 + ê2 + ê3).

Finally, rewrite everything in matrix-vector notation (with respect to
ê) to compute the result:

=

!

"#
1 1 1
1 1 1
1 1 1

$

%&

!

"#
1
0
0

$

%&−

'
()

(*

!

"#
1
0
0

$

%&+

!

"#
0
1
0

$

%&+

!

"#
0
0
1

$

%&

+
(,

(-
=

!

"#
1
1
1

$

%&−

!

"#
1
1
1

$

%& =!0.

Written in this way it looks kind of like magic.
Now for the remaining cases k = 2, 3, dim(Wk) = #{vectors in Bk}

must be the degree mk of ∆k.15 Since m2 = 1 and m3 = 2,

B2 = {η(!c2)} =

'
()

(*

!

"#
−1

0
1

$

%&

+
(,

(-
, B3 = {η(!c3), Tη(!c3)} =

'
()

(*

!

"#
0
0
1

$

%& ,

!

"#
1
1
1

$

%&

+
(,

(-
.

These three vectors together give our basis and

S =

!

"#
−1 0 1
0 0 1
1 1 1

'

()
rref
−→ S−1 =

!

"#
−1 1 0
1 −2 1
0 1 0

'

() .

Finally for the companion matrices. For arbitrary monic polyno-
mials λ + a0 and λ2 + a1λ + a0 of degrees 1 and 2 , these are

(−a0) and

4
0 −a0

1 −a1

5
.

Therefore in our case

M(∆2) = (0) and M(∆3) =

4
0 0
1 3

5
.

15That is, Bk is {η(!ck), Tη(!ck), . . . , Tmk−1η(!ck)}.



190 VI. CANONICAL FORMS

The decomposition is therefore (in the form A = SRS−1 )
!

"#
1 1 1
1 1 1
1 1 1

'

() =

!

"#
−1 0 1
0 0 1
1 1 1

'

()

!

""#

0 0 0

0
0

0 0
1 3

'

(()

!

"#
−1 1 0
1 −2 1
0 1 0

'

() .

Exercises
(1) Compute the rational canonical form for

A =

!

"#
−1 −1 −1
−2 0 −1
6 3 4

'

() .

That is, present it as SRS−1, where R consists of companion ma-
trix blocks along the diagonal and S is a change-of-basis matrix.
Interpret the result in terms of a direct-sum decomposition of R3

under the action of the transformation T with matrix [T]ê = A.
(2) Same problem with

A =

!

"""#

1 0 0 0
0 1 0 0
−2 −2 0 1
−2 0 −1 −2

'

((()
,

and R4 instead of R3. [Note: from Exercise VI.B.2(a), you already
know the normal form for λI4 − A.]

(3) Once more, same problem with

A =

!

"""#

1 0 0 0
c 1 0 0
0 c 1 0
0 0 c 1

'

((()
.

How does it depend on c?
(4) Let T : V → V (with V ∼= Rn) be semisimple.

(a) If T has a cyclic vector !v ∈ V (i.e. !v, T!v, . . . , Tn−1!v span V),
show that T has n distinct eigenvalues.
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(b) If T has n distinct eigenvalues, then taking {!v1, . . . ,!vn} to be
an eigenbasis, show that !v = ∑n

i=1!vi is a cyclic vector for T.
(5) Let A ∈ Mn(R) be such that A2 = −In.

(a) Prove that n is even.
(b) Writing n = 2k, show that A is similar (over R) to

Jn :=

4
0 −Ik

Ik 0

5
.

(6) Let T : P3 → P3 be d
dx . Write its matrix A in the “standard”

basis {x3, x2, x, 1} = B, and put it in rational canonical form (i.e.
A = SRS−1), without computation! [Hint: what is T4?]

(7) Suppose I tell you the characteristic polynomial of a 5 × 5 matrix
A, without giving you the matrix: fA(λ) = (λ − 3)3(λ − 2)2.
(a) What are the possible rational canonical forms R? (Start by
listing the possibilities for nf (λI − A).) There should be six.
(b) This says that there are six “distinct” (= nonsimilar) transfor-
mations of R5 with eigenvalue list 3, 3, 3, 2, 2 (repeated according
to multiplicity). Which ones are diagonalizable? [Hint: look at
“Answer 2” at the beginning of the section!]


