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VI.E. Jordan normal form

Set V = Cn and let T : V → V be any linear transformation, with
distinct eigenvalues σ1, . . . , σs. In the last lecture we showed that V
decomposes into stable eigenspaces for T:

V = W1 ⊕ · · ·⊕ Ws = !ker(T − σ1I)⊕ · · ·⊕ !ker(T − σsI).

Let B = {B1, . . . ,Bs} be a basis for V subordinate to this direct sum
and set Bk = [T |Wk

]Bk , so that

[T]B = diag{B1, . . . , Bs}.

Each Bk has only σk as eigenvalue. In the event that A = [T]ê is di-
agonalizable, or equivalently !ker(T − σkI) = ker(T − σkI) (or their
dimensions d̃k = dk) for all k, B is an eigenbasis and [T]B is a diago-
nal matrix

diag{σ1, . . . , σ1" #$ %
d̃1=dim W1

; . . . ; σs, . . . , σs" #$ %
d̃s=dim Ws

}.

Otherwise we must perform further surgery on the Bk’s separately,
in order to transform the blocks Bk (and so the entire matrix for T)
into the “simplest possible” form.

What might this form be? Consider T = d
dx acting on the space of

functions f (x) satisfying f ′′′ − 3σ f ′′ + 3σ2 f ′ − σ3 f = 0 (or equiva-
lently ( d

dx − σ)3 f = 0), with basis B = { x2

2 eσx, xeσx, eσx}. The matrix

[T]B =

&

'(
σ 0 0
1 σ 0
0 1 σ

)

*+

is an example of a little Jordan block. This is clearly quite natural, and
is the sort of thing that we would like to generalize.

The attentive reader will have noticed above that I have written
T − σkI in place of σkI − T. This is a strategic move: when deal-
ing with characteristic polynomials it is far more convenient to write
det(λI − A) to produce a monic polynomial. On the other hand, as
you’ll see now, it is better to work on the individual Wk’s with the
nilpotent transformation T |Wk

− σkI =: Nk.
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Decomposition of the Stable Eigenspaces (Take 1). Let’s briefly
omit subscripts and consider T : W → W with one eigenvalue σ,
dim W = d̃, B a basis for W and [T]B = B. The operator N = T − σI

(with matrix [N]B = B − σId̃) is nilpotent, and so fN(λ) = λd̃ (since
its only eigenvalue is 0). Since fN(λ) must be the product of the
invariant factors (of λI − N), the normal form of λI − N is quite
limited:

nf (λI − N) = diag{1, . . . , 1, λq(r) , . . . , λq(d̃)}
where20 q(r) + . . . + q(d̃) = d̃.

To express the corresponding rational canonical form for N we
introduce the following notation:21

N q
σ :=

&

''''(

σ

1 . . .
. . . . . .

1 σ

)

****+
[q × q matrix].

Then

(VI.E.1) R(N) = diag
,
N q(r)

0 , . . . ,N q(d̃)
0

-
;

for instance, if

nf (λI − N) = diag{1, 1, 1, λ2, λ3},

then

R(N) =

&

''''''''(

0
1 0

0
1 0

1 0

)

********+

.

(Notice the apparent “gap” between the first and second 1’s.)

20Note: when you see superscripts in parentheses in this section (viz., (r), . . . , (d̃)),
they are not exponents. (This is so that we can also add subscripts later.)
21A possibly more standard notation here is Jq(σ), where the “J” stands for Jordan.
We reserve that letter here for the Jordan form of a given matrix A.
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So for some change-of-basis matrix S we have

B − σId̃ = [N]B = SR(N) S−1

or
B = SR(N) S−1 + σId̃ = S (R(N) + σId̃) S−1.

Using (VI.E.1) this means that if, say, S = PC→B then

[T]C = S−1BS = diag
,
N q(r)

0 , . . . ,N q(d̃)
0

-
+ σId̃

= diag
,
N q(r)

σ , . . . , Nq(d̃)
σ

-
;

for example,
&

''''''''(

σ

1 σ

σ

1 σ

1 σ

)

********+

= diag
.
N 2

σ , N 3
σ

/
.

This is called a big Jordan block, and the “boxes” N q
σ are little Jordan

blocks. They have very simple characteristic polynomials, namely
(λ − σ)q (after all, T : W → W has only eigenvalue σ). The little
blocks correspond to a decomposition of W into N-cyclic subspaces

W = W(r) ⊕ · · ·⊕ W(d̃)

as in the rational canonical structure theorem (Thm. VI.C.17). C is
a basis subordinate to this decomposition, consisting of a choice of
“cyclic vector” for each W(i) and its successive images under N;
more on this later.

Going back to a transformation T : V → V with multiple eigen-
values, what we are aiming at is a further decomposition of each of
the Wk = !ker(T − σkI) into Nk-cyclic subspaces:

V =
0

W(r1)
1 ⊕ · · ·⊕ W(d̃1)

1

1
⊕ · · ·⊕

0
W(rs)

s ⊕ · · ·⊕ W(d̃s)
s

1
.
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With respect to some special basis C subordinate to this entire direct
sum decomposition,22 the matrix of T will be the Jordan normal form

J (T) = diag{N q
(r1)
1

σ1 , . . . ,N q
(d̃1)
1

σ1 ; . . . ; N q(rs)
s

σs , . . . ,N q(d̃s)
s

σs },

where each semicolon separates two big Jordan blocks (and each
comma two little Jordan blocks). Note that there is one big Jordan
block for each eigenvalue. As it stands this looks formidable, and at
least the basis C looks very hard to compute.

Decomposition of Wk (Take 2). In order to facilitate computa-
tion of the entire Jordan decomposition A = SJ S−1, it is useful to
have an approach to the “nilpotent building blocks” Nk : Wk → Wk

that does not appeal to rational canonical form.

VI.E.2. DEFINITION. The height h of a nilpotent transformation
N : W → W is defined by Nh = 0, Nh−1 ∕= 0. (The minimal polyno-
mial of such a transformation is simply λh.)

One may also define the (N-)height h(!w) of !w ∈ W by Nh(!w)!w =

0, Nh(!w)−1!w ∕= 0. Clearly the height of N is just the supremum of
the (N-)heights of vectors in W. (The height of a subspace of W,
similarly, just means the supremum of heights of vectors in that sub-
space.)

Notation: We shall write Zh0
N (!w) for the N-cyclic subspace of W

generated by !w (!w of height h0); that is,

Zh0
N (!w) := span{!w, N!w, . . . , Nh0−1!w}.

VI.E.3. CLAIM. Given N : W → W nilpotent of height h, with

{Nh−1!w1, . . . , Nh−1!wt}

a basis for im(Nh−1). Then we have a decomposition

W = Zh
N(!w1) ⊕ · · · ⊕ Zh

N(!wt) ⊕ W(t+1) ⊕ · · · ⊕ W(m)
" #$ %

cyclic of height ≤h−1

.

22Compatibility with the direct sum alone is of course not enough; “special”
means the basis also has “cyclic” properties (to be described below)
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PROOF (BY INDUCTION ON h).

• base case (h = 1): W = ker N. Take any basis for W; the spans of
the individual basis vectors give the desired decomposition.

• inductive step: The following picture of W is useful, where N acts
by sending you up one level, the top row is kerN, and the height of
a vector is its “distance” from the top.

w w
1 t

N  w N  w
t1

h−1 h−1

im(N     )
h−1

N

N

N

(top=0)

ker(N)

In order to apply the inductive hypothesis (= the Claim for height
h − 1), we consider U = ker(Nh−1) ⊆ W. Now N |U has height
h − 1:

N  w N  w
t1

h−1 h−1
N   u         N   u

t+1 r

rt+1

u     ...........u

........
h−2 h−2

Nw  ..........Nwt1

h−2
Uim(N|   )

Set {!u1, . . . ,!ut} = {N!w1, . . . , N!wt} ⊆ U, and complete

{Nh−2!u1, . . . , Nh−2!ut}
0
= {Nh−1!w1, . . . , Nh−1!wt}

1

to a basis for im{(N |U)
h−2}, by adding some {Nh−2!ut+1, . . . , Nh−2!ur}

as shown. By the inductive hypothesis,

U = Zh−1
N (!u1)⊕ · · ·⊕ Zh−1

N (!ut)⊕ Zh−1
N (!ut+1)⊕ · · ·⊕ Zh−1

N (!ur)

⊕ U(r+1) ⊕ · · ·⊕ U(m)
" #$ %
N-cyclic of height ≤h−2

.
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The picture is now

N  w N  w
t1

h−1 h−1
N   u         N   u

t+1 r

rt+1

u     ...........u

........
h−2 h−2

Nw  ..........Nwt1

2
1

2
tNwNw N Nuu

t+1 r

guaranteed by

inductive hypothesis

— U is the direct sum of the columns (= cyclic subspaces under the
action of N). So why not tack !w1, . . . , !wt on to the bottom of the first
t columns and obtain a decomposition

.  .  .  .
 . .

w w
t1

Nw1 Nw
t

. . . . . .

as promised?
Here’s how to do this rigorously: since Nh−1!w1, . . . , Nh−1!wt are

a basis for im(Nh−1), no nontrivial linear combination of !w1, . . . , !wt

can be in ker(Nh−1) = U. Therefore

(VI.E.4) span{!w1, . . . , !wt} ∩ U = {0},

which implies that

dim(span{!w1, . . . , !wt}) + dim U = dim(span{!w1 . . . !wt}+ U).

Applying Rank+Nullity to Nh−1, we then find

dim W = dim(span{!w1, . . . , !wt}+ U)

=⇒ W = span{!w1, . . . , !wt}+ U.

Together with (VI.E.4) this yields

W = span{!w1, . . . , !wt}⊕ U,
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which by our decomposition of U

=
0

span{!w1, . . . , !wt}⊕ Zh−1
N (!u1)⊕ · · ·⊕ Zh−1

N (!ut)
1

⊕Zh−1
N (!ut+1)⊕ . . . ⊕ Zh−1

N (!ur)⊕ U(r+1) ⊕ . . . ⊕ U(m).

Since {!u1, . . . ,!ut} was just {N!w1, . . . , N!wt}, the direct sum in the
parentheses is

Zh
N(!w1)⊕ · · ·⊕ Zh

N(!wt)

and we are done. □

The upshot of the Claim just proved is this (weaker)

VI.E.5. PROPOSITION. N : W → W nilpotent =⇒

W = W(1) ⊕ · · ·⊕ W(m) = Zh1
N (!w1)⊕ · · ·⊕ Zhm

N (!wm);

that is, W decomposes into a direct sum of N-cyclic subspaces of various
heights.23

So if we take

C = {!w1, N!w1, . . . , Nh1−1!w1; . . . ; !wm, N!wm, . . . , Nhm−1!wm},

then
[N]C = diag

.
N h1

0 , . . . ,N hm
0

/
.

Given T : V → V with distinct eigenvalues {σ1, . . . , σs} and asso-
ciated stable eigenspaces Wk = !ker(T − σkI), we apply this Proposi-
tion to the nilpotent transformations (T |Wk

− σkI) = Nk : Wk → Wk

and find

V = W1 ⊕ · · ·⊕ Ws

=
0

W(1)
1 ⊕ · · ·⊕ W(m1)

1

1
⊕ · · ·⊕

0
W(1)

s ⊕ · · ·⊕ W(ms)
s

1

where the W(i)
k are Nk-cyclic. Let C(i)

k = {!w(i)
k , T!w(i)

k , . . . , Th(i)k −1!w(i)
k }

be cyclic bases for the W(i)
k , and combine them to produce Ck =

{C(1)
k , . . . , C(mk)

k }, and then C = {C1, . . . , Cs}. Clearly C is a basis for

23This decomposition is not unique but the numbers m and {h1, . . . , hm} are. (See
the end of the section for discussion of uniqueness.)
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V and it is subordinate to the entire direct-sum decomposition just
written. With respect to this basis,

[T]C = diag
,2

T |W1

3

C1
, . . . ,

2
T |Ws

3

Cs

-

decomposes into big Jordan blocks, and each big block

2
T |Wk

3

Ck
= diag

45
T |

W(1)
k

6

C(1)k

, . . . ,
5

T |
W

(mk)
k

6

C(mk)
k

7

decomposes into little blocks.
Now for N : W → W it is clear from our pictures that the “top”

of each “N-cycle” contributes one dimension to the kernel of N.

VI.E.6. PROPOSITION. m = {# of W(i) in the decomposition of W}
= dim(ker N).

This has the following important consequence for T : V → V.

VI.E.7. COROLLARY. We have equality between

• mk := # of little Jordan blocks in the big block for σk and

• dk := dim{ker(T − σkI)} = geometric multiplicity of σk.

How to compute Jordan form (and an associated basis). We will
work in terms of the matrix A = [T]ê; our goal is to rewrite it as
PCJ P−1

C , with J = [T]C consisting of diagonal Jordan blocks. We
call J the Jordan normal form of A. Begin by computing and factoring
fA(λ) = det(λI − A), in order to find the eigenvalues {σ1, . . . , σs}.
Pick some σ = σk to concentrate on, set W = Wk = !ker(A − σkI),
and use the following two steps to construct C = Ck. (Then repeat
for the remaining eigenvalues.) Note that in the following A(i) and
C(i) always denote finite collections of vectors (like a basis).

Step I. Again consider the picture of W:

h

(1)

(2)

(3)

(4)

ker(A−bI)
ker(A−bI)

2

ker(A−bI)
3
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Find bases for the successive “levels” of W:

A(1) for ker(A − σI), {A(1),A(2)} for ker{(A − σI)2},

{A(1),A(2),A(3)} for ker{(A − σI)3}, and so on.

This may require readjustment of bases along the way: the basis for
ker(A − σI)2 produced by the usual method may not include the
elements of A(1), etc. WARNING: the picture is slightly deceptive
because — unlike span(A(1)), which is ker(A − σI) — the spaces
span(A(2)), span(A(3)), etc. are not uniquely determined (a different
choice of A(2), A(3) etc. could change them). However, the number
of vectors in A(i) is unique: call this number ai, and note that a1 ≥
a2 ≥ a3 ≥ · · · .

Step II. Now we find the generators C(i) for the cyclic subspaces
of height i (1 ≤ i ≤ h ). Here is a representative picture with h = 4:

(A−bI)

(A−bI)

(A−bI)

(4)

(3)

(2)

(1)

First set C(h) = A(h); this is a set of ah vectors. Then take C(h−1) ⊆
A(h−1) to be some subset such that

{(A − σI)C(h), C(h−1)} is an independent set

consisting of ah−1 vectors.

VI.E.8. REMARK. (1) C(h−1) contains (ah−1 − ah) vectors. If ah−1 =

ah then C(h−1) will be empty.
(2) span{(A − σI)C(h), C(h−1)} will not in general be the same

subspace as span(A(h−1)), although the dimensions are equal.
(3) You may wish to put subscripts on the A(h)’s, viz. A(h)

k (and

likewise C(h)
k below), to avoid confusing the bases for different Wk’s.
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Continuing Step II, let C(h−2) ⊆ A(h−2) be any subset (containing
ah−2 − ah−1 vectors) so that
.
(A − σI)2C(h), (A − σI)C(h−1), C(h−2)

/
is an independent set

consisting of ah−2 vectors, and so on. It may help to actually write
the vectors inside diagrams similar to the ones we have drawn.

The desired basis (for Wk) is then Ck =
.
C(1) ; C(2), (A − σI)C(2) ; C(3), (A − σI)C(3), (A − σI)2C(3) ; etc.

/

(where for instance (A − σI)C(2) means: apply (A − σI) to each of
the vectors of C(2)). Each element of C(i) will correspond to a small
Jordan block of the form N i

σ, and this is in fact all the information
you need to write down the big Jordan block for σk.

In terms of our picture: the whole diagram corresponds to a big
Jordan block for one eigenvalue σ; each column corresponds to a little
Jordan (i.e., (A − σI)-cyclic) block; and the dimension of the little
block is the height of the corresponding column.

This concludes our “algorithm”; let’s now apply it.

VI.E.9. EXAMPLE. Consider the matrix

A =

&

'''(

2 −1 1 −1
−1 2 −2 1
0 1 1 1
0 −1 1 0

)

***+
−→ fA(λ) = det(λI − A)

= (λ − 1)3(λ − 2).

We will work on σ = 1 first.
Since

ker(A − I) = span

&

'''(

0
−1
0
1

)

***+

is 1-dimensional, Corollary VI.E.7 =⇒ the big Jordan block for σ =

1 contains 1 little Jordan block! That is, !ker(A − I) is cyclic under
A − I = N. Therefore we know immediately the Jordan normal
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form

J =

&

''''(

1
1 1

1 1

2

)

****+

of A but not the basis change S (yet). Continue to compute:

ker(A − I)2 = span

8
999:

999;

&

'''(

−1
0
1
0

)

***+
,

&

'''(

0
−1
0
1

)

***+

<
999=

999>
,

ker(A − I)3 = span

8
999:

999;

&

'''(

−1
0
1
0

)

***+
,

&

'''(

0
−1
0
1

)

***+
,

&

'''(

0
0
0
1

)

***+

<
999=

999>
.

The picture of W = !ker(A − I) is

(1)

(2)

(3)A−I

A−I

where

A(1) =

&

'''(

0
−1
0
1

)

***+
, A(2) =

&

'''(

−1
0
1
0

)

***+
, A(3) =

&

'''(

0
0
0
1

)

***+
= ê4.

The beginning of “Step II” is now C3 = A(3). In fact, there is no C(2)

or C(1) (our picture of W has no “steps”, just one column), and so this
is also the end. Throwing out A(1),A(2) and replacing them with the
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cyclic images of C3 = ê4 under (A − I), the desired basis is

C1 =
!
C(3), (A − I)C(3), (A − I)2C(3)

"
=

#
$$$$%

$$$$&

'

(((()

0
0
0
1

*

++++,
,

'

(((()

−1
1
1
−1

*

++++,
,

'

(((()

0
−1
0
1

*

++++,

-
$$$$.

$$$$/

(and not A(1),A(2),A(3)).
For the eigenvalue σ = 2 we find

ker(A − 2I) = span

&

'''(

−2
1
1
0

)

***+
; so C2 =

8
999:

999;

&

'''(

−2
1
1
0

)

***+

<
999=

999>
.

Setting C = {C1, C2}, we may now write A = PC J P−1
C =

&

'''(

0 −1 0 −2
0 1 −1 1
0 1 0 1
1 −1 1 0

)

***+

&

'''(

1
1 1

1 1
2

)

***+

&

'''(

1 1 1 1
1 0 2 0
0 −1 1 0
−1 0 −1 0

)

***+
.

For a more “general” example, giving rise to a diagram of the form

you might look at

A =

&

''''''''(

0 0 0 0 0 0
1 0 0 0 0 0
−1 −1 0 0 0 0
0 1 0 0 1 0
−1 0 0 0 0 0
1 0 0 0 −1 0

)

********+

.
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Application to differential equations. So suppose we had a sys-
tem of equations

dy1
dt = 2y1 − y2 + y3 − y4

dy2
dt = −y1 + 2y2 − 2y3 + y4
dy3
dt = y2 + y3 + y4
dy4
dt = −y2 + y3

<
9999=

9999>

−→ d!y
dt

= A!y

(where A is the same as in the last example). Setting !c = P−1
C !y —

that is, changing coordinates as usual — we obtain the new system

dc1

dt
= c1 ,

dc2

dt
= c1 + c2 ,

dc3

dt
= c2 + c3 ,

dc4

dt
= 2c4.

Clearly c4(t) = Ce2t, while (c1(t), c2(t), c3(t)) is a linear combina-
tion of ?

et, tet,
t2

2
et
@

,
A
0, et, tetB , and

A
0, 0, etB .

Applying PC to !c(t), as usual, recovers !y(t). More generally, for a
block equation in Jordan form

d
dt

&

''''(

c1
...
...

cr

)

****+
=

&

'''(

λ

1 λ

1 λ

1 λ

)

***+

&

''''(

c1
...
...

cr

)

****+
,

one finds that any solution (c1(t), . . . , cr(t)) is a linear combination
of ?

eλt, teλt, . . . . . . ,
tr−1

(r − 1)!
eλt

@

and its “shifts” to the right (as above).
The same functions arise in a slightly different fashion (as basis

vectors rather than time-dependent coefficients). We are going to
find all solutions of the ODE

dn f
dxn + an−1

dn−1 f
dxn−1 + . . . + a1

d f
dx

+ a0 f = 0.
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Working over C, we write

q(λ) := λn + an−1λn−1 + . . . + a1λ + a0 =
s

∏
i=1

(λ − σi)
ki

(where the σi are distinct), define

V := space of solutions to
,

q
?

d
dx

@
f = 0

-

(assume it’s finite-dimensional); and let

D : V → V be the restriction of
d

dx
to V.

Clearly q(D) = 0. Let λ0 be an eigenvalue of D; then there exists a
nonzero f ∈ V such that D f = λ0 f . But then

0 = q(D) f = q(λ0) f =⇒ q(λ0) = 0,

and so λ0 is a root ( =⇒ λ0 = σi). Therefore V decomposes into
stable eigenspaces

V = !ker(D − σ1I)⊕ · · ·⊕ !ker(D − σsI).

Moreover, dim ker(D − σiI) = 1 (because the only solution to D f =

σi f is Ceσix), and so by Corollary VI.E.7 each of the stable kernels is
cyclic nilpotent, spanned by the iterates of some generator

gi , (D − σiI)gi , (D − σiI)
2gi , . . . . . . .

Suppose this doesn’t terminate at ki iterations: more precisely say
(for m ≥ 1) that

(D − σiI)
ki+m−1gi ∕= 0 but (D − σiI)

ki+mgi = 0

(this must happen for some m by the definition of stable kernel).
Now on the one hand (since ki + m − 1 ≥ ki)
(VI.E.10)

q(D)gi = 0 =⇒
C

∏
j ∕=i

(D − σjI)
kj

D
(D − σiI)

ki+m−1gi = 0.

On the other, (D − σiI)
ki+m−1gi is an eigenvector for D with eigen-

value σi (because it is killed by D − σiI) and therefore must be Ceσix
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(C a nonzero constant). Plugging this in to (VI.E.10), we have

0 = ∏
j ∕=i

(D − σjI)eσix =

C

∏
j ∕=i

(σi − σj)

D
eσix,

which is impossible because the σ1, . . . , σs are distinct!
Therefore !ker(D − σiI) is cyclic nilpotent (under D − σiI) with

height ki, as you might expect. The generator gi is just xki−1eσix. Thus
the solutions to the above ODE are the functions of the form

f (x) =
s

∑
i=1

ki−1

∑
j=0

Cijxjeσix

where Cij are arbitrary constants.

∗ ∗ ∗

Uniqueness. We conclude this section with the general statement
about matrices and Jordan form. By a Jordan matrix, we shall mean
simply a block diagonal matrix with blocks of the form N h

σ (i.e., little
Jordan blocks). For instance, all diagonal matrices are Jordan; so is a
single N h

σ .

VI.E.11. THEOREM. Let A ∈ Mn(C) be an arbitrary matrix. Up to
reordering blocks, there is exactly one Jordan matrix J (A) similar to A.

PROOF. Clearly we have established existence: there is an invert-
ible P ∈ Mn(C) (far from unique!) such that

P−1AP = J = diag{N h(1)1
σ1 , . . . ,N h

(m1)
1

σ1 ; . . . ;N h(1)s
σs , . . . ,N h(ms)

s
σs },

with σ1, . . . , σs the eigenvalues of J , hence A. Furthermore, for each
k, the dimension of the big Jordan block is

mk

∑
j=1

h(j)
k = dim(EEσk(J )) = dim(EEσk(A)) = d̃k

since A and J are similar. In addition, we have seen that mk =

dim(Eσk(A)) = dk.
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To show that the entire list h(1)k , . . . , h(dk)
k (for each k) is determined

by A as well, write ckℓ for the number of times ℓ appears in this list.
We have

akℓ : = nullity{(A − σkI)ℓ}− nullity{(A − σkI)ℓ−1}

= nullity{(J − σkI)ℓ}− nullity{(J − σkI)ℓ−1}

= ∑
h≥ℓ

ckh.

(You may check this by hand, or sort it out from the discussion of
bases A(ℓ)

i and C(ℓ)
k above; akℓ and ckℓ are just the numbers of vectors

in these sets.) Hence
ckℓ = akℓ − ak,ℓ+1

is completely determined and the uniqueness is proved. □

VI.E.12. REMARK. Of course, a matrix A with real entries belongs
to Mn(C), and the Theorem applies. However, it should be under-
stood that, as with diagonalization, one has to allow S and J to have
complex entries if fA does not split into linear factors over R.

Exercises
(1) Both of the following matrices have only one eigenvalue:

&

'(
3 −5 −35
0 −4 −49
0 1 10

)

*+ ,

&

'''''''(

2 0 0 0 0 0
1 2 0 0 0 0
−1 −1 2 0 0 0
0 1 0 2 1 0
−1 0 0 0 2 0
1 0 0 0 −1 2

)

*******+

Put them in Jordan normal form (= generalized “diagonal” form,
if you will); that is, write the entire decomposition A = SJ S−1.
It may help you to draw out the diagrams, and write the vectors
you find where they belong. For the first one it should look like
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(2) Find all solutions of the system

dx
dt

= 2x + z ,
dy
dt

= y + 2z ,
dz
dt

= 2z.

[Hint: use Jordan.]
(3) (a) Let N be cyclic nilpotent on W, dim W = d.

(i) What must the minimal polynomial of N be?
(ii) So what is the minimal polynomial of a little Jordan block
N d

σ ?
(iii) How about a big Jordan block diag{N d1(σ)

σ , . . . ,N dr(σ)
σ }? (As-

sume d1(σ) ≥ · · · ≥ dr(σ).)
(iv) Finally, how about an arbitrary Jordan-form matrix J ?
(b) A matrix A having this Jordan form (A = SJ S−1) will have
the same minimal polynomial (why?). Also the Jordan form is
unique, up to reordering of the blocks along the diagonal. Use
these facts to explain why A is diagonalizable iff its minimal
polynomial has no repeated root.
(c) Find the minimal polynomials of the matrices in problem (1).

(4) Use Jordan form to show that if fA(λ) = ∏i(λ − σi)
ni , then we

have det(A) = ∏i σ
ni
i . (This can be seen without Jordan — cf. the

beginning of §V.C — but this proof is simpler.)
(5) Consider the transformation T : P3 → P3 on polynomials defined

by T(p(t)) = p(t+ 1). What must the Jordan form for T be? (You
can do this without writing out the matrix [T]

{1,t,t2,t3}
.)

(6) In this problem you will show that the Jordan normal form J (A)

of A ∈ Mn(C) may be regarded as a “refinement” of its rational
canonical form,24 and see how to calculate it directly from the
nontrivial invariant factors ∆r, . . . , ∆n of λI − A.
(a) Given B ∈ Mm(C), show that the power k to which λ − σ

appears in mB(λ) is the size of the biggest “little Jordan block”

24In the theory of “modules over a principal ideal domain”, the main result is
something called the structure theorem, which decomposes the module into its con-
stituent factors. The rational canonical form is the direct manifestation of this the-
orem when applied to T : V → V (which makes V into a “module over F[λ]”).
Further decomposing these constituent factors into their “primary components”
is what leads to the Jordan form.
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with eigenvalue σ (i.e. N k
σ ) in J (B). [Hint: what is the “height”

of multiplication by B − σIm on EEσ(B)?]
(b) If B = M(p) is the companion matrix of a monic polynomial
p(λ) = ∏t

i=1(λ − σi)
ℓi of degree m, use (a) to calculate J (B).

(In particular, you should find that each eigenspace Eσj(B) is only
1-dimensional.)
(c) The rational form diag{M(∆r), . . . , M(∆n)} of A is similar to
diag{J (M(∆r)), . . . ,J (M(∆n))}. Conclude that the latter ma-
trix is J (A), and that the powers of linear factors in the ∆k’s are
the sizes of the small Jordan blocks of J (A).
(d) If you did Exercises VI.B.3 and/or VI.C.7, use this result to
quickly calculate J (A) in each case. (Note that Ex. VI.C.7 acually
has 6 different cases.)

(7) The (multiplicative) Jordan Decomposition Theorem states that any
invertible matrix A can be written uniquely as a product SU of a
commuting pair of semisimple and unipotent25 matrices.
(a) Show that a Jordan matrix can be written as SU. Then do it
for an arbitrary matrix, proving the existence part of JDT. (This
is the only part of this problem that uses the Jordan normal form
per se.)
(b) Given!v ∈ EEσ(A), and S a semisimple matrix commuting with
A with A − S nilpotent, prove that !v ∈ Eσ(S). [Hint: show that
(S − σI)2n!v =!0 by writing S − σI = (S − A) + (A − σI).]
(c) Prove the uniqueness part of the JDT. [Hint: use (b) to show
that A = SU = US completely determines S. It may help to use
the Jordan Structure Theorem from the last section and think of
S as a transformation.]

25We say U is unipotent if U − I is nilpotent. Also recall that semisimple means
diagonalizable. So the theorem means that we can write A = SU = US and if also
A = S′U′ = U′S′ (with S′ semisimple and U′ unipotent) then S′ = S and U′ = U.


