VI.D. Generalized eigenspaces

Let $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a fixed linear transformation. For this section and the next, all vector spaces are assumed to be over \mathbb{C}; in particular, we will often write V for \mathbb{C}^{n}. ${ }^{17}$ In what follows, I will write " S " for an "arbitrary" transformation, which could be T, or $\sigma \mathbb{I}-T$, or its restriction to a subspace, etc.

We are looking for forms $A=[T]_{\hat{e}}$ can be put into (via $P_{\mathcal{B}}^{-1} A P_{\mathcal{B}}$) even if it is not diagonalizable. The structure underlying the rational canonical form was a direct-sum decomposition of $V=\mathbb{C}^{n}$ into T-cyclic subspaces in 1-to-1 correspondence with the nontrivial invariant factors $\Delta_{r}(\lambda), \ldots, \Delta_{n}(\lambda)$ of A. In the present section we describe the structure beneath the Jordan canonical form - which, unlike the rational form, actually reduces to D when A is diagonalizable $\left(=P_{\mathcal{B}} D P_{\mathcal{B}}^{-1}\right)$. We can forget about most of the $\mathrm{F}[\lambda]$ stuff here; the theory is fortunately easier than that in the last two sections.

Recall that if A is diagonalizable with eigenvalues $\left\{\sigma_{1}, \ldots, \sigma_{s}\right\},{ }^{18}$ then V is the sum of the corresponding eigenspaces and in fact the geometric multplicities add to n :

$$
\sum_{i} \operatorname{dim} E_{\sigma_{i}}(A)=n
$$

In the language of direct sums,

$$
V=E_{\sigma_{1}}(A) \oplus \cdots \oplus E_{\sigma_{s}}(A)
$$

What we claim is that there are "generalized" eigenspaces $\widetilde{E}_{\sigma_{i}}$ such that

$$
V=\widetilde{E}_{\sigma_{1}}(A) \oplus \cdots \oplus \widetilde{E}_{\sigma_{s}}(A)
$$

even if A is not diagonalizable. They contain the $E_{\sigma_{i}}$, so if we write $d_{i}=\operatorname{dim}\left(E_{\sigma_{i}}\right)$ and $\tilde{d}_{i}=\operatorname{dim}\left(\widetilde{E}_{\sigma_{i}}\right)$, then $d_{i} \leq \tilde{d}_{i}$ and $\sum_{i} \tilde{d}_{i}=n$. Indeed, the \tilde{d}_{i} will just turn out to be the algebraic multiplicities k_{i}.

[^0]The proof will require a few facts about stable image/kernel, and nilpotent transformations ($S: U \rightarrow U$ such that S^{k} is the zero transformation for some k). Throughout it is important to remember that if $W \subseteq V$ is closed under the action of T then the restriction of T to W makes sense as a linear transformation and is written $\left.T\right|_{W}$ (and read " T on $W^{\prime \prime}$).

Stable Image and Kernel. Given a transformation $S: V \rightarrow V$, the series of subspaces of V

$$
\{0\}=\operatorname{ker}(\mathbb{I}) \subseteq \operatorname{ker}(S) \subseteq \operatorname{ker}\left(S^{2}\right) \subseteq \ldots
$$

and

$$
V=\operatorname{im}(\mathbb{I}) \supseteq \operatorname{im}(S) \supseteq \operatorname{im}\left(S^{2}\right) \supseteq \ldots
$$

both level off at some point (since V is finite dimensional). Let K be sufficiently large that

$$
\begin{aligned}
\operatorname{im}\left(S^{K}\right)=\operatorname{im}\left(S^{K+1}\right) & =\ldots \\
\operatorname{ker}\left(S^{K}\right)=\operatorname{ker}\left(S^{K+1}\right) & =\ldots ;
\end{aligned}
$$

these are called the stable image and stable kernel of S. An equivalent definition of these objects (subspaces of V) is:

$$
\begin{align*}
& \widetilde{\operatorname{ker}}(S)=\left\{\vec{w} \in V \mid S^{k} \vec{w}=0 \text { for some } k\right\} \tag{VI.D.1}\\
& \widetilde{\operatorname{im}}(S)=\left\{\vec{w} \in V \mid \text { for every } k, \exists \vec{v} \in V \text { s.t. } \vec{w}=S^{k} \vec{v}\right\}
\end{align*}
$$

VI.D.2. REMARK. The \vec{v} such that $S^{k} \vec{v}=\vec{w}$ in the second definition are in general different for each k (even for $k \geq K$).

We claim that

$$
\begin{equation*}
\text { (i) } \widetilde{\operatorname{im}}(S) \cap \widetilde{\operatorname{ker}}(S)=\{0\} \tag{VI.D.3}
\end{equation*}
$$

(ii) $\widetilde{\operatorname{im}}(S)+\widetilde{\operatorname{ker}}(S)=V$.

To see (i), let $\vec{w} \in \widetilde{\operatorname{im}}(S) \cap \widetilde{\operatorname{ker}}(S)$; that is, $\vec{w}=S^{K} \vec{v}$ and $S^{K} \vec{w}=0$, so that $0=S^{K}\left(S^{K} \vec{v}\right)=S^{2 K} \vec{v}$. But then $\vec{v} \in \operatorname{ker}\left(S^{2 K}\right)=\widetilde{\operatorname{ker}}(S)=$ $\operatorname{ker}\left(S^{K}\right)$, so that $(\vec{w}=) S^{k} \vec{v}=0$.

To see (ii), apply rank-nullity to S^{K} to get
(VI.D.4)
$\operatorname{dim} V=\operatorname{dim}\left(\operatorname{im} S^{K}\right)+\operatorname{dim}\left(\operatorname{ker} S^{K}\right)=\operatorname{dim}(\widetilde{\operatorname{im}}(S))+\operatorname{dim}(\widetilde{\operatorname{ker}}(S))$, and the "modular law" $\operatorname{dim}\left(W_{1}+W_{2}\right)+\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim} W_{1}+$ $\operatorname{dim} W_{2}$ (cf. Exercise II.C.3) for subspaces $W_{1}, W_{2} \subseteq V$ to get

$$
\begin{aligned}
\operatorname{dim}(\widetilde{\operatorname{im}}(S)) & +\operatorname{dim}(\widetilde{\operatorname{ker}}(S)) \\
& =\operatorname{dim}(\widetilde{\operatorname{im}}(S) \cap \widetilde{\operatorname{ker}}(S))+\operatorname{dim}(\widetilde{\operatorname{im}}(S)+\widetilde{\operatorname{ker}}(S)) \\
\quad & \stackrel{(\mathrm{i})}{=} \operatorname{dim}(\widetilde{\mathrm{im}}(S)+\widetilde{\operatorname{ker}}(S)) .
\end{aligned}
$$

Combining this with (VI.D.4), $\operatorname{dim}(\widetilde{\operatorname{im}}(S)+\widetilde{\operatorname{ker}}(S))=\operatorname{dim} V$ and (ii) follows.

We rewrite (VI.D.3)(i-ii) as

$$
\begin{equation*}
V=\widetilde{\operatorname{im}}(S) \oplus \widetilde{\operatorname{ker}}(S) \tag{VI.D.5}
\end{equation*}
$$

This is always true, for any $S: V \rightarrow V$. Moreover, since S respects this decomposition (as you can check), one may speak of the restrictions $\left.S\right|_{\widetilde{\operatorname{ker}} S}$ and $\left.S\right|_{\widetilde{\mathrm{im}} S}$. By definition some power k of S annihilates $\widetilde{\operatorname{ker} S} S$, and so $\left.S\right|_{\widetilde{\operatorname{ker}} S}$ is nilpotent. On the other hand,

$$
\operatorname{ker}\left(\left.S\right|_{\widetilde{\mathrm{im}} S}\right)=\operatorname{ker} S \cap \widetilde{\operatorname{im}} S \subseteq \widetilde{\operatorname{ker}} S \cap \widetilde{\operatorname{im}} S=\{0\}
$$

by (VI.D.3)(i), and thus $\left.S\right|_{\overparen{\mathrm{im}} S}$ is invertible. We have proved
VI.D.6. Proposition. Given any $S: V \rightarrow V$, there is a direct-sum decomposition

$$
V=U_{0} \oplus W_{0}
$$

respected by S, such that $\left.S\right|_{W_{0}}$ is nilpotent and $\left.S\right|_{U_{0}}$ is invertible.

Now let's look more generally at the situation where S respects a (possibly different) direct sum decomposition $V=U \oplus W$. We claim that
(a) $\operatorname{ker} S=(U \cap \operatorname{ker} S)+(W \cap \operatorname{ker} S)$, and
(b) $(U \cap \operatorname{ker} S) \cap(W \cap \operatorname{ker} S)=\{0\}$.

Now (b) is immediate since $U \cap W=\{0\}$. To see (a): take any $\vec{v} \in$ ker S and write $\vec{v}=\vec{u}+\vec{w}$ (possible because $V=U \oplus W$); clearly $0=S \vec{v}=S \vec{u}+S \vec{w}$. Since S respects $U \oplus W, S \vec{u} \in U$ and $S \vec{w} \in W$, but then $S \vec{u}=-S \vec{w}$ is a "problem" since $U \cap W=\{0\}$. So we must have $S \vec{u}=S \vec{w}=0$! That means $\vec{u} \in U \cap \operatorname{ker} S, \vec{w} \in W \cap \operatorname{ker} S$, and since \vec{v} is their sum we have proved (a).

Of course $(\mathrm{a})+(\mathrm{b}) \Longrightarrow \operatorname{ker} S=(U \cap \operatorname{ker} S) \oplus(W \cap \operatorname{ker} S)$, so applying this to S^{K} we get
VI.D.7. Proposition. Given $S: V \rightarrow V$ respecting some direct-sum decomposition

$$
V=U \oplus W
$$

one has

$$
\widetilde{\operatorname{ker}} S=(U \cap \widetilde{\operatorname{ker}} S) \oplus(W \cap \widetilde{\operatorname{ker}} S)
$$

Nilpotent Transformations. Every $S: V \rightarrow V$ has an eigenvalue (unless $V=\{0\}$), since the characteristic polynomial $f_{S}(\lambda)$ has a root in \mathbb{C}. (This is where we really need $V=\mathbb{C}^{n}$.) This eigenvalue has at least one nonzero eigenvector. What if zero is the only one?
VI.D.8. Proposition. S is nilpotent $\Longleftrightarrow 0$ is its only eigenvalue.

Proof. (\Leftarrow) Suppose $0=$ only eigenvalue of $S=$ only root of $f_{S}(\lambda)$. That is, $f_{S}(\lambda)=\lambda^{n}$. By Cayley-Hamilton, S satisfies its own characteristic polynomial, so $S^{n}=0$.
(\Rightarrow) Suppose $S^{k}=0$, and also suppose λ is an eigenvalue of S. There is a nonzero \vec{v} such that $S \vec{v}=\lambda \vec{v}$, and thus

$$
0=S^{k} \vec{v}=\lambda^{k} \vec{v} \quad \Longrightarrow \quad \lambda^{k}=0 \quad \Longrightarrow \quad \lambda=0
$$

Stable Eigenspace. Given λ an eigenvalue of $S: V \rightarrow V(\Leftrightarrow \lambda$ any root of f_{S} in \mathbb{C}), recall the definition

$$
E_{\lambda}(S):=\operatorname{ker}(\lambda \mathbb{I}-S)=\{\vec{v} \in V \mid(\lambda \mathbb{I}-S) \vec{v}=0\}
$$

of the eigenspace of λ. Define the generalized or stable eigenspace

$$
\widetilde{E}_{\lambda}(S):=\widetilde{\operatorname{ker}}(\lambda \mathbb{I}-S)=\left\{\vec{v} \in V \mid(\lambda \mathbb{I}-S)^{k} \vec{v}=0 \text { for some } k\right\}
$$

Clearly $\widetilde{E}_{\lambda}(S) \supseteq E_{\lambda}(S)$.
Now we return to our original $T: V \rightarrow V$ with distinct eigenvalues $\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$, and set

$$
W_{j}=\widetilde{E}_{\sigma_{j}}(T)
$$

(These are not the W_{j}^{\prime} 's of §VI.C!) Clearly some power of $\left(\sigma_{j} I I-T\right)$ annihilates W_{j}, so that $\left(\sigma_{j} I I-T\right) \mid W_{j}$ is nilpotent and has only eigenvalue 0 . That is, if $\vec{v} \in W_{j}$ satisfies

$$
\left(\sigma_{j} \mathbb{I}-T\right) \vec{v}=\lambda \vec{v},
$$

then $\lambda=0$. Therefore, if $\vec{v} \in W_{j}$ satisfies

$$
T \vec{v}=\sigma \vec{v}
$$

then

$$
\left(\sigma_{j} \mathrm{II}-T\right) \vec{v}=\left(\sigma_{j}-\sigma\right) \vec{v}
$$

and $\sigma_{j}-\sigma$ must be 0 , i.e. $\sigma=\sigma_{j}$.

Conclusion: the only eigenvalue of $\left.T\right|_{W_{j}}$ is σ_{j}.
Now consider for $i \neq j$ the intersection of two stable eigenspaces

$$
W_{i} \cap W_{j}
$$

The only eigenvalue of $\left.T\right|_{W_{i}}$ is σ_{i}, while the only eigenvalue of $T \mid W_{j}$ is σ_{j}. Since $\sigma_{i} \neq \sigma_{j},\left.T\right|_{W_{i} \cap W_{j}}$ can have no eigenvalue. This is absurd unless $W_{i} \cap W_{j}=\{0\}$, proving the
VI.D.9. Proposition. $\widetilde{E}_{\sigma_{i}}(T) \cap \widetilde{E}_{\sigma_{j}}(T)=\{0\}$ for all $i \neq j$.

We make one further observation concerning stable eigenspaces: how to find bases for them. You know how to find bases for kernels. Working in the standard basis of \mathbb{C}^{n} (in terms of which $[T]_{\hat{e}}=A$ by definition), find bases for

$$
\operatorname{ker}\left(\sigma_{i} \mathbb{I}-A\right) \subseteq \operatorname{ker}\left\{\left(\sigma_{i} \mathbb{I}-A\right)^{2}\right\} \subseteq \operatorname{ker}\left\{\left(\sigma_{i} \mathbb{I}-A\right)^{3}\right\} \subseteq \ldots
$$

You stop when two successive bases have the same number of elements (once $\operatorname{ker}\left(S^{k}\right)=\operatorname{ker}\left(S^{k+1}\right)$, all the remaining ones are the same as well: see Exercise (4)).

The Jordan Structure Theorem. Here is what holds even when T is not semisimple ($\Leftrightarrow A$ is not diagonalizable). We emphasize that the $\left\{W_{j}\right\}$ have nothing to do with those in the preceding section.
VI.D.10. Theorem. Let $T: V \rightarrow V\left(V=\mathbb{C}^{n}\right)$ be a linear transformation, with distinct eigenvalues $\left\{\sigma_{1}, \ldots, \sigma_{s}\right\}$ and corresponding stable eigenspaces $W_{j}=\widetilde{E}_{\sigma_{j}}(T)=\widetilde{\operatorname{ker}}\left(\sigma_{j} I-T\right)$. Then

$$
V=W_{1} \oplus \cdots \oplus W_{s}
$$

and $\operatorname{dim} W_{j}=$ algebraic multiplicity of σ_{j}. Furthermore, T respects this decomposition.

Proof. We first prove the decomposition, by induction on s. Set $\tilde{d}_{j}=\operatorname{dim} W_{j}$ and $A=[T]_{\hat{e}}$; and let k_{j} denote the algebraic multiplicity of σ_{j} (as a root of the characteristic polynomial f_{A}).

- Case $s=1: \sigma_{1}=$ the only eigenvalue of T on $V \Longrightarrow 0=$ only eigenvalue of $\left(\sigma_{1} \mathbb{I}-T\right)$ on $V \Longrightarrow\left(\sigma_{1} \mathbb{I}-T\right)$ nilpotent $\Longrightarrow\left(\sigma_{1} \mathbb{I}-\right.$ $T)^{k}=0 \Longrightarrow V=\widetilde{\operatorname{ker}}\left(\sigma_{1} \mathbb{I}-T\right)=W_{1}$.
- Inductive step: Assume the Theorem holds for transformations with $s-1$ distinct eigenvalues, and let T be as above. Apply (VI.D.5) (and Exercise (3)) to $S=\sigma_{S} \mathbb{I}-T$ to get

$$
V=\widetilde{\operatorname{ker}}\left(\sigma_{s} \mathbb{I}-T\right) \oplus \widetilde{\operatorname{im}}\left(\sigma_{s} \mathbb{I}-T\right)=: W_{s} \oplus U_{s},
$$

where $\sigma_{s} \mathbb{I}-T$ respects the decomposition. Moreover, since \mathbb{I} also respects the direct sum (or, for that matter, any direct sum!), so do T and $\sigma_{j} I I-T, j \neq s$. So we may speak of $\left.T\right|_{U_{s}}: U_{s} \rightarrow U_{s}$. Since $\left(\sigma_{s} \mathbb{I}-T\right)$ is invertible on U_{s}, σ_{s} cannot be an eigenvalue of T there. ${ }^{19}$

Thus $\left.T\right|_{U_{s}}$ has eigenvalues $\subseteq\left\{\sigma_{1}, \ldots, \sigma_{s-1}\right\}$, and by induction

$$
U_{s}={ }^{\prime} W_{1} \oplus \cdots \oplus^{\prime} W_{s-1},
$$

$\left.\overline{{ }^{19}\left(\sigma_{s} \mathbb{I}-\left.T\right|_{U_{s}}\right.}\right)$ invertible $\Longrightarrow \operatorname{det}\left(\sigma_{s} \mathbb{I}-\left.T\right|_{U_{s}}\right) \neq 0 \Longrightarrow \sigma_{s}$ not a root of $\operatorname{det}\left(\lambda I I-\left.T\right|_{U_{s}}\right)$.
where

$$
{ }^{\prime} W_{j}=\widetilde{\operatorname{ker}}\left(\sigma_{j} \mathbb{I}-\left.T\right|_{U_{s}}\right)=\widetilde{\operatorname{ker}}\left(\sigma_{j} \mathbb{I}-T\right) \cap U_{s}=W_{j} \cap U_{s} .
$$

We must show that ${ }^{\prime} W_{j}=W_{j}$.
Since $(j \neq s) \sigma_{j} I I-T$ also respects the decomposition $V=W_{s} \oplus$ U_{s}, we have (Prop. VI.D.7)

$$
\begin{aligned}
W_{j}=\widetilde{\operatorname{ker}}\left(\sigma_{j} \mathbb{I}-T\right) & =\left\{W_{s} \cap \widetilde{\operatorname{ker}}\left(\sigma_{j} I-T\right)\right\} \oplus\left\{U_{s} \cap \widetilde{\operatorname{ker}}\left(\sigma_{j} I-T\right)\right\} \\
& =W_{s} \cap W_{j} \oplus U_{s} \cap W_{j}
\end{aligned}
$$

By Prop. VI.D.9, $W_{s} \cap W_{j}=\{0\}$ and so

$$
W_{j}=U_{s} \cap W_{j}={ }^{\prime} W_{j}
$$

as desired.

- T respects the direct sum : We need to show $T\left(W_{j}\right) \subseteq W_{j}$. Take $\vec{w} \in$ $\widetilde{\operatorname{ker}}\left(\sigma_{j} \mathbb{I}-T\right)$, so that for κ sufficiently large $\left(\sigma_{j} \mathbb{I}-T\right)^{\kappa} \vec{w}=0$. But then $\left(\sigma_{j} \mathrm{II}-T\right)^{\kappa} T \vec{w}=T\left(\sigma_{j} \mathrm{II}-T\right)^{\kappa} \vec{w}=0 \quad \Longrightarrow \quad T \vec{w} \in \widetilde{\operatorname{ker}}\left(\sigma_{j} \mathrm{II}-T\right)$.
- $\tilde{d}_{j}=k_{j}$: Let $\mathcal{B}_{1}, \ldots, \mathcal{B}_{s}$ be bases for W_{1}, \ldots, W_{s}; the collection $\mathcal{B}=$ $\left\{\overline{\mathcal{B}_{1}, \ldots,} \mathcal{B}_{s}\right\}$ then yields a basis for V "subordinate to the direct sum". Since T respects the direct sum, its matrix with respect to \mathcal{B} splits into blocks down the diagonal (of dimensions $\tilde{d}_{1} \times \tilde{d}_{1}, \ldots, \tilde{d}_{s} \times \tilde{d}_{s}$):

$$
\begin{gathered}
{[T]_{\mathcal{B}}=: B=P_{\mathcal{B}}^{-1} A P_{\mathcal{B}}=\operatorname{diag}\left\{\left[\left.T\right|_{W_{1}}\right]_{\mathcal{B}_{1}}, \ldots,\left[\left.T\right|_{W_{s}}\right]_{\mathcal{B}_{s}}\right\}} \\
\operatorname{diag}\left\{B_{1}, \ldots, B_{s}\right\} .
\end{gathered}
$$

Moreover, since $A \sim B, \lambda \mathbb{I}-A \sim \lambda \mathbb{I}-B$ and $f_{A}(\lambda)=f_{B}(\lambda)$. From

$$
\lambda \mathbb{I}-B=\operatorname{diag}\left\{\lambda \mathbb{I}_{\tilde{d}_{1}}-B_{1}, \ldots, \lambda \mathbb{I}_{\tilde{d}_{s}}-B_{s}\right\}
$$

we have

$$
f_{B}(\lambda)=\operatorname{det}(\lambda \mathbb{I}-B)=\prod_{j} \operatorname{det}\left(\lambda \mathbb{I}_{\tilde{d}_{j}}-B_{j}\right)=f_{B_{1}}(\lambda) \cdots f_{B_{s}}(\lambda)
$$

Since the only eigenvalue of $\left.T\right|_{W_{j}}$ is σ_{j} (and $B_{j}=\left[\left.T\right|_{W_{j}}\right]_{\mathcal{B}_{j}}$) the only root of $f_{B_{j}}(\lambda)$ is σ_{j}. Since B_{j} is $\tilde{d}_{j} \times \tilde{d}_{j}$, it follows that $\operatorname{deg}\left(f_{B_{j}}\right)=\tilde{d}_{j}$
and so $f_{B_{j}}(\lambda)=\left(\lambda-\sigma_{j}\right)^{\tilde{d}_{j}}$. But then $\left(f_{A}(\lambda)=\right)$

$$
f_{B}(\lambda)=\prod\left(\lambda-\sigma_{j}\right)^{\tilde{d}_{j}}
$$

and we are done.

Exercises

(1) Find the stable eigenspaces of

$$
A=\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & 0 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

(2) Suppose A is an 8×8 matrix with $m_{A}(\lambda)=\lambda(\lambda-1)^{2}(\lambda-2)^{3}$ and $f_{A}(\lambda)=\lambda^{2}(\lambda-1)^{2}(\lambda-2)^{4}$. What are the dimensions of the eigenspaces and stable eigenspaces of A ?
(3) Check that S respects the decomposition (VI.D.5) into stable image and kernel.
(4) For any endomorphism $S: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, show $\operatorname{ker}\left(S^{k}\right)=\operatorname{ker}\left(S^{k+1}\right)$ implies
(a) $\operatorname{ker}\left(S^{k}\right)=\operatorname{ker}\left(S^{\ell}\right)$ for all $\ell \geq k$, and
(b) $\operatorname{im}\left(S^{k}\right)=\operatorname{im}\left(S^{\ell}\right)$ for all $\ell \geq k$. [Hint for (b): use Rank + Nullity and (a).]
(5) Show that a matrix $A \in M_{n}(\mathbb{C})$ is nilpotent if and only if it is similar to an upper-triangular matrix with diagonal entries zero. [Hint: given a nilpotent matrix, what does its rational canonical form look like?]

[^0]: ${ }^{17}$ The reason to take $\mathrm{F}=\mathbb{C}$ is so that the algebraic multiplicities of the eigenvalues of $A \in M_{n}(\mathrm{~F})$ always sum to n, i.e. $f_{A}(\lambda)$ breaks into linear factors over F. The results below hold more generally (e.g. with $F=\mathbb{R}$) whenever this is the case.
 ${ }^{18}$ Here we mean the list of distinct eigenvalues, i.e. not repeated according to multiplicity.

