VI. CANONICAL FORMS

VI.D. Generalized eigenspaces

Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be a *fixed* linear transformation. For this section and the next, all vector spaces are assumed to be over \mathbb{C} ; in particular, we will often write V for $\mathbb{C}^{n,17}$ In what follows, I will write "*S*" for an "arbitrary" transformation, which could be T, or $\sigma \mathbb{I} - T$, or its restriction to a subspace, etc.

We are looking for forms $A = [T]_{\hat{\ell}}$ can be put into (via $P_{\mathcal{B}}^{-1}AP_{\mathcal{B}}$) even if it is not diagonalizable. The structure underlying the rational canonical form was a direct-sum decomposition of $V = \mathbb{C}^n$ into *T*-cyclic subspaces in 1-to-1 correspondence with the nontrivial invariant factors $\Delta_r(\lambda), \ldots, \Delta_n(\lambda)$ of *A*. In the present section we describe the structure beneath the Jordan canonical form — which, unlike the rational form, actually reduces to *D* when *A* is diagonalizable (= $P_{\mathcal{B}}DP_{\mathcal{B}}^{-1}$). We can forget about most of the F[λ] stuff here; the theory is fortunately easier than that in the last two sections.

Recall that if *A* is diagonalizable with eigenvalues $\{\sigma_1, \ldots, \sigma_s\}$,¹⁸ then *V* is the sum of the corresponding eigenspaces and in fact the geometric multplicities add to *n*:

$$\sum_i \dim E_{\sigma_i}(A) = n.$$

In the language of direct sums,

$$V = E_{\sigma_1}(A) \oplus \cdots \oplus E_{\sigma_s}(A).$$

What we claim is that there are "generalized" eigenspaces \widetilde{E}_{σ_i} such that

$$V = \widetilde{E}_{\sigma_1}(A) \oplus \cdots \oplus \widetilde{E}_{\sigma_s}(A)$$

even if *A* is *not* diagonalizable. They contain the E_{σ_i} , so if we write $d_i = \dim(E_{\sigma_i})$ and $\tilde{d}_i = \dim(\tilde{E}_{\sigma_i})$, then $d_i \leq \tilde{d}_i$ and $\sum_i \tilde{d}_i = n$. Indeed, the \tilde{d}_i will just turn out to be the algebraic multiplicities k_i .

¹⁷The reason to take $F = \mathbb{C}$ is so that the algebraic multiplicities of the eigenvalues of $A \in M_n(F)$ always sum to n, i.e. $f_A(\lambda)$ breaks into linear factors over F. The results below hold more generally (e.g. with $F = \mathbb{R}$) whenever this is the case.

¹⁸Here we mean the list of *distinct* eigenvalues, i.e. *not* repeated according to multiplicity.

The proof will require a few facts about stable image/kernel, and nilpotent transformations ($S: U \rightarrow U$ such that S^k is the zero transformation for some k). Throughout it is important to remember that if $W \subseteq V$ is closed under the action of T then the restriction of T to W makes sense as a linear transformation and is written $T|_W$ (and read "T on W").

Stable Image and Kernel. Given a transformation $S: V \rightarrow V$, the series of subspaces of *V*

$$\{0\} = \ker(\mathbb{I}) \subseteq \ker(S) \subseteq \ker(S^2) \subseteq \dots$$

and

$$V = \operatorname{im}(\mathbb{I}) \supseteq \operatorname{im}(S) \supseteq \operatorname{im}(S^2) \supseteq \dots$$

both level off at some point (since V is finite dimensional). Let K be sufficiently large that

$$\operatorname{im}(S^{K}) = \operatorname{im}(S^{K+1}) = \dots$$
$$\operatorname{ker}(S^{K}) = \operatorname{ker}(S^{K+1}) = \dots$$

these are called the *stable image* and *stable kernel* of S. An equivalent definition of these objects (subspaces of V) is:

(VI.D.1)
$$\widetilde{\ker}(S) = \left\{ \vec{w} \in V \mid S^k \vec{w} = 0 \text{ for some } k \right\}$$
$$\widetilde{\min}(S) = \left\{ \vec{w} \in V \mid \text{for every } k, \exists \vec{v} \in V \text{ s.t. } \vec{w} = S^k \vec{v} \right\}.$$

VI.D.2. REMARK. The \vec{v} such that $S^k \vec{v} = \vec{w}$ in the second definition are in general different for each k (even for $k \ge K$).

We claim that

(VI.D.3) (i) $\widetilde{im}(S) \cap \widetilde{ker}(S) = \{0\}$, (ii) $\widetilde{im}(S) + \widetilde{ker}(S) = V$.

To see (i), let $\vec{w} \in \widetilde{im}(S) \cap \widetilde{ker}(S)$; that is, $\vec{w} = S^K \vec{v}$ and $S^K \vec{w} = 0$, so that $0 = S^K(S^K \vec{v}) = S^{2K} \vec{v}$. But then $\vec{v} \in ker(S^{2K}) = \widetilde{ker}(S) = ker(S^K)$, so that $(\vec{w} =) S^K \vec{v} = 0$. To see (ii), apply rank-nullity to S^K to get (VI.D.4) $\dim V = \dim(\operatorname{im} S^K) + \dim(\ker S^K) = \dim(\widetilde{\operatorname{im}}(S)) + \dim(\widetilde{\ker}(S)),$ and the "modular law" $\dim(W_1 + W_2) + \dim(W_1 \cap W_2) = \dim W_1 + \dim W_2$ (cf. Exercise II.C.3) for subspaces $W_1, W_2 \subseteq V$ to get

$$\dim(\widetilde{im}(S)) + \dim(\widetilde{ker}(S))$$

= dim($\widetilde{im}(S) \cap \widetilde{ker}(S)$) + dim($\widetilde{im}(S) + \widetilde{ker}(S)$)
 $\stackrel{(i)}{=} \dim(\widetilde{im}(S) + \widetilde{ker}(S)).$

Combining this with (VI.D.4), $\dim(\widetilde{im}(S) + \widetilde{ker}(S)) = \dim V$ and (ii) follows.

We rewrite (VI.D.3)(i-ii) as

(VI.D.5)
$$V = \widetilde{\mathrm{im}}(S) \oplus \widetilde{\mathrm{ker}}(S).$$

This is *always true*, for *any* $S: V \to V$. Moreover, since *S respects* this decomposition (as you can check), one may speak of the restrictions $S \mid_{\widetilde{\ker}S}$ and $S \mid_{\widetilde{\inf}S}$. By definition some power *k* of *S* annihilates ker *S*, and so $S \mid_{\widetilde{\ker}S}$ is nilpotent. On the other hand,

$$\ker \left(S \mid_{\widetilde{\operatorname{im}} S}\right) = \ker S \cap \widetilde{\operatorname{im}} S \subseteq \ker S \cap \widetilde{\operatorname{im}} S = \{0\}$$

by (VI.D.3)(i), and thus $S \mid_{i \in S}$ is invertible. We have proved

VI.D.6. PROPOSITION. *Given any* $S : V \rightarrow V$, there is a direct-sum decomposition

$$V = U_0 \oplus W_0$$

respected by *S*, such that $S \mid_{W_0}$ is nilpotent and $S \mid_{U_0}$ is invertible.

Now let's look more generally at the situation where *S* respects a (possibly different) direct sum decomposition $V = U \oplus W$. We claim that

- (a) $\ker S = (U \cap \ker S) + (W \cap \ker S)$, and
- (b) $(U \cap \ker S) \cap (W \cap \ker S) = \{0\}.$

Now (b) is immediate since $U \cap W = \{0\}$. To see (a): take any $\vec{v} \in \ker S$ and write $\vec{v} = \vec{u} + \vec{w}$ (possible because $V = U \oplus W$); clearly $0 = S\vec{v} = S\vec{u} + S\vec{w}$. Since *S* respects $U \oplus W$, $S\vec{u} \in U$ and $S\vec{w} \in W$, but then $S\vec{u} = -S\vec{w}$ is a "problem" since $U \cap W = \{0\}$. So we must have $S\vec{u} = S\vec{w} = 0$! That means $\vec{u} \in U \cap \ker S$, $\vec{w} \in W \cap \ker S$, and since \vec{v} is their sum we have proved (a).

Of course (a) + (b) $\implies \ker S = (U \cap \ker S) \oplus (W \cap \ker S)$, so applying this to S^K we get

VI.D.7. PROPOSITION. *Given* $S : V \rightarrow V$ *respecting some direct-sum decomposition*

$$V=U\oplus W,$$

one has

$$\widetilde{\ker} S = \left(U \cap \widetilde{\ker} S \right) \oplus \left(W \cap \widetilde{\ker} S \right).$$

Nilpotent Transformations. Every $S : V \to V$ has an eigenvalue (unless $V = \{0\}$), since the characteristic polynomial $f_S(\lambda)$ has a root in \mathbb{C} . (This is where we really need $V = \mathbb{C}^n$.) This eigenvalue has at least one nonzero eigenvector. What if *zero* is the only one?

VI.D.8. PROPOSITION. *S* is nilpotent \iff 0 is its only eigenvalue.

PROOF. (\Leftarrow) Suppose 0 = only eigenvalue of *S*= only root of $f_S(\lambda)$. That is, $f_S(\lambda) = \lambda^n$. By Cayley-Hamilton, *S* satisfies its own characteristic polynomial, so $S^n = 0$.

(⇒) Suppose $S^k = 0$, and also suppose λ is an eigenvalue of *S*. There is a *nonzero* \vec{v} such that $S\vec{v} = \lambda\vec{v}$, and thus

$$0 = S^k \vec{v} = \lambda^k \vec{v} \implies \lambda^k = 0 \implies \lambda = 0.$$

Stable Eigenspace. Given λ an eigenvalue of $S: V \to V \iff \lambda$ any root of f_S in \mathbb{C}), recall the definition

$$E_{\lambda}(S) := \ker(\lambda \mathbb{I} - S) = \{ \vec{v} \in V \mid (\lambda \mathbb{I} - S)\vec{v} = 0 \}$$

of the eigenspace of λ . Define the *generalized* or *stable eigenspace*

$$\widetilde{E}_{\lambda}(S) := \widetilde{\ker}(\lambda \mathbb{I} - S) = \left\{ \vec{v} \in V \mid (\lambda \mathbb{I} - S)^k \vec{v} = 0 \text{ for some } k \right\}.$$

Clearly $\widetilde{E}_{\lambda}(S) \supseteq E_{\lambda}(S)$.

Now we return to our original $T : V \to V$ with distinct eigenvalues $\{\sigma_1, \ldots, \sigma_s\}$, and set

$$W_j = \widetilde{E}_{\sigma_j}(T).$$

(These are not the W_j 's of §VI.C!) Clearly some power of $(\sigma_j \mathbb{I} - T)$ annihilates W_j , so that $(\sigma_j \mathbb{I} - T) |_{W_j}$ is nilpotent and has only eigenvalue 0. That is, if $\vec{v} \in W_j$ satisfies

$$(\sigma_i \mathbb{I} - T)\vec{v} = \lambda \vec{v},$$

then $\lambda = 0$. Therefore, if $\vec{v} \in W_i$ satisfies

$$T\vec{v} = \sigma\vec{v}$$

then

$$(\sigma_j \mathbb{I} - T)\vec{v} = (\sigma_j - \sigma)\vec{v}$$

and $\sigma_i - \sigma$ must be 0, i.e. $\sigma = \sigma_i$.

Conclusion: the only eigenvalue of $T \mid_{W_j}$ is σ_j .

Now consider for $i \neq j$ the intersection of two stable eigenspaces

 $W_i \cap W_i$.

The only eigenvalue of $T \mid_{W_i}$ is σ_i , while the only eigenvalue of $T \mid_{W_j}$ is σ_j . Since $\sigma_i \neq \sigma_j$, $T \mid_{W_i \cap W_j}$ can have no eigenvalue. This is absurd unless $W_i \cap W_j = \{0\}$, proving the

VI.D.9. PROPOSITION.
$$\widetilde{E}_{\sigma_i}(T) \cap \widetilde{E}_{\sigma_i}(T) = \{0\}$$
 for all $i \neq j$.

We make one further observation concerning stable eigenspaces: how to find bases for them. You know how to find bases for kernels. Working in the standard basis of \mathbb{C}^n (in terms of which $[T]_{\hat{e}} = A$ by definition), find bases for

$$\ker(\sigma_{i}\mathbb{I}-A)\subseteq \ker\left\{(\sigma_{i}\mathbb{I}-A)^{2}\right\}\subseteq \ker\left\{(\sigma_{i}\mathbb{I}-A)^{3}\right\}\subseteq\ldots.$$

You stop when two successive bases have the same number of elements (once $ker(S^k) = ker(S^{k+1})$, all the remaining ones are the same as well: see Exercise (4)).

The Jordan Structure Theorem. Here is what holds even when *T* is not semisimple (\Leftrightarrow *A* is not diagonalizable). We emphasize that the $\{W_i\}$ have nothing to do with those in the preceding section.

VI.D.10. THEOREM. Let $T: V \to V$ ($V = \mathbb{C}^n$) be a linear transformation, with distinct eigenvalues $\{\sigma_1, \ldots, \sigma_s\}$ and corresponding stable eigenspaces $W_j = \widetilde{E}_{\sigma_j}(T) = \widetilde{\ker}(\sigma_j \mathbb{I} - T)$. Then

$$V = W_1 \oplus \cdots \oplus W_s$$

and dim W_j = algebraic multiplicity of σ_j . Furthermore, T respects this decomposition.

PROOF. We first prove the decomposition, by induction on *s*. Set $\tilde{d}_j = \dim W_j$ and $A = [T]_{\hat{e}}$; and let k_j denote the algebraic multiplicity of σ_j (as a root of the characteristic polynomial f_A).

• <u>Case s = 1</u>: σ_1 = the only eigenvalue of T on $V \implies 0$ = only eigenvalue of $(\sigma_1 \mathbb{I} - T)$ on $V \implies (\sigma_1 \mathbb{I} - T)$ nilpotent $\implies (\sigma_1 \mathbb{I} - T)^k = 0 \implies V = \widetilde{\ker}(\sigma_1 \mathbb{I} - T) = W_1.$

• Inductive step: Assume the Theorem holds for transformations with s - 1 distinct eigenvalues, and let *T* be as above. Apply (VI.D.5) (and Exercise (3)) to $S = \sigma_s \mathbb{I} - T$ to get

$$V = \widetilde{\ker}(\sigma_{s}\mathbb{I} - T) \oplus \widetilde{\mathrm{im}}(\sigma_{s}\mathbb{I} - T) =: W_{s} \oplus U_{s},$$

where $\sigma_s \mathbb{I} - T$ respects the decomposition. Moreover, since \mathbb{I} also respects the direct sum (or, for that matter, any direct sum!), so do T and $\sigma_j \mathbb{I} - T$, $j \neq s$. So we may speak of $T \mid_{U_s} : U_s \to U_s$. Since $(\sigma_s \mathbb{I} - T)$ is invertible on U_s , σ_s cannot be an eigenvalue of T there.¹⁹

Thus $T \mid_{U_s}$ has eigenvalues $\subseteq \{\sigma_1, \ldots, \sigma_{s-1}\}$, and by induction

$$U_s = 'W_1 \oplus \cdots \oplus 'W_{s-1}$$

 $[\]frac{19(\sigma_{s}\mathbb{I} - T|_{U_{s}}) \text{ invertible }}{\det(\lambda\mathbb{I} - T|_{U_{s}})} \neq 0 \implies \sigma_{s} \text{ not a root of } \det(\lambda\mathbb{I} - T|_{U_{s}}).$

where

$$W_j = \widetilde{\operatorname{ker}} \left(\sigma_j \mathbb{I} - T |_{U_s} \right) = \widetilde{\operatorname{ker}} (\sigma_j \mathbb{I} - T) \cap U_s = W_j \cap U_s.$$

We must show that $W_i = W_i$.

Since $(j \neq s) \sigma_j \mathbb{I} - T$ also respects the decomposition $V = W_s \oplus U_s$, we have (Prop. VI.D.7)

$$W_j = \widetilde{\ker}(\sigma_j \mathbb{I} - T) = \{ W_s \cap \widetilde{\ker}(\sigma_j \mathbb{I} - T) \} \oplus \{ U_s \cap \widetilde{\ker}(\sigma_j \mathbb{I} - T) \}$$
$$= W_s \cap W_j \oplus U_s \cap W_j.$$

By Prop. VI.D.9, $W_s \cap W_j = \{0\}$ and so

$$W_j = U_s \cap W_j = 'W_j$$
,

as desired.

• <u>*T*</u> respects the direct sum : We need to show $T(W_j) \subseteq W_j$. Take $\vec{w} \in \widetilde{\ker(\sigma_j \mathbb{I} - T)}$, so that for κ sufficiently large $(\sigma_j \mathbb{I} - T)^{\kappa} \vec{w} = 0$. But then $(\sigma_j \mathbb{I} - T)^{\kappa} T \vec{w} = T(\sigma_j \mathbb{I} - T)^{\kappa} \vec{w} = 0 \implies T \vec{w} \in \widetilde{\ker(\sigma_j \mathbb{I} - T)}$.

• $\tilde{d}_j = k_j$: Let $\mathcal{B}_1, \ldots, \mathcal{B}_s$ be bases for W_1, \ldots, W_s ; the collection $\mathcal{B} = \{\overline{\mathcal{B}_1, \ldots, \mathcal{B}_s}\}$ then yields a basis for *V* "subordinate to the direct sum". Since *T* respects the direct sum, its matrix with respect to \mathcal{B} splits into blocks down the diagonal (of dimensions $\tilde{d}_1 \times \tilde{d}_1, \ldots, \tilde{d}_s \times \tilde{d}_s$):

$$[T]_{\mathcal{B}} := B = P_{\mathcal{B}}^{-1}AP_{\mathcal{B}} = \operatorname{diag}\left\{ [T \mid_{W_1}]_{\mathcal{B}_1}, \dots, [T \mid_{W_s}]_{\mathcal{B}_s} \right\}$$

diag $\{B_1, \dots, B_s\}$.

Moreover, since $A \sim B$, $\lambda \mathbb{I} - A \sim \lambda \mathbb{I} - B$ and $f_A(\lambda) = f_B(\lambda)$. From

$$\lambda \mathbb{I} - B = \operatorname{diag}\left\{\lambda \mathbb{I}_{\tilde{d}_1} - B_1, \dots, \lambda \mathbb{I}_{\tilde{d}_s} - B_s\right\}$$

we have

$$f_B(\lambda) = \det(\lambda \mathbb{I} - B) = \prod_j \det(\lambda \mathbb{I}_{\tilde{d}_j} - B_j) = f_{B_1}(\lambda) \cdots f_{B_s}(\lambda).$$

Since the only eigenvalue of $T |_{W_j}$ is σ_j (and $B_j = [T |_{W_j}]_{\mathcal{B}_j}$) the only root of $f_{B_j}(\lambda)$ is σ_j . Since B_j is $\tilde{d}_j \times \tilde{d}_j$, it follows that $\deg(f_{B_j}) = \tilde{d}_j$

and so $f_{B_j}(\lambda) = (\lambda - \sigma_j)^{\tilde{d_j}}$. But then $(f_A(\lambda) =)$

$$f_B(\lambda) = \prod (\lambda - \sigma_j)^{\tilde{d}_j}$$

and we are done.

Exercises

(1) Find the stable eigenspaces of

$$A = \left(\begin{array}{rrr} 1 & 1 & 2 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{array} \right).$$

- (2) Suppose *A* is an 8 × 8 matrix with $m_A(\lambda) = \lambda(\lambda 1)^2(\lambda 2)^3$ and $f_A(\lambda) = \lambda^2(\lambda - 1)^2(\lambda - 2)^4$. What are the dimensions of the eigenspaces and stable eigenspaces of *A*?
- (3) Check that *S* respects the decomposition (VI.D.5) into stable image and kernel.
- (4) For any endomorphism $S \colon \mathbb{C}^n \to \mathbb{C}^n$, show $\ker(S^k) = \ker(S^{k+1})$ implies

(a) $\ker(S^k) = \ker(S^\ell)$ for all $\ell \ge k$, and

(b) $im(S^k) = im(S^\ell)$ for all $\ell \ge k$. [Hint for (b): use Rank + Nullity and (a).]

(5) Show that a matrix $A \in M_n(\mathbb{C})$ is nilpotent if and only if it is similar to an upper-triangular matrix with diagonal entries zero. [Hint: given a nilpotent matrix, what does its rational canonical form look like?]

_