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VI.D. Generalized eigenspaces

Let T : Cn → Cn be a fixed linear transformation. For this section
and the next, all vector spaces are assumed to be over C; in particular,
we will often write V for Cn.17 In what follows, I will write “S” for
an “arbitrary” transformation, which could be T, or σI − T, or its
restriction to a subspace, etc.

We are looking for forms A = [T]ê can be put into (via P−1

B APB)
even if it is not diagonalizable. The structure underlying the ra-
tional canonical form was a direct-sum decomposition of V = Cn

into T-cyclic subspaces in 1-to-1 correspondence with the nontriv-
ial invariant factors ∆r(λ), . . . , ∆n(λ) of A. In the present section we
describe the structure beneath the Jordan canonical form — which,
unlike the rational form, actually reduces to D when A is diagonal-
izable (= PBDP−1

B ). We can forget about most of the F[λ] stuff here;
the theory is fortunately easier than that in the last two sections.

Recall that if A is diagonalizable with eigenvalues {σ1, . . . , σs},18

then V is the sum of the corresponding eigenspaces and in fact the
geometric multplicities add to n:

∑
i

dim Eσi(A) = n.

In the language of direct sums,

V = Eσ1(A)⊕ · · ·⊕ Eσs(A).

What we claim is that there are “generalized” eigenspaces !Eσi such
that

V = !Eσ1(A)⊕ · · ·⊕ !Eσs(A)

even if A is not diagonalizable. They contain the Eσi , so if we write
di = dim(Eσi) and d̃i = dim(!Eσi), then di ≤ d̃i and ∑i d̃i = n. Indeed,
the d̃i will just turn out to be the algebraic multiplicities ki.

17
The reason to take F = C is so that the algebraic multiplicities of the eigenvalues

of A ∈ Mn(F) always sum to n, i.e. fA(λ) breaks into linear factors over F. The

results below hold more generally (e.g. with F = R) whenever this is the case.

18
Here we mean the list of distinct eigenvalues, i.e. not repeated according to mul-

tiplicity.



VI.D. GENERALIZED EIGENSPACES 193

The proof will require a few facts about stable image/kernel, and
nilpotent transformations (S : U → U such that Sk is the zero trans-
formation for some k). Throughout it is important to remember that
if W ⊆ V is closed under the action of T then the restriction of T to
W makes sense as a linear transformation and is written T |W (and
read “T on W”).

Stable Image and Kernel. Given a transformation S : V → V,
the series of subspaces of V

{0} = ker(I) ⊆ ker(S) ⊆ ker(S2) ⊆ . . .

and
V = im(I) ⊇ im(S) ⊇ im(S2) ⊇ . . .

both level off at some point (since V is finite dimensional). Let K be
sufficiently large that

im(SK) = im(SK+1) = . . .

ker(SK) = ker(SK+1) = . . . ;

these are called the stable image and stable kernel of S. An equivalent
definition of these objects (subspaces of V) is:

"ker(S) =
#
!w ∈ V

$$$ Sk!w = 0 for some k
%

"im(S) =
#
!w ∈ V

$$$ for every k, ∃ !v ∈ V s.t. !w = Sk!v
%

.
(VI.D.1)

VI.D.2. REMARK. The !v such that Sk!v = !w in the second defini-
tion are in general different for each k (even for k ≥ K).

We claim that

(VI.D.3) (i) "im(S) ∩ "ker(S) = {0} , (ii) "im(S) + "ker(S) = V.

To see (i), let !w ∈ "im(S) ∩ "ker(S); that is, !w = SK!v and SK!w = 0,
so that 0 = SK(SK!v) = S2K!v. But then !v ∈ ker(S2K) = "ker(S) =

ker(SK), so that (!w =) Sk!v = 0.
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To see (ii), apply rank-nullity to SK to get
(VI.D.4)
dim V = dim(im SK) + dim(ker SK) = dim("im(S)) + dim("ker(S)),

and the “modular law” dim(W1 +W2) +dim(W1 ∩W2) = dim W1 +

dim W2 (cf. Exercise II.C.3) for subspaces W1, W2 ⊆ V to get

dim("im(S)) + dim("ker(S))

= dim("im(S) ∩ "ker(S)) + dim("im(S) + "ker(S))

(i)
= dim("im(S) + "ker(S)).

Combining this with (VI.D.4), dim("im(S)+ "ker(S)) = dim V and (ii)
follows.

We rewrite (VI.D.3)(i-ii) as

(VI.D.5) V = "im(S)⊕ "ker(S).

This is always true, for any S : V → V. Moreover, since S respects this
decomposition (as you can check), one may speak of the restrictions
S
$$$!ker S and S

$$!im S . By definition some power k of S annihilates "ker S,

and so S
$$$!ker S is nilpotent. On the other hand,

ker
&
S
$$!im S

'
= ker S ∩ "im S ⊆ "ker S ∩ "im S = {0}

by (VI.D.3)(i), and thus S
$$!im S is invertible. We have proved

VI.D.6. PROPOSITION. Given any S : V → V, there is a direct-sum
decomposition

V = U0 ⊕ W0

respected by S, such that S
$$W0 is nilpotent and S |U0 is invertible.

Now let’s look more generally at the situation where S respects a
(possibly different) direct sum decomposition V = U ⊕W. We claim
that

(a) ker S = (U ∩ ker S) + (W ∩ ker S), and
(b) (U ∩ ker S) ∩ (W ∩ ker S) = {0}.
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Now (b) is immediate since U ∩ W = {0}. To see (a): take any !v ∈
ker S and write !v = !u + !w (possible because V = U ⊕ W); clearly
0 = S!v = S!u + S!w. Since S respects U ⊕ W, S!u ∈ U and S!w ∈ W,
but then S!u = −S!w is a “problem” since U ∩ W = {0}. So we must
have S!u = S!w = 0! That means !u ∈ U ∩ ker S, !w ∈ W ∩ ker S, and
since !v is their sum we have proved (a).

Of course (a) + (b) =⇒ kerS = (U ∩ ker S) ⊕ (W ∩ ker S), so
applying this to SK we get

VI.D.7. PROPOSITION. Given S : V → V respecting some direct-sum
decomposition

V = U ⊕ W,

one has
"ker S =

(
U ∩ "ker S

)
⊕

(
W ∩ "ker S

)
.

Nilpotent Transformations. Every S : V → V has an eigenvalue
(unless V = {0}), since the characteristic polynomial fS(λ) has a root
in C. (This is where we really need V = Cn.) This eigenvalue has at
least one nonzero eigenvector. What if zero is the only one?

VI.D.8. PROPOSITION. S is nilpotent ⇐⇒ 0 is its only eigenvalue.

PROOF. (⇐) Suppose 0 = only eigenvalue of S= only root of
fS(λ). That is, fS(λ) = λn. By Cayley-Hamilton, S satisfies its own
characteristic polynomial, so Sn = 0.

(⇒) Suppose Sk = 0, and also suppose λ is an eigenvalue of S.
There is a nonzero !v such that S!v = λ!v, and thus

0 = Sk!v = λk!v =⇒ λk = 0 =⇒ λ = 0. □

Stable Eigenspace. Given λ an eigenvalue of S : V → V (⇔ λ

any root of fS in C), recall the definition

Eλ(S) := ker(λI − S) = {!v ∈ V | (λI − S)!v = 0}

of the eigenspace of λ. Define the generalized or stable eigenspace

!Eλ(S) := "ker(λI − S) =
#
!v ∈ V

$$$ (λI − S)k!v = 0 for some k
%

.
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Clearly !Eλ(S) ⊇ Eλ(S).
Now we return to our original T : V → V with distinct eigenval-

ues {σ1, . . . , σs}, and set

Wj = !Eσj(T).

(These are not the Wj’s of §VI.C!) Clearly some power of (σjI − T)

annihilates Wj, so that (σjI − T)
$$$Wj is nilpotent and has only eigen-

value 0. That is, if !v ∈ Wj satisfies

(σjI − T)!v = λ!v,

then λ = 0. Therefore, if !v ∈ Wj satisfies

T!v = σ!v,

then
(σjI − T)!v = (σj − σ)!v

and σj − σ must be 0, i.e. σ = σj.

Conclusion: the only eigenvalue of T
$$$Wj is σj.

Now consider for i ∕= j the intersection of two stable eigenspaces

Wi ∩ Wj.

The only eigenvalue of T
$$Wi is σi, while the only eigenvalue of T

$$$Wj

is σj. Since σi ∕= σj, T
$$$Wi∩Wj can have no eigenvalue. This is absurd

unless Wi ∩ Wj = {0}, proving the

VI.D.9. PROPOSITION. !Eσi(T) ∩ !Eσj(T) = {0} for all i ∕= j.

We make one further observation concerning stable eigenspaces:
how to find bases for them. You know how to find bases for kernels.
Working in the standard basis of Cn (in terms of which [T]ê = A by
definition), find bases for

ker(σiI − A) ⊆ ker
#
(σiI − A)2

%
⊆ ker

#
(σiI − A)3

%
⊆ . . . .
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You stop when two successive bases have the same number of el-
ements (once ker(Sk) = ker(Sk+1), all the remaining ones are the
same as well: see Exercise (4)).

The Jordan Structure Theorem. Here is what holds even when
T is not semisimple (⇔ A is not diagonalizable). We emphasize that
the {Wj} have nothing to do with those in the preceding section.

VI.D.10. THEOREM. Let T : V → V (V = Cn) be a linear trans-
formation, with distinct eigenvalues {σ1, . . . , σs} and corresponding stable
eigenspaces Wj = !Eσj(T) = "ker(σjI − T). Then

V = W1 ⊕ · · ·⊕ Ws

and dim Wj = algebraic multiplicity of σj. Furthermore, T respects this
decomposition.

PROOF. We first prove the decomposition, by induction on s. Set
d̃j = dim Wj and A = [T]ê; and let k j denote the algebraic multiplic-
ity of σj (as a root of the characteristic polynomial fA).

• Case s = 1 : σ1 = the only eigenvalue of T on V =⇒ 0 = only
eigenvalue of (σ1I − T) on V =⇒ (σ1I − T) nilpotent =⇒ (σ1I −
T)k = 0 =⇒ V = "ker(σ1I − T) = W1.

• Inductive step : Assume the Theorem holds for transformations
with s− 1 distinct eigenvalues, and let T be as above. Apply (VI.D.5)
(and Exercise (3)) to S = σsI − T to get

V = "ker(σsI − T)⊕ "im(σsI − T) =: Ws ⊕ Us,

where σsI − T respects the decomposition. Moreover, since I also
respects the direct sum (or, for that matter, any direct sum!), so do
T and σjI − T, j ∕= s. So we may speak of T |Us : Us → Us. Since
(σsI − T) is invertible on Us, σs cannot be an eigenvalue of T there.19

Thus T |Us has eigenvalues ⊆ {σ1, . . . , σs−1}, and by induction

Us =
′W1 ⊕ · · ·⊕ ′Ws−1,

19(σsI − T |Us ) invertible =⇒ det (σsI − T |Us ) ∕= 0 =⇒ σs not a root of

det (λI − T |Us ) .
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where

′Wj = "ker
&
σjI − T |Us

'
= "ker(σjI − T) ∩ Us = Wj ∩ Us.

We must show that ′Wj = Wj.
Since (j ∕= s) σjI − T also respects the decomposition V = Ws ⊕

Us, we have (Prop. VI.D.7)

Wj = "ker(σjI − T) = {Ws ∩ "ker(σjI − T)}⊕ {Us ∩ "ker(σjI − T)}

= Ws ∩ Wj ⊕ Us ∩ Wj.

By Prop. VI.D.9, Ws ∩ Wj = {0} and so

Wj = Us ∩ Wj =
′Wj ,

as desired.

• T respects the direct sum : We need to show T(Wj) ⊆ Wj. Take !w ∈
"ker(σjI − T), so that for κ sufficiently large (σjI − T)κ!w = 0. But then
(σjI − T)κT!w = T(σjI − T)κ!w = 0 =⇒ T!w ∈ "ker(σjI − T).

• d̃j = k j : Let B1, . . . ,Bs be bases for W1, . . . , Ws; the collection B =

{B1, . . . ,Bs} then yields a basis for V “subordinate to the direct sum”.
Since T respects the direct sum, its matrix with respect to B splits into
blocks down the diagonal (of dimensions d̃1 × d̃1, . . . , d̃s × d̃s):

[T]B =: B = P−1

B APB = diag
#
[T |W1

]B1 , . . . , [T |Ws
]Bs

%

diag {B1, . . . , Bs} .

Moreover, since A ∼ B, λI − A ∼ λI − B and fA(λ) = fB(λ). From

λI − B = diag
#

λId̃1
− B1, . . . , λId̃s

− Bs

%

we have

fB(λ) = det(λI − B) = ∏
j

det(λId̃j
− Bj) = fB1(λ) · · · · · fBs(λ).

Since the only eigenvalue of T |Wj
is σj (and Bj = [T |Wj

]Bj) the only

root of fBj(λ) is σj. Since Bj is d̃j × d̃j, it follows that deg( fBj) = d̃j
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and so fBj(λ) = (λ − σj)
d̃j . But then ( fA(λ) = )

fB(λ) = ∏(λ − σj)
d̃j

and we are done. □

Exercises
(1) Find the stable eigenspaces of

A =

*

+,
1 1 2
0 0 −1
0 0 1

-

./ .

(2) Suppose A is an 8 × 8 matrix with mA(λ) = λ(λ − 1)2(λ − 2)3

and fA(λ) = λ2(λ − 1)2(λ − 2)4. What are the dimensions of the
eigenspaces and stable eigenspaces of A?

(3) Check that S respects the decomposition (VI.D.5) into stable im-
age and kernel.

(4) For any endomorphism S : Cn → Cn, show ker(Sk) = ker(Sk+1)

implies
(a) ker(Sk) = ker(Sℓ) for all ℓ ≥ k, and
(b) im(Sk) = im(Sℓ) for all ℓ ≥ k. [Hint for (b): use Rank +
Nullity and (a).]

(5) Show that a matrix A ∈ Mn(C) is nilpotent if and only if it is
similar to an upper-triangular matrix with diagonal entries zero.
[Hint: given a nilpotent matrix, what does its rational canonical
form look like?]


