
VII. Inner product spaces

VII.A. Review of orthogonality

At the beginning of our study of linear transformations we briefly
discussed rotations, reflections and projections. In §III.A, projections
were treated in the abstract and without regard to whether they were
“orthogonal”; while in §III.B, the examples of rotations and projec-
tions in R2 and R3 made use of an orthogonal basis. The idea was
that if you want (say) to rotate about ê1, or project “perpendicularly”
to span{ê2, ê3} in R3, you can write immediately

[R]ê =

!

"#
1

cos θ − sin θ

sin θ cos θ

$

%& and P!x =(!x · ê2'()*)ê2

=x2

+ (!x · ê3'()*)ê3

=x3

.

The same formulas hold for any basis B = {!v1,!v2,!v3} of R3 “like ê”
in the sense that !vi · !vj = δij (i.e. the vectors are of unit length and
satisfy !v1 ⊥ !v2, !v2 ⊥ !v3, !v1 ⊥ !v3). But for an arbitrary basis (not like
ê), these formulas produce elliptical rotations and skew projections.

So what to do when you need to rotate about
+ 2

1
−2

,
in R3, or

project “perpendicularly” to

span
-. 1

7
1
7

/
,
. 0

7
2
7

/
,
. 1

8
1
6

/0

in R4? You need to construct the right basis, one “like ê”. We shall
now standardize these ideas rather than continuing in the ad hoc vein
of §§III.A-III.B. In this section, we will stick with the dot product on
Rn (and its generalization to Cn), while subsequent ones will con-
sider more general bilinear forms.
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220 VII. INNER PRODUCT SPACES

Orthonormal bases and Projections. These definitions are likely
familiar to you — first, for vectors:

VII.A.1. DEFINITION. Given !v, !w ∈ Rn, we write
• ‖!v‖ =

1
(!v ·!v) = norm (or length) of !v; and

• !v ⊥ !w ⇐⇒ !v · !w = 0 ⇐⇒ !v and !w are orthogonal.

— and second, for bases:

VII.A.2. DEFINITION. A basis B = {!v1, . . . ,!vn} for Rn is called
orthogonal if !vi ·!vj = 0 for i ∕= j. If in addition we have !vi ·!vi = 1
(i = 1, . . . , n), then the basis is called orthonormal.

Finally, if W ⊂ Rn is a subspace, we write !v ⊥ W or !v ∈ W⊥ if
!v · !w = 0 for every !w ∈ W (equivalently, for each !wi in a basis of W).

When B is orthonormal, the rotation by θ about span{!v3, . . . ,!vn}
is given simply by

[R]ê = PB [R]BP−1
B where [R]B =

!

""""""#

cos θ − sin θ 0
sin θ cos θ

1
. . .

0 1

$

%%%%%%&
.

More importantly, we claim that the orthogonal projection to Wr :=
span{!vr, . . . ,!vn} is given by

Pr!x = PWr(!x) := (!vr ·!x)!vr + . . . + (!vn ·!x)!vn =
n

∑
i=r

(!vi ·!x)!vi.

Clearly Pr!x ∈ Wr, but we must also check that (!x − Pr!x) ⊥ Wr:

W
Px

x

(x−Px)
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It suffices, of course, to show (!x − Pr!x) ⊥ !vj for each j = r, . . . , n:

(!x − Pr!x) ·!vj = (!x − ∑n
i=r(!vi ·!x)!vi) ·!vj

= !x ·!vj − ∑n
i=r(!vi ·!x) (!vi ·!vj' () *

)

=δij

= !x ·!vj −!vj ·!x = 0.

Notice that for !x ∈ Wr, this means that !x − Pr!x ∈ Wr ∩ W⊥
r . But

Wr ∩W⊥
r = {0} (cf. Exercise (5)), and so Pr!x = !x. Thus the projection

restricts to the identity on Wr itself, as one would expect.
Setting r = 1 gives W1 = Rn and P1!x = !x for any !x ∈ Rn. Hence

(VII.A.3) !x = (!v1 ·!x)!v1 + · · ·+ (!vn ·!x)!vn

whenever {!v1, . . . ,!vn} is an orthonormal basis. (This is a sort of
finite-dimensional Fourier expansion, and the {!vi ·!x} are sometimes
called Fourier coefficients.) An immediate consequence of (VII.A.3)
is the “Pythagorean theorem”

‖!x‖2 = !x ·!x =
n

∑
i,j=1

(!vi ·!x)(!vj ·!x)(!vi ·!vj)' () *
δij

=
n

∑
i=1

(!vi ·!x)2.

which implies (for any r)

‖!x‖2 = (!v1 ·!x)2 + . . .+(!vn ·!x)2 ≥ (!vr ·!x)2 + . . .+(!vn ·!x)2 = ‖Pr!x‖2;

that is, orthogonal projection cannot increase the norm of !x ∈ Rn.
In particular, for any !y ∈ Rn, projection to L := span(!y) satisfies

‖!x‖2 ≥ ‖PL!x‖2 =

2222

.
x · !y

‖!y‖

/
!y
‖!y‖

2222
2

=

.
!x · !y

‖!y‖

/2 !y ·!y
‖!y‖2 =

(!x ·!y)2

‖!y‖2 ;

that is, the “Cauchy-Schwarz” inequality

‖!x‖ ‖!y‖ ≥ |!x ·!y|

holds for the dot product. Thus we may extend the notion of angle
between !x and !y from R2 to Rn: taking

θ!x,!y = arccos
.

!x ·!y
‖!x‖ ‖!y‖

/

makes sense, since the argument of arccos is between 1 and −1.
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Gram-Schmidt Orthogonalization. Suppose we are given an ar-
bitrary basis {!w1, . . . , !wk} for a subspace W ⊆ Rn. Here is how to
turn it into an orthonormal one. Begin by normalizing !w1: set

v̂1 :=
!w1

‖!w1‖
(where the hat indicates a unit vector).

w

w
2

1
v
1

w’
2

Referring to the above picture, we would like to make !w2 ⊥ v̂1 by
getting rid of its horizontal component (!w2 · v̂1)v̂1:

!w′
2 := !w2 − (!w2 · v̂1)v̂1 −→

normalize
v̂2 :=

!w′
2

‖!w′
2‖

.

To make !w3 ⊥ to both v̂1 and v̂2, we take

!w′
3 := !w3 − (!w3 · v̂2)v̂2 − (!w3 · v̂1)v̂1 −→ v̂3 :=

!w′
3

‖!w′
3‖

,

and so on.
Specialize to the case k = n (W = Rn) and rewrite the equations

relating the v̂’s and ŵ’s as follows:

!w1 = ‖!w1‖ v̂1

!w2 = (!w2 · v̂1)v̂1 + !w′
2 = (!w · v̂1)v̂1 + ‖!w′

2‖ v̂2

!w3 = (!w3 · v̂1)v̂1 + (!w3 · v̂2)v̂2 + ‖!w′
3‖ v̂3 , etc.

This looks very nice in matrix terms: W = VM or

3
↑ ↑
!w1 · · · !wn

↓ ↓

4
=

3
↑ ↑
v̂1 · · · v̂n

↓ ↓

4

!

"""""#

‖!w1‖ !w2 · v̂1 !w3 · v̂1 · · · !wr ·!v1

‖!w′
2‖ !w3 · v̂2 · · · !wr · v̂2

‖!w′
3‖

...
. . . !wr · v̂r−1

0 ‖!w′
n‖

$

%%%%%&
.
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Here we have taken any invertible matrix (= the left-hand side) and
written it as a product of a matrix with orthonormal columns and an
upper-triangular matrix. (This is called the Iwasawa decomposition for
GLn(R) [= invertible matrices].)

We will establish some properties of V in a bit; in the meantime,
provided you believe that detV = ±1 (another way in which an
orthonormal basis is “like ê”), this decomposition of W gives a very
nice second proof that

|detW| = vol{parallelepiped with edges !w1, . . . , !wn}.

What needs to be shown is that the product (det M =)

‖!w1‖ ‖!w′
2‖ ‖!w′

3‖ · · · ‖!w′
n‖

gives the parallelepiped’s volume. Writing Vr = span{!w1, . . . , !wr} =

span{v̂1, . . . , v̂r} and Pr for the orthogonal projection to Vr, this prod-
uct becomes

‖!w1‖ ‖!w2 − P1!w2‖ ‖!w3 − P2!w3‖ · · · ‖!wn − Pn−1!wn‖.

But this is just the generalization of

Volume = Base · Height = (‖!w1‖ ‖!w2 − P1!w2‖) ‖!w3 − P2!w3‖

as shown in this picture

project

project

w  is projected to w’=w −P w

w is projected to w’ =w − P w
3 3 3 2 3

2 1 22 2

w2

w
1

w3w’
3

to higher dimensions.1

1The formal proof is by induction, where the volume formula for n − 1 dimen-
sions (the inductive hypothesis) takes care of the base, and the added dimension
is characterized as height (= ‖!wn − Pn−1!wn‖).
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Orthogonal matrices. There is a nice algebraic condition on a
matrix equivalent to the statement that its columns form an orthonor-
mal basis (of Rn). One notices that if v̂1, . . . , v̂n are orthonormal then

!

"#
← v̂1 →

...
← v̂n →

$

%&

!

"#
↑ ↑
v̂1 · · · v̂n

↓ ↓

$

%& =

!

"#
1 0

. . .
0 1

$

%& ;

that is, tVV = In. Clearly the converse also holds.

VII.A.4. DEFINITION. A ∈ Mn(R) is called orthogonal if

t AA = I = At A.

For such a matrix,

1 = det I = det(t A) · det A = (det A)2 =⇒ det A = ±1.

Orthogonal transformations. One can show that the correspond-
ing linear transformations are compositions of rotations and reflec-
tions. But here is the standard formal

VII.A.5. DEFINITION. A linear transformation T : Rn → Rn is or-
thogonal if it preserves length, i.e.

‖T!x‖ = ‖!x‖ for all !x ∈ Rn.

Now for any T, let A = [T]ê, so that the columns of A are the Têi.
If these are an orthonormal basis for Rn, then

‖T!x‖2 = ‖T(x1ê1 + · · ·+ xn ên)‖2 = ‖x1Tê1 + · · ·+ xnTên‖2

= x2
1‖Tê1‖2 + · · ·+ x2

n‖Tên‖2 = x2
1 + · · ·+ x2

n = ‖!x‖2.

So if A is orthogonal then T is. Conversely if T is orthogonal then
‖Têi‖ = ‖êi‖ = 1, and

2 = ‖êi‖2 + ‖êj‖2 = (êi + êj) · (êi + êj) = ‖êi + êj‖2

= ‖T(êi + êj)‖2 = ‖Têi + Têj‖2 = (Têi + Têj) · (Têi + Têj)

= ‖Têi‖2 + 2Têi · Têj + ‖Têj‖2 = 2 + 2(Têi · Têj)

gives Têi · Têj = 0. This yields the
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VII.A.6. PROPOSITION. T is an orthogonal transformation if and only
if A = [T]ê is an orthogonal matrix.

We now address the computational problems (rotation and pro-
jection) pointed out at the beginning of the section.

VII.A.7. EXAMPLE. How to find the matrix (with respect to ê) of

rotation by 30◦ about
+ 2

1
−2

,
in R3: First of all,

ker
+

2 1 −2
,
= span

53
0

2

1

4
,

3
1

−2

0

46
.

Perform Gram-Schmidt on these last two vectors:

• !w1 =

3
0

2

1

4
−→ v̂1 = 1√

5

3
0

2

1

4

• !w2 =

3
1

−2

0

4
−→

!w′
2 =

3
1

−2

0

4
−

73
1

−2

0

4
· 1√

5

3
0

2

1

48
1√
5

3
0

2

1

4
=

3
1

− 2
5

4
5

4

−→ v̂2 =
1

3
√

5

3
5

−2

4

4
.

Now simply normalize the rotation axis to get v̂3 = 1
3

+ 2
1
−2

,
, and put

B = {v̂1, v̂2, v̂3} so that [R]ê = PB [R]BP−1
B , where

PB =
1

3
√

5

!

"#
0 5 2

√
5

6 −2
√

5
3 4 −2

√
5

$

%& and [R]B =

!

"#

√
3

2 − 1
2 0

1
2

√
3

2 0
0 0 1

$

%& .

Since B is orthonormal, P−1
B = tPB, and multiplying everything to-

gether yields

[R]ê =
1
9

!

"#
4 + 5

√
3

2 5 −
√

3 − 5
2 + 2

√
3

−1 −
√

3 1 + 4
√

3 −5 +
√

3

− 11
2 + 2

√
3 1 +

√
3 4 + 5

√
3

2

$

%& .

That’s an orthogonal matrix, as you can check!
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VII.A.8. EXAMPLE. How to find the matrix (with respect to ê) of
the projection to

W = span

9
:;

:<

!

"#
1

7

1

7

$

%& ,

!

"#
0

7

2

7

$

%& ,

!

"#
1

8

1

6

$

%&

=
:>

:?
⊆ R4 :

Apply Gram-Schmidt to the spanning vectors to get an orthonormal
basis for W:

• !w1 =

!

"#
1

7

1

7

$

%& −→ v̂1 = 1
10

!

"#
1

7

1

7

$

%&

• !w2 =

!

"#
0

7

2

7

$

%& −→

!w′
2 =

!

"#
0

7

2

7

$

%&−

@

AB

!

"#
0

7

2

7

$

%& · 1
10

!

"#
1

7

1

7

$

%&

C

DE
1

10

!

"#
1

7

1

7

$

%& =

!

"#
−1

0

1

0

$

%&

−→ v̂2 =
1√
2

!

"#
−1

0

1

0

$

%&

• !w3 =

!

"#
1

8

1

6

$

%& −→

!w′
3 =

!

"#
1

8

1

6

$

%&−

@

AB

!

"#
1

8

1

6

$

%& · 1
10

!

"#
1

7

1

7

$

%&

C

DE
1

10

!

"#
1

7

1

7

$

%&−

@

AB

!

"#
1

8

1

6

$

%& · 1√
2

!

"#
−1

0

1

0

$

%&

C

DE
1√
2

!

"#
−1

0

1

0

$

%& =

!

"#
0

1

0

−1

$

%&

−→ v̂3 =
1√
2

!

"#
0

1

0

−1

$

%& .



VII.A. REVIEW OF ORTHOGONALITY 227

Now write the projection formula

PW!x = (!x · v̂1)v̂1 + (!x · v̂2)v̂2 + (!x · v̂3)v̂3

and evaluate PW on ê1, ê2, ê3, ê4 to get the columns of the matrix

[PW ]ê =
1

100

!

"""#

51 7 −49 7
7 99 7 −1

−49 7 51 7
7 −1 7 99

$

%%%&
.

As you may verify directly, it has rank 3.

Unitary transformations. All of the above generalizes to Cn. Re-
call that in Rn we had the following equivalent ways of writing the
dot product:

!x ·!y =
n

∑
i=1

xiyi = t!x!y,

where the last is matrix multiplication. If !x, !y ∈ Cn we have the
following complex “dot product”

!x ·!y =
n

∑
i=1

x̄iyi = t!̄x!y = !x∗!y

where for any matrix (or vector) “∗” indicates the conjugate transpose.
The resulting norm ‖!x‖2 = ∑ x̄ixi = ∑ |xi|2 coincides with the “ab-
solute value” of a complex number in case n = 1:

‖a + bi‖2 = (a − bi)(a + bi) = a2 + b2.

Note also that !x ·!y = !y ·!x and ‖α!x‖ = |α|‖!x‖.

VII.A.9. DEFINITION. A transformation

T : Cn → Cn

is called unitary if ‖T!v‖ = ‖!v‖ for all !v ∈ Cn; this is the complex
version of “orthogonal”.
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I claim (for such a T) that the columns Têi of [T]ê satisfy Têi ·Têj =

δij. First of all since T is unitary

(VII.A.10) Têi · Têi = ‖Têi‖2 = ‖êi‖2 = 1,

while (taking i ∕= j) for any α ∈ C

(VII.A.11) ‖êi + αêj‖2 = ‖T(êi + αêj)‖2.

Let’s consider the left- and right-hand sides of (VII.A.11):

l.h.s. = t(êi + αêj)(êi + αêj) =

‖êi‖2 + |α|2‖êj‖2 + ᾱ(êj · êi) + α(êi · êj)' () *
0 if i ∕=j

r.h.s. = t(Têi + αTêj)(Têi + αTêj)

= ‖Têi‖2 + |α|2‖Têj‖2 + ᾱ(Têj · Têi) + α(Têi · Têj).

Using (VII.A.10) to cancel ‖êi‖2 + |α|2‖êj‖2 with ‖Têi‖2 + |α|2‖Têj‖2,
we are left with

ᾱ(Têj · Têi) + α(Têi · Têj) = 0

for any α ∈ C. Plug in α = 1, i to get the two equations

Têj · Têi = −Têi · Têj , Têj · Têi = Têi · Têj

which of course imply Têi · Têj = 0 (i ∕= j).
What we have shown is that the matrix of T satisfies t([T]ê) [T]ê =

In, which motivates the following generalization of orthogonal ma-
trices to C:

VII.A.12. DEFINITION. U ∈ Mn(C) is unitary if U∗U = I.

Notice that

1 = det U∗ det U = det U det U = |det U|2 =⇒ |det U| = 1

which says det U lies on the unit circle in the complex plane. A uni-
tary basis is one like the columns of U = [T]ê: it satisfies

(t!̄vi!vj =)!v∗i !vj = δij.
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Exercises
(1) Show that an orthogonal transformation of Rn preserves all an-

gles. [Hint: use the fact that [T]ê = A is an orthogonal matrix.]
(2) Apply Gram-Schmidt to the columns of

A =

!

"#
2 1 6
−1 1 3
2 4 9

$

%&

to write M = AB where A is orthogonal and B is upper triangu-
lar.

(3) Apply Gram-Schmidt to the set
!

"""#

1
1
1
1

$

%%%&
,

!

"""#

0
2
0
2

$

%%%&
,

!

"""#

−1
1
3
−1

$

%%%&

in R4. Writing W for their span, find the matrix of the orthogonal
projection to W in the standard basis ê.

(4) What value of b (if any) will make the matrix

A =

3
1+i

2 b
1−i

2
1−i

2

4

unitary?
(5) If W ⊂ Rn is a subspace, show that W ∩ W⊥ = {0}. [Hint: let

!w1, . . . , !wk be an o.n. basis, and write an element in terms of it.]


