VII.B. Bilinear forms

There are two standard "generalizations" of the dot product on \mathbb{R}^{n} to arbitrary vector spaces. The idea is to have a "product" that takes two vectors to a scalar. Bilinear forms are the more general version, and inner products (a kind of bilinear form) the more specific — they are the ones that "look like" the dot product (= "Euclidean inner product") with respect to some basis. ${ }^{2}$ Here we tour the zoo of various classes of bilinear forms, before narrowing our focus to inner products in the next section.

Now let V / \mathbb{R} be an n-dimensional vector space:
VII.B.1. Definition. A bilinear form is a function $B: V \times V \rightarrow$ \mathbb{R} such that

$$
\begin{aligned}
& B(a \vec{u}+b \vec{v}, \vec{w})=a B(\vec{u}, \vec{w})+b B(\vec{v}, \vec{w}) \\
& B(\vec{u}, a \vec{v}+b \vec{w})=a B(\vec{u}, \vec{v})+b B(\vec{u}, \vec{w})
\end{aligned}
$$

for all $\vec{u}, \vec{v}, \vec{w} \in V$. It is called symmetric if also $B(\vec{u}, \vec{w})=B(\vec{w}, \vec{u})$.
Now let's lay down the following law: whenever we are considering a bilinear form B on a vector space V (even if $V=\mathbb{R}^{n}!$), all orthogonality (or orthonormality) is relative to B. That is, " $\vec{u} \perp \overrightarrow{w^{\prime}}$ " by definition means $B(\vec{u}, \vec{w})=0$. Sounds fine, huh?
VII.B.2. EXAMPLE. Take a look at the (non-symmetric) bilinear form

$$
B(\vec{x}, \vec{y})=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{y_{1}}{y_{2}}=x_{2} y_{1}
$$

on \mathbb{R}^{2}. Its simplicity belies an unpleasant nature: while allowing that $\binom{1}{0} \perp\binom{0}{1}$, it turns right around on us with $\binom{0}{1} \not \perp\binom{1}{0}$! We can avoid this sort of character if we work with symmetric ${ }^{3}$ bilinear forms.

[^0]So try instead

$$
\tilde{B}(\vec{x}, \vec{y})=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\binom{y_{1}}{y_{2}}=x_{1} y_{1}-x_{2} y_{2}
$$

\tilde{B} is symmetric but its notion of norm is not what we are used to from the dot product: $\tilde{B}\left(\hat{e}_{2}, \hat{e}_{2}\right)=-1$, while $\tilde{B}\left(\binom{1}{1},\binom{1}{1}\right)=0$ - that is, under \tilde{B} there exists a nonzero self-perpendicular vector $\binom{1}{1} \perp\binom{1}{1}$. Such pathologies with general bilinear forms are routine; the point of defining inner products in §VII.C will be to get rid of them.

The Matrix of a Bilinear form. Consider a basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for V and write $\vec{u}=\sum u_{i} \vec{v}_{i}, \vec{w}=\sum w_{i} \vec{v}_{i}$. Let B be any bilinear form on V, and set

$$
\begin{equation*}
b_{i j}=B\left(\vec{v}_{i}, \vec{v}_{j}\right) ; \tag{VII.B.3}
\end{equation*}
$$

we have

$$
\begin{gathered}
B(\vec{u}, \vec{w})=B\left(\sum_{i} u_{i} \vec{v}_{i}, \sum_{j} w_{j} \vec{v}_{j}\right)=\sum_{i, j} u_{i} b_{i j} w_{j} \\
=\left(\begin{array}{ccc}
u_{1} & \cdots & u_{n}
\end{array}\right)\left(\begin{array}{ccc}
b_{11} & \cdots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n n}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right)=:^{t}[\vec{u}]_{\mathcal{B}}[B]^{\mathcal{B}}[\vec{w}]_{\mathcal{B}}
\end{gathered}
$$

defining a matrix for B. We write the basis \mathcal{B} as a superscript, because change-of-basis does not work the same way as for transformation matrices: since (for any other basis \mathcal{C})

$$
\begin{aligned}
{ }^{t}\left([\vec{u}]_{\mathcal{B}}\right)[B]^{\mathcal{B}}\left([\vec{w}]_{\mathcal{B}}\right) & ={ }^{t}\left(P_{\mathcal{C} \rightarrow \mathcal{B}}[\vec{u}]_{\mathcal{C}}\right)[B]^{\mathcal{B}}\left(P_{\mathcal{C} \rightarrow \mathcal{B}}[\vec{w}]_{\mathcal{C}}\right) \\
& ={ }^{t}[\vec{u}]_{\mathcal{C}}\left({ }^{t} P_{\mathcal{C} \rightarrow \mathcal{B}}[B]^{\mathcal{B}} P_{\mathcal{C} \rightarrow \mathcal{B}}\right)[\vec{w}]_{\mathcal{C}}
\end{aligned}
$$

for all \vec{u}, \vec{w}, we find that

$$
\begin{equation*}
[B]^{\mathcal{C}}={ }^{t} P[B]^{\mathcal{B}} P \tag{VII.B.4}
\end{equation*}
$$

Matrices related in this fashion (where P is invertible) are said to be cogredient. Such matrices have the same rank (why?).

Symmetric Bilinear forms. Next let B be an arbitrary symmetric bilinear form, so that \perp is a symmetric relation, and the subspace

$$
V^{\perp \vec{w}}=\{\vec{v} \in V \mid B(\vec{w}, \vec{v})=0\}=\{\vec{v} \in V \mid B(\vec{v}, \vec{w})=0\}
$$

makes sense. Now already the matrix of such a form (with respect to any basis) is symmetric; ${ }^{4}$ that is,

$$
{ }^{t}[B]^{\mathcal{B}}=[B]^{\mathcal{B}}
$$

since $b_{i j}=b_{j i}$ in (VII.B.3). We now explain how to put it into an especially nice form.
VII.B.5. Lemma. There exists a basis \mathcal{B} such that

$$
[B]^{\mathcal{B}}=\operatorname{diag}\left\{b_{1}, \ldots, b_{r}, 0, \ldots, 0\right\}
$$

where the $b_{i} \neq 0$.

Proof. This is by induction on $n=\operatorname{dim} V$ (clear for $n=1$): we assume the result for $(n-1)$-dimensional spaces and prove it for V.

If $B(\vec{u}, \vec{w})=0$ for all $\vec{u}, \vec{w} \in V$, then $[B]^{\mathcal{B}}=0$ in any basis and we are done. Moreover, if $B(\vec{v}, \vec{v})=0$ for all $\vec{v} \in V$ then (using symmetry and bilinearity)

$$
\begin{aligned}
2 B(\vec{u}, \vec{w})=B(\vec{u}, \vec{w})+ & B(\vec{w}, \vec{u}) \\
& =B(\vec{u}+\vec{w}, \vec{u}+\vec{w})-B(\vec{u}, \vec{u})-B(\vec{w}, \vec{w})=0
\end{aligned}
$$

for all \vec{u}, \vec{w} and we're done once more. So assume otherwise: that there exists $\vec{v}_{1} \in V$ such that $B\left(\vec{v}_{1}, \vec{v}_{1}\right)=: b_{1} \neq 0$.

Clearly $B\left(\vec{v}_{1}, \vec{v}_{1}\right) \neq 0 \Longrightarrow$ (i) $\operatorname{span}\left\{\vec{v}_{1}\right\} \cap V^{\perp \vec{v}_{1}}=\{0\}$. Furthermore, (ii) $V=\operatorname{span}\left\{\vec{v}_{1}\right\}+V^{\perp \vec{v}_{1}}$: any $\vec{w} \in V$ can be written

$$
\vec{w}=\left(\vec{w}-B\left(\vec{w}, \vec{v}_{1}\right) b_{1}^{-1} \vec{v}_{1}\right)+B\left(\vec{w}, \vec{v}_{1}\right) b_{1}^{-1} \vec{v}_{1}
$$

[^1]where the second term is in $\operatorname{span}\left\{\vec{v}_{1}\right\}$, and the first is in $V^{\perp \vec{v}_{1}}$ since $B\left(\right.$ first term, $\left.\vec{v}_{1}\right)=B\left(\vec{w}, \vec{v}_{1}\right)-B\left(\vec{w}, \vec{v}_{1}\right) b_{1}^{-1} B\left(\vec{v}_{1}, \vec{v}_{1}\right)=0$. Combining (i) and (ii), $V=\operatorname{span}\left\{\vec{v}_{1}\right\} \oplus V^{\perp \vec{v}_{1}}$.

Applying the inductive hypothesis to $V^{\perp \vec{v}_{1}}$ establishes the existence of a basis $\left\{\vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ with $B\left(\vec{v}_{i}, \vec{v}_{j}\right)=b_{i} \delta_{i j}(i, j \geq 2)$. Combining this with the direct-sum decomposition of $V, \mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is a basis for V. By definition of $V^{\perp \vec{v}_{1}}, B\left(\vec{v}_{1}, \vec{v}_{j}\right)=B\left(\vec{v}_{j}, \vec{v}_{1}\right)=0$ for $j \geq 2$. Therefore $B\left(\vec{v}_{i}, \vec{v}_{j}\right)=b_{i} \delta_{i j}$ for $i, j \geq 1$ and we're through.

Reorder the basis elements so that

$$
[B]^{\mathcal{B}}=\operatorname{diag}\{\underbrace{b_{1}, \ldots, b_{p}}_{>0}, \underbrace{b_{p+1}, \ldots, b_{p+q}}_{<0}, 0, \ldots, 0\}
$$

and then normalize: take

$$
\mathcal{B}^{\prime}=\left\{\frac{\vec{v}_{1}}{\sqrt{b_{1}}}, \ldots, \frac{\vec{v}_{p}}{\sqrt{b_{p}}} ; \frac{\vec{v}_{p+1}}{\sqrt{-b_{p+1}}}, \ldots, \frac{\vec{v}_{p+q}}{\sqrt{-b_{p+q}}} ; \vec{v}_{p+q+1}, \ldots, \vec{v}_{n}\right\}
$$

so that

$$
[B]^{\mathcal{B}^{\prime}}=\operatorname{diag}\{\underbrace{1, \ldots, 1}_{p}, \underbrace{-1, \ldots,-1}_{q}, 0, \ldots, 0\} .
$$

Suppose that for some other basis $\mathcal{C}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$

$$
[B]^{\mathcal{C}}=\operatorname{diag}\{\underbrace{c_{1}, \ldots, c_{p^{\prime}}}_{>0}, \underbrace{c_{p^{\prime}+1}, \ldots, c_{p^{\prime}+q^{\prime}}}_{<0}, 0, \ldots, 0\}
$$

Are p, q and p^{\prime}, q^{\prime} necessarily the same?
Since $[B]^{\mathcal{C}}$ and $[B]^{\mathcal{B}}$ are cogredient they must have the same rank, $p+q=p^{\prime}+q^{\prime}$. Now any nonzero $\vec{u} \in \operatorname{span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ has $B(\vec{u}, \vec{u})>$ 0 , while a nonzero $\vec{u} \in \operatorname{span}\left\{\vec{w}_{p^{\prime}+1}, \ldots, \vec{w}_{n}\right\}$ has $B(\vec{u}, \vec{u}) \leq 0$. Therefore the only intersection of these two spans can be at $\{0\}$, which says that the sum of their dimensions cannot exceed $\operatorname{dim} V$: that is, $p+\left(n-p^{\prime}\right) \leq n$, which implies $p \leq p^{\prime}$. An exactly symmetric argument (interchanging the \vec{v}^{\prime} s and $\overrightarrow{w^{\prime}} \mathbf{s}$) shows that $p^{\prime} \leq p$. So $p=p^{\prime}$, and $q=q^{\prime}$ follows immediately. We have proved:
VII.B.6. THEOREM (Sylvester). Given a symmetric bilinear form B on V / \mathbb{R}, there exists a basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for V such that $B\left(\vec{v}_{i}, \vec{v}_{j}\right)=0$ for $i \neq j$, and $B\left(\vec{v}_{i}, \vec{v}_{i}\right)=\left\{\begin{array}{c}0 \\ \pm 1\end{array}\right.$ where the number of +1 's, -1 's, and 0 's is well-defined (another such choice of basis will not change these numbers).

The corresponding statement for the matrix of B gives rise to the following
VII.B.7. Corollary. Any symmetric real matrix is cogredient to exactly one matrix of the form $\operatorname{diag}\{+1, \ldots,+1,-1, \ldots,-1,0, \ldots, 0\}$.

For a given symmetric bilinear form (or symmetric matrix), we call the \# of +1 's and -1 's in the form guaranteed by the Theorem (or Corollary) the "index of positivity" $=p$) and "index of negativity" $=$ q) of B (or $[B]$). Their sum $r=p+q$ is (for obvious reasons) referred to as the rank, and the pair (p, q) (or triple $(p, q, n-r)$, or sometimes the difference $p-q$) is referred to as the signature of B (or $[B]$).

Anti-symmetric bilinear forms. Now if $B: V \times V \rightarrow \mathbb{R}$ is antisymmetric (or "alternating"), i.e.

$$
B(\vec{u}, \vec{v})=-B(\vec{v}, \vec{u}),
$$

for all $\vec{u}, \vec{v} \in V$, then \perp is still a symmetric relation. In this case the matrix of B with respect to any basis is skew-symmetric,

$$
{ }^{t}[B]^{\mathcal{B}}=-[B]^{\mathcal{B}},
$$

and the analogue of Sylvester's Theorem VII.B.6 is actually simpler:
VII.B.8. Proposition. There exists a basis \mathcal{B} such that (in terms of matrix blocks)

$$
[B]^{\mathcal{B}}=\left(\begin{array}{ccc}
0 & -\mathbb{I}_{m} & 0 \\
\mathbb{I}_{m} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where $r=2 m \leq n$ is the rank of B.
VII.B.9. REMARK. This matrix can be written more succinctly as

$$
[B]^{\mathcal{B}}=\left(\begin{array}{cc}
\mathbb{J}_{2 m} & 0 \\
0 & 0
\end{array}\right)
$$

where we define

$$
\mathbb{J}_{2 m}:=\left(\begin{array}{cc}
0 & -\mathbb{I}_{m} \tag{VII.B.10}\\
\mathbb{I}_{m} & 0
\end{array}\right)
$$

Proof of Proposition VII.B.8. We induce on n : clearly the result holds $(B=0)$ if $n=1$, since $B(\vec{v}, \vec{v})=-B(\vec{v}, \vec{v})$ must be 0 .

Now assume the result is known for all dimensions less than n.
If V (of dimension n) contains any vector \vec{v} with $B(\vec{v}, \vec{w})=0 \forall \vec{w} \in$ V, take $\vec{v}_{n}:=\vec{v}$. Let $U \subset V$ be any $(n-1)$-dimensional subspace with $V=\operatorname{span}\{\vec{v}\} \oplus U$, and obtain the rest of the basis by applying induction to U.

If V does not contain such a vector, then the columns of $[B]$ (with respect to any basis) are independent and $\operatorname{det}([B]) \neq 0$, with the immediate consequence that $n=2 m$ is even (by Exercise IV.B.4). So choose $\vec{v}_{2 m} \in V \backslash\{0\}$ arbitrarily, and $\vec{v}_{m} \in V$ so that $B\left(\vec{v}_{2 m}, \vec{v}_{m}\right)=1$. Writing $W:=\operatorname{span}\left\{\vec{v}_{m}, \vec{v}_{2 m}\right\}$, and $W^{\perp}:=\{\vec{v} \in V \mid B(\vec{v}, \vec{w})=0 \forall \vec{w} \in$ $W\}$, we claim that $V=W \oplus W^{\perp}$.

Indeed, if $\vec{w} \in W \cap W^{\perp}$ then $\vec{w}=a \vec{v}_{m}+b \vec{v}_{2 m}$ has $0=B\left(\vec{w}, \vec{v}_{m}\right)=$ b and $0=B\left(\vec{w}, \vec{v}_{2 m}\right)=-a \Longrightarrow \vec{w}=\overrightarrow{0}$. Moreover, given $\vec{v} \in V$ we may consider $\vec{w}:=B\left(\vec{v}, \vec{v}_{m}\right) \vec{v}_{2 m}-B\left(\vec{v}, \vec{v}_{2 m}\right) \vec{v}_{m} \in W$ and $\vec{w}_{\perp}:=$ $\vec{v}-\vec{w}$, which satisfies

$$
B\left(\vec{w}_{\perp}, \vec{v}_{m}\right)=B\left(\vec{v}, \vec{v}_{m}\right)-B\left(\vec{v}, \vec{v}_{m}\right) \underbrace{B\left(\vec{v}_{2 m}, \vec{v}_{m}\right)}_{1}+B\left(\vec{v}, \vec{v}_{2 m}\right) \underbrace{B\left(\vec{v}_{m}, \vec{v}_{m}\right)}_{0}=0
$$

and $B\left(\vec{w}_{\perp}, \vec{v}_{2 m}\right)=$

$$
B\left(\vec{v}, \vec{v}_{2 m}\right)-B\left(\vec{v}, \vec{v}_{m}\right) \underbrace{B\left(\vec{v}_{2 m}, \vec{v}_{2 m}\right)}_{0}+B\left(\vec{v}, \vec{v}_{2 m}\right) \underbrace{B\left(\vec{v}_{m}, \vec{v}_{2 m}\right)}_{-1}=0
$$

Thus $\vec{w}_{\perp} \in W^{\perp}, \vec{v}=\vec{w}+\vec{w}_{\perp}$, and the claim is proved.
Now apply induction to W^{\perp} to get the remaining $2 m-2$ basis elements $\vec{v}_{1}, \ldots, \vec{v}_{m-1}, \vec{v}_{m+1}, \ldots, \vec{v}_{2 m-1}$.

Hermitian symmetric forms. Given an n-dimensional complex vector space V / \mathbb{C}, a Hermitian-linear ${ }^{5}$ form $H: V \times V \rightarrow \mathbb{C}$ satisfies

$$
\begin{gathered}
H(\alpha \vec{u}, \vec{w})=\bar{\alpha} H(\vec{u}, \vec{w}), \quad H(\vec{u}, \alpha \vec{w})=\alpha H(\vec{u} \vec{w}), \\
H\left(\vec{u}_{1}+\vec{u}_{2}, \vec{w}\right)=H\left(\vec{u}_{1}, \vec{w}\right)+H\left(\vec{u}_{2}, \vec{w}\right) \\
H\left(\vec{u}, \vec{w}_{1}+\vec{w}_{2}\right)=H\left(\vec{u}, \vec{w}_{1}\right)+H\left(\vec{u}, \vec{w}_{2}\right)
\end{gathered}
$$

It is Hermitian symmetric if it also satisfies $H(\vec{u}, \vec{w})=\overline{H(\vec{w}, \vec{u})}$; we will often call such forms simply "Hermitian".

The passage to matrices (where as usual $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}, \vec{u}=$ $\left.\sum_{i} u_{i} \vec{v}_{i}, \vec{w}=\sum_{j} w_{j} \vec{v}_{j}, h_{i j}=H\left(\vec{v}_{i}, \vec{v}_{j}\right)\right)$ looks like

$$
H(\vec{u}, \vec{w})=\sum_{i, j} \bar{u}_{i} h_{i j} w_{j}=[\vec{u}]_{\mathcal{B}}^{*}[H]^{\mathcal{B}}[\vec{w}]_{\mathcal{B}}
$$

the relevant version of cogredience for coordinate transformations is $S^{*}[H] S$. If H is Hermitian symmetric then $h_{i j}=\bar{h}_{j i}$; that is, $[H]^{\mathcal{B}}=$ $\left([H]^{\mathcal{B}}\right)^{*}$ is a Hermitian symmetric matrix. For such forms/matrices Sylvester holds verbatim. For the purpose of studying inner product spaces in the next two sections, you can think of Hermitian symmetric matrices $\left(A={ }^{t} \bar{A}\right)$ as being the "right" complex generalization of the real symmetric matrices (which they include), and similarly for the forms.

But there is an important caveat here: Hermitian forms aren't really bilinear over \mathbb{C}, due to their conjugate-linearity in the first argument. If we view V as a $2 n$-dimensional vector space over \mathbb{R}, then they are bilinear over \mathbb{R}. In fact, if we go that route, then we may view

$$
H=B_{\mathrm{re}}+\sqrt{-1} B_{\mathrm{im}}: \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \rightarrow \mathbb{C}=\mathbb{R} \oplus \sqrt{-1} \mathbb{R}
$$

as splitting up into two bilinear forms over \mathbb{R}. Moreover, since

$$
\begin{aligned}
B_{\mathrm{re}}(\vec{v}, \vec{u})+\sqrt{-1} B_{\mathrm{im}}(\vec{v}, \vec{u}) & =H(\vec{v}, \vec{u})=\overline{H(\vec{u}, \vec{v})} \\
& =B_{\mathrm{re}}(\vec{u}, \vec{v})-\sqrt{-1} B_{\mathrm{im}}(\vec{u}, \vec{v})
\end{aligned}
$$

for all $\vec{u}, \vec{v} \in \mathbb{R}^{2 n}, B_{\mathrm{re}}$ is symmetric and B_{im} is anti-symmetric.

[^2]Now given a basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for V as a \mathbb{C}-vector space, $\tilde{\mathcal{B}}:=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}, \sqrt{-1} \vec{v}_{1}, \ldots, \sqrt{-1} \vec{v}_{n}\right\}=:\left\{\vec{w}_{1}, \ldots, \vec{w}_{2 n}\right\}$ is a basis for V as an \mathbb{R}-vector space. The matrix of ${ }^{6}$

$$
\mathcal{J}:=\{\text { multiplication by } \sqrt{-1}\}: V \rightarrow V
$$

is clearly $[\mathcal{J}]_{\tilde{\mathcal{B}}}=\mathbb{J}_{2 n}$ (as defined in (VII.B.10)). The complex antilinearity of H in the first argument gives

$$
\begin{aligned}
B_{\mathrm{re}}(\mathcal{J} \vec{u}, \vec{v})+\sqrt{-1} B_{\mathrm{im}}(\mathcal{J} \vec{u}, \vec{v}) & =H(\sqrt{-1} \vec{u}, \vec{v})=-\sqrt{-1} H(\vec{u}, \vec{v}) \\
& =B_{\mathrm{im}}(\vec{u}, \vec{v})-\sqrt{-1} B_{\mathrm{re}}(\vec{u}, \vec{v})
\end{aligned}
$$

hence

$$
B_{\mathrm{re}}(\mathcal{J} \vec{u}, \vec{v})=B_{\mathrm{im}}(\vec{u}, \vec{v}) \text { and }-B_{\mathrm{im}}(\mathcal{J} \vec{u}, \vec{v})=B_{\mathrm{re}}(\vec{u}, \vec{v})
$$

Writing $\vec{v}=\mathcal{J} \vec{w}$, this gives
$B_{\mathrm{re}}(\mathcal{J} \vec{u}, \mathcal{J} \vec{w})=B_{\operatorname{im}}(\vec{u}, \mathcal{J} \vec{w})=-B_{\operatorname{im}}(\mathcal{J} \vec{w}, \vec{u})=B_{\mathrm{re}}(\vec{w}, \vec{u})=B_{\mathrm{re}}(\vec{u}, \vec{w})$
and similarly $B_{\mathrm{im}}(\mathcal{J} \vec{u}, \mathcal{J} \vec{w})=B_{\mathrm{im}}(\vec{u}, \vec{w})$. In this way one deduces that giving a Hermitian form on V is equivalent to giving a (real) symmetric or antisymmetric form which is "invariant" under the complex structure map J.

Finally, if $[H]^{\mathcal{B}}=\operatorname{diag}\{+1, \ldots,+1,-1, \ldots,-1,0 \ldots, 0\}=: D$ then one finds that

$$
\left[B_{\mathrm{re}}\right]^{\tilde{\mathcal{B}}}=\left(\begin{array}{cc}
D & 0 \\
0 & D
\end{array}\right) \text { and }\left[B_{\mathrm{im}}\right]^{\tilde{\mathcal{B}}}=\left(\begin{array}{cc}
0 & D \\
-D & 0
\end{array}\right)
$$

that is, the signature of $B_{\text {re }}$ is exactly "double" that of H.
Quadratic Forms. Now let's return to unambiguously real vector spaces.
VII.B.11. Definition. A quadratic form is a function $Q: V \rightarrow \mathbb{R}$ of the form

$$
Q(\vec{u})=B(\vec{u}, \vec{u}),
$$

for some symmetric bilinear form B.

[^3]Let $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$, use this basis to expand a given vector $\vec{u}=$ $\sum_{i} x_{i} \vec{v}_{i}$, and set $b_{i j}=B\left(\vec{v}_{i}, \vec{v}_{j}\right)=$ entries of $[B]^{\mathcal{B}}$; then

$$
Q(\vec{u})={ }^{t}[\vec{u}]_{\mathcal{B}}[B]^{\mathcal{B}}[\vec{u}]_{\mathcal{B}}=\sum_{i, j} x_{i} b_{i j} x_{j} .
$$

Basically this is a homogeneous quadratic function of several variables, with cross-terms (like $x_{2} x_{3}$). Sylvester effectively says "so long" to the cross-terms. It gives us a new basis $\mathcal{C}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$ such that

$$
[B]^{\mathcal{C}}=\operatorname{diag}\{\underbrace{+1, \ldots,+1}_{p}, \underbrace{-1, \ldots,-1}_{q}, 0, \ldots, 0\} ;
$$

expanding $\vec{u}=\sum y_{i} \vec{w}_{i}$ in this new basis, we have
(VII.B.12)

$$
Q(\vec{u})={ }^{t}[\vec{u}]_{\mathcal{C}}[B]^{\mathcal{C}}[\vec{u}]_{\mathcal{C}}=y_{1}^{2}+\ldots+y_{p}^{2}-\left(y_{p+1}^{2}+\ldots+y_{p+q}^{2}\right) .
$$

Application to Calculus. Say $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ (nonlinear) has a stationary (or "critical") point at $0=(0, \ldots, 0)$,

$$
\left.\frac{\partial f}{\partial x_{1}}\right|_{0}=\ldots=\left.\frac{\partial f}{\partial x_{n}}\right|_{0}=0
$$

Consider its Taylor expansion about 0 :

$$
f\left(x_{1}, \ldots, x_{n}\right)=\text { constant }+\sum_{i, j=1}^{n} x_{i} x_{j} b_{i j}+\text { higher-order terms },
$$

where

$$
b_{i j}=\left.\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right|_{0}
$$

These are the entries of the so-called "Hessian" matrix of f (evaluated at 0); sometimes $\operatorname{Hess}(f)$ is just called the "matrix of second partials" in calculus texts.

Now Sylvester's theorem, applied exactly as above, gives us a linear change of coordinates $\left(y_{1}, \ldots, y_{n}\right)$ so that the second term in the Taylor series takes exactly the form (VII.B.12). This is otherwise known as completing squares! If $p=n$ then we have $y_{1}^{2}+\cdots+$ y_{n}^{2} and a local minimum; if $q=n$ then $-y_{1}^{2}-\cdots-y_{n}^{2}$ and a local maximum. The other cases where $p+q=n$ are saddle points, and if
$p+q<n$ (i.e., $\left.\operatorname{Hess}(f)\right|_{0}$ is not of maximal rank) then one must look to the higher-order terms. Incidentally in this latter case we say 0 is a degenerate critical point.

Is there any way you can tell what situation you're in without finding the basis guaranteed by Sylvester's theorem? Certainly if $\operatorname{det}\left(\left.\operatorname{Hess}(f)\right|_{0}\right) \neq 0$ then $p+q=n$ - we have a nondegenerate critical point. Where do we go from there? If $n=2$ (notice that this is the situation in your calculus text), then we can use the fact that determinants of cogredient matrices have the same sign: ${ }^{t} S A S=$ $B \Longrightarrow \operatorname{det} A \cdot(\operatorname{det} S)^{2}=\operatorname{det} B$. If $\operatorname{det}\left(\left.\operatorname{Hess}(f)\right|_{0}\right)>0$ then either $(p, q)=(2,0)$ or $(0,2)\left(a^{\prime}++"\right.$ or " $--"$ situation $)$, which means a local extremum; if $\operatorname{det}\left(\left.\operatorname{Hess}(f)\right|_{0}\right)<0$ then we have $p=q=1$ (" +- ") and a saddle point.

More generally $(n \geq 2)$ if $\left.\operatorname{Hess}(f)\right|_{0}$ is diagonalizable via an orthogonal change of basis, that could substitute for Sylvester (how?) and tell us the signs. In fact, in the next section we will see that real symmetric matrices can always be "orthogonally diagonalized"!

Nondegenerate bilinear forms. A bilinear (or Hermitian) form B on a vector space V is said to be nondegenerate if and only if, for every vector $\vec{v} \in V$, there exists $\vec{w} \in V$ such that $B(\vec{v}, \vec{w}) \neq 0$. (Equivalently, the matrix of the form has nonzero determinant.)

- A nondegenerate symmetric form B is called orthogonal. ${ }^{7}$ If the signs in Sylvester's theorem are all positive (resp. negative), B is positive (resp. negative) definite; otherwise, B is indefinite of signature (p, q), where $p+q=n$.
- A nondegenerate anti-symmetric form B is termed symplectic. In this case $\operatorname{dim}(V)$ is necessarily even: $n=2 m$, and (in some basis B) $[B]^{\mathcal{B}}=\mathbb{J}_{2 m}$.
- A nondegenerate Hermitian form H is called unitary. The same terminology applies as in the orthogonal case.

[^4]VII.B.13. Example. On \mathbb{R}^{4} with "spacetime" coordinates (x, y, z, t), we define an indefinite orthogonal form of signature $(3,1)$ via its quadratic form $x^{2}+y^{2}+z^{2}-t^{2}$. The resulting "Minkowski space" is closely associated with the theory of special relativity.

Nondegenerate symplectic and indefinite-orthogonal forms also play a central role in the topology of projective manifolds.

We conclude this section with a brief (and somewhat sketchy) account of the simplest of the so-called "classical groups". This material will not be used in the remainder of the text.

Linear algebraic groups. These are those subgroups of $\mathrm{GL}_{n}(\mathbb{C})$ or $\mathrm{GL}_{n}(\mathbb{R})$, the general linear groups of invertible $n \times n$ matrices with entries in \mathbb{C} or \mathbb{R}, that are defined by "linear algebraic conditions". We'll only be interested in examples of reductive such groups, which are the ones with the property that whenever a vector subspace W is closed under their action on a vector space V, there is another subspace W^{\prime} also closed under this action, such that $V=$ $W \oplus W^{\prime}$. In general, one can show (Chevalley's Theorem) that the reductive linear algebraic groups are the subgroups of GL_{n} defined by the property of fixing a subalgebra of the tensor algebra ${ }^{8}$

$$
\oplus_{a, b} V^{\otimes a} \otimes\left(V^{\vee}\right)^{\otimes b},
$$

where $V=\mathbb{C}^{n}$ resp. \mathbb{R}^{n}. But that is a subject for a different course; here we'll just define a few of these groups, using only determinants and nondegenerate bilinear forms.

For B orthogonal resp. symplectic, the corresponding orthogonal resp. symplectic group consists of all $g \in \mathrm{GL}_{n}(\mathbb{F})(\mathbb{F}=\mathbb{R}$ or $\mathbb{C})$

[^5]satisfying
\[

$$
\begin{equation*}
B(g \vec{v}, g \vec{w})=B(\vec{v}, \vec{w}) \quad \forall \vec{v}, \vec{w} \in \mathbb{F}^{n} . \tag{VII.B.14}
\end{equation*}
$$

\]

(We write $\mathrm{Sp}_{n}(\mathbb{F}, B)$ resp. $\mathrm{O}_{n}(\mathbb{F}, B)$ for these groups.) By Proposition VII.B.8, all the symplectic groups are isomorphic (via conjugation by a change-of-basis matrix, see Exercise 8) to

$$
\operatorname{Sp}_{2 m}(\mathbb{F}):=\left\{\left.g \in \mathrm{GL}_{2 m}(\mathbb{F})\right|^{t} g \mathbb{J}_{2 m} g=\mathbb{J}_{2 m}\right\}
$$

for $\mathbb{F}=\mathbb{C}$ resp. \mathbb{R}. Similarly, by Sylvester's Theorem, the real orthogonal groups are isomorphic to one of the

$$
\mathrm{O}(p, q):=\left\{\left.g \in \mathrm{GL}_{p+q}(\mathbb{R})\right|^{t} g \mathbb{I}_{p, q} g=\mathbb{I}_{p, q}\right\}
$$

where $\mathbb{I}_{p, q}:=\operatorname{diag}\left\{\mathbb{I}_{p},-\mathbb{I}_{q}\right\}$. Note that $\mathrm{O}(p, q) \cong \mathrm{O}(q, p)$, and $\mathrm{O}(n, 0)$ is written $\mathrm{O}_{n}(\mathbb{R})$; these are called indefinite resp. definite orthogonal groups. All the complex orthogonal groups are isomorphic to

$$
\mathrm{O}_{n}(\mathbb{C}):=\left\{\left.g \in \mathrm{GL}_{n}(\mathbb{C})\right|^{t} g g=\mathbb{I}_{n}\right\}
$$

The unitary groups $\mathrm{U}_{n}(H)$ are defined by the property of preserving a Hermitian form: they consist of those $g \in \mathrm{GL}_{n}(\mathbb{C})$ with

$$
\begin{equation*}
H(g \vec{u}, g \vec{v})=H(\vec{u}, \vec{v}) \quad \forall \vec{u}, \vec{v} \in \mathbb{C}^{n} \tag{VII.B.15}
\end{equation*}
$$

and are each conjugate to one of the

$$
\mathrm{U}(p, q):=\left\{g \in \mathrm{GL}_{p+q}(\mathbb{C}) \mid g^{*} \mathbb{I}_{p, q} g=\mathbb{I}_{p, q}\right\}
$$

(Write $\mathrm{U}(n, 0)=: U(n)$ for the definite unitary group.) But this is a little deceptive, as (VII.B.15) is not a C-linear condition: the $\mathrm{U}(p, q)$ are actually real linear algebraic groups. If (as above) we think of \mathbb{C}^{n} as $\mathbb{R}^{2 n}$, and write $H=B_{\mathrm{re}}+\sqrt{-1} B_{\mathrm{im}}$, then I claim that

$$
\mathrm{U}_{n}(H)=\mathrm{O}_{2 n}\left(\mathbb{R}, B_{\mathrm{re}}\right) \cap \mathrm{Sp}_{2 n}\left(\mathbb{R}, B_{\mathrm{im}}\right)
$$

as a subgroup of $\mathrm{GL}_{2 n}(\mathbb{R})$. The " \subseteq " inclusion is clear, since to preserve $H, \gamma \in \mathrm{GL}_{2 n}(\mathbb{R})$ must preserve its real and imaginary parts. Conversely, we just need to show that preserving B_{re} and B_{im} also implies that γ "comes from" an element of $\mathrm{GL}_{n}(\mathbb{C})$, or equivalently
commutes with \mathcal{J} (cf. Exercise 6 below). This follows from
$B_{\mathrm{re}}(g \mathcal{J} \vec{u}, g \vec{v})=B_{\mathrm{re}}(\mathcal{J} \vec{u}, \vec{v})=B_{\mathrm{im}}(\vec{u}, \vec{v})=B_{\mathrm{im}}(g \vec{u}, g \vec{v})=B_{\mathrm{re}}(\mathcal{J} g \vec{u}, g \vec{v})$
and nondegeneracy of $B_{\text {re }}$.
The special linear groups $\mathrm{SL}_{n}(\mathbb{F})$ simply consist of the elements of $\mathrm{GL}_{n}(\mathbb{F})$ with determinant 1 . They contain the symplectic groups (see Exercise 5), from which it also follows that $\mathrm{SL}_{2 n}(\mathbb{R})$ contains $\mathrm{U}_{n}(H)$. On the other hand, $\mathrm{SL}_{n}(\mathbb{C})$ does not contain $\mathrm{U}_{n}(H)$; intersecting them gives the special unitary groups $\mathrm{SU}_{n}(H)$ (and $\mathrm{SU}(p, q)$). The special orthogonal groups (denoted $\mathrm{SO}_{n}(\mathbb{F}, B), \mathrm{SO}(p, q)$, etc.) are given by intersecting the orthogonal and special linear groups.

Jordan decomposition. Let G be one of the above linear algebraic groups (over \mathbb{R} or \mathbb{C}). ${ }^{9}$ Since G is a subgroup of $\mathrm{GL}_{n}(\mathbb{F})$ for some n, we may think of elements of G as invertible matrices (with additional constraints) acting on \mathbb{R}^{n} or \mathbb{C}^{n}. We close this section with a fundamental result which is closely related to Jordan normal form.
VII.B.16. Definition. An element $g \in G$ is

- semisimple if g is diagonalizable over \mathbb{C}
- unipotent if a power of $\left(g-\mathbb{I}_{n}\right)$ is zero.
VII.B.17. THEOREM. Every $g \in G$ may be written UNIQUELY as a product

$$
\begin{equation*}
g=g_{\mathrm{ss}} g_{\mathrm{un}} \tag{VII.B.18}
\end{equation*}
$$

of COMMUTING semisimple and unipotent elements OF G.
Proof. Begin with the case of $G=\mathrm{GL}_{n}(\mathbb{C})$. A Jordan form matrix J admits such a decomposition, since each block decomposes:

$$
\left(\begin{array}{cccc}
\sigma & & & \\
1 & \sigma & & \\
& \ddots & \ddots & \\
& & 1 & \sigma
\end{array}\right)=\left(\begin{array}{cccc}
\sigma & & & \\
& \sigma & & \\
& & \ddots & \\
& & & \sigma
\end{array}\right)\left(\begin{array}{cccc}
1 & & & \\
\sigma^{-1} & 1 & & \\
& \ddots & \ddots & \\
& & \sigma^{-1} & 1
\end{array}\right)
$$

[^6]By Theorem VI.E. 11 (the existence part), we have

$$
g=\gamma J(g) \gamma^{-1}=\gamma J_{\mathrm{ss}} J_{\mathrm{un}} \gamma^{-1}=\underbrace{\gamma J_{\mathrm{ss}} \gamma^{-1}}_{=: g_{\mathrm{ss}}} \underbrace{\gamma J_{\mathrm{un}} \gamma^{-1}}_{=: g \mathrm{un}}
$$

and $g_{\text {ss }}, g_{\text {un }}$ commute because $J_{\mathrm{ss}}, J_{\text {un }}$ do. Conversely, given a decomposition (VII.B.18) and $\vec{v} \in E_{\sigma}\left(g_{\text {ss }}\right)$, we have

$$
\left(g-\sigma \mathbb{I}_{n}\right)^{n} \vec{v}=\left(g_{\mathrm{un}} g_{\mathrm{ss}}-\sigma \mathbb{I}_{n}\right)^{n} \vec{v}=\sigma^{n}\left(g_{\mathrm{un}}-\mathbb{I}_{n}\right)^{n} \vec{v}=\overrightarrow{0}
$$

since $g_{\text {ss }}$ and $g_{\text {un }}$ commute, and so $\vec{v} \in \widetilde{E}_{\sigma}(g)$. Writing

$$
\mathbb{C}^{n}=\oplus_{j=1}^{s} E_{\sigma_{j}}\left(g_{\mathrm{ss}}\right),
$$

this shows that $E_{\sigma_{j}}\left(g_{\mathrm{ss}}\right) \subseteq \widetilde{E}_{\sigma_{j}}(g)$. Since the dimensions of $\widetilde{E}_{\sigma_{j}}(g)$ cannot sum to more than n, these inclusions are equalities. Therefore, the eigenspaces of g_{ss}, and so g_{ss} itself (and thus $g_{\mathrm{un}}=g g_{\mathrm{ss}}^{-1}$), are determined uniquely by g.

It remains to show that if g belongs to one of the classical groups $G \leq \mathrm{GL}_{n}(\mathbb{C})$ above, then $g_{\text {ss }}$ and $g_{\text {un }}$ belong as well. First, if g has real entries, then $\widetilde{\operatorname{ker}}(\sigma \mathbb{I}-g)\left(=E_{\sigma}\left(g_{\mathrm{ss}}\right)\right)$ and $\left.\widetilde{\operatorname{ker}(\bar{\sigma} \mathbb{I}}-g\right)(=$ $\left.E_{\bar{\sigma}}\left(g_{\mathrm{ss}}\right)\right)$ are complex-conjugate, from which one deduces that g_{ss} (hence $g_{\text {un }}$) is real. Next, if $\operatorname{det}(g)=1$, then since the determinant of a unipotent matrix is always $1, \operatorname{det}\left(g_{\text {ss }}\right)=\operatorname{det}\left(g_{\text {un }}^{-1}\right)=1$. Finally, if g preserves a nondegenerate symmetric or alternating bilinear form B, we claim that $g_{\mathrm{ss}}, g_{\mathrm{un}}$ do too. (This will finish the proof, as all the above groups are "cut out" of $\mathrm{GL}_{n}(\mathbb{C})$ by some combination of these constraints.)

Write $V_{i}:=\widetilde{E}_{\sigma_{i}}(g)=E_{\sigma_{i}}\left(g_{\mathrm{ss}}\right)$. Since any vector decomposes into a sum of vectors in these V_{i}, it will suffice to show that

$$
\begin{equation*}
B(g \vec{v}, g \vec{w})=B(\vec{v}, \vec{w}) \quad \forall i, j, \vec{v} \in V_{i}, \vec{w} \in V_{j} \tag{VII.B.19}
\end{equation*}
$$

implies

$$
\begin{equation*}
B\left(g_{\mathrm{ss}} \vec{v}, g_{\mathrm{ss}} \vec{w}\right)=B(\vec{v}, \vec{w}) \quad \forall i, j, \vec{v} \in V_{i}, \vec{w} \in V_{j} \tag{VII.B.20}
\end{equation*}
$$

The latter is equivalent to

$$
\begin{equation*}
B\left(V_{i}, V_{j}\right)=0 \text { if } \sigma_{i} \sigma_{j} \neq 1 \tag{VII.B.21}
\end{equation*}
$$

since LHS(VII.B.20) is just $\sigma_{i} \sigma_{j} B(\vec{v}, \vec{w})$. Suppose $\sigma_{i} \sigma_{j} \neq 1$; then $\left(\sigma_{i}^{-1} \mathbb{I}-\right.$ g) is invertible on V_{j}, and g invertible on V_{i}. Given $\vec{v} \in V_{i}, \vec{w} \in V_{j}$, write $\vec{w}_{\ell}:=\left(\sigma_{i}^{-1} \mathbb{I}-g\right)^{-\ell} \vec{w} \in V_{j}$ and $\vec{v}_{\ell}:=g^{-\ell} \vec{v} \in V_{i}$; and note that $\left(g-\sigma_{i} I I\right)^{k} V_{i}=\{\overrightarrow{0}\}$ for some k. Applying (VII.B.19),

$$
\begin{aligned}
B(\vec{v}, \vec{w}) & =B\left(\vec{v},\left(\sigma_{i}^{-1} \mathbb{I}-g\right) \vec{w}_{1}\right)=\sigma_{i}^{-1} B\left(\vec{v}, \vec{w}_{1}\right)-B\left(\vec{v}, g \vec{w}_{1}\right) \\
& =\sigma_{i}^{-1} B\left(\vec{v}, \vec{w}_{1}\right)-B\left(g^{-1} \vec{v}, \vec{w}_{1}\right)=\sigma_{i}^{-1} B\left(\left(g-\sigma_{i} \mathbb{I}\right) \vec{v}_{1}, \vec{w}_{1}\right) \\
& =\cdots=\sigma_{i}^{-k} B\left(\left(g-\sigma_{i} \mathbb{I}\right)^{k} \vec{v}_{k}, \vec{w}_{k}\right)=0
\end{aligned}
$$

establishes (VII.B.21) and we are done.

Exercises

(1) A quadratic form on \mathbb{R}^{3} is given by $Q(x, y, z)=x^{2}+3 y^{2}+z^{2}-$ $4 x y+2 x z-2 y z$.
(a) Write the matrix of the corresponding symmetric bilinear form B with respect to \hat{e}. (Be careful: if -4 is an entry in your matrix, it isn't quite correct.)
(b) Find S such that ${ }^{t} S[B]^{\hat{e}} S$ is diagonal by following the steps in the proof of Sylvester's theorem.
(c) What is the signature of B ?
(2) Consider the vector space $P_{2}(\mathbb{R})$ of polynomials of degree ≤ 2 with (symmetric) bilinear form

$$
B(f, g):=\int_{0}^{1} f(t) g(t) d t
$$

(a) Find a basis \mathcal{B} of $P_{2}(\mathbb{R})$ in which $[B]^{\mathcal{B}}=\mathbb{I}_{3}$. [Hint: work as if B were the dot product and use "Gram-Schmidt", starting from the basis $\left\{1, t, t^{2}\right\}$.]
(b) Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the "shift" operator $T f(t)=$ $f(t-1)$. Compute $[T]_{\mathcal{B}}$ (where \mathcal{B} is the basis found in part (a)).
(3) Find a basis of the vector space(!) of all alternating bilinear forms on \mathbb{R}^{n}. What's the dimension? [Hint: you could use matrices.]
(4) Write out the proof of "Sylvester's theorem" for Hermitian forms.
(5) Show that $\mathrm{Sp}_{2 m}(\mathbb{F})$ is in fact a subgroup of $\mathrm{SL}_{2 m}(\mathbb{F})$. [Hint: use Jordan to reduce to g_{ss}.]
(6) Deduce that the image of $\mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{2 n}(\mathbb{R})$, given by regarding \mathbb{C}^{n} as $\mathbb{R}^{2 n}$ via

$$
\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(\operatorname{Re}\left(z_{1}\right), \ldots, \operatorname{Re}\left(z_{n}\right), \operatorname{Im}\left(z_{1}\right), \ldots, \operatorname{Im}\left(z_{n}\right)\right)
$$

consists of those elements commuting with $\mathbb{J}_{2 n}$.
(7) (i) Let B be an orthogonal form on \mathbb{R}^{n}, and $\vec{w} \in \mathbb{R}^{n}$ be such that $B(\vec{w}, \vec{w})=2$. Show that the (matrix of the) reflection $\mu(\vec{v}):=$ $\vec{v}-B(\vec{w}, \vec{v}) \vec{w}$ belongs to $\mathrm{O}_{n}(\mathbb{R}, B)$.
(ii) Let B be a symplectic form on $\mathbb{R}^{2 m}, \vec{w} \in \mathbb{R}^{2 m}$, and $c \in \mathbb{R}$. Show that the (matrix of the) transvection $\tau(\vec{v}):=\vec{v}-c B(\vec{w}, \vec{v}) \vec{w}$ belongs to $\mathrm{Sp}_{2 m}(\mathbb{R}, B)$.
[Note: standard results in abstract algebra (beyond our scope here) state that every element of an orthogonal resp. symplectic group is a product of reflections resp. transvections.]
(8) (a) Let B be a symplectic form on $\mathbb{R}^{2 m}$. Use Prop. VII.B. 8 to show that there exists an invertible matrix $S \in M_{2 m}(\mathbb{R})$ such that sending $g \mapsto S g S^{-1}$ produces a bijection ${ }^{10}$ between $\operatorname{Sp}_{2 m}(\mathbb{R}, B)$ and $\mathrm{Sp}_{2 m}(\mathbb{R})$ (as defined above).
(b) Let B be an orthogonal form on \mathbb{R}^{n}. Use Sylvester's Theorem VII.B. 6 to produce an isomorphism (as in (a)) between $\mathrm{O}_{n}(\mathbb{R}, B)$ and some $\mathrm{O}(p, q)$ (with $p+q=n$).

[^7]
[^0]: ${ }^{2}$ We should warn the reader right away that the only bilinear form or inner product on \mathbb{R}^{n} for which $B\left(\hat{e}_{i}, \hat{e}_{j}\right)=\delta_{i j}$ (i.e. under which \hat{e} is an orthonormal basis) is the dot product! In order to avoid confusion coming from \hat{e} we will often use the language of an abstract n-dimensional vector space V instead of \mathbb{R}^{n}.
 3^{3} or anti-symmetric, or Hermitian symmetric - see below.

[^1]: ${ }^{4}$ The converse is also true: in fact, if $[B]^{\mathcal{B}}$ is a symmetric matrix for any \mathcal{B}, then B is symmetric. Since $B(\vec{w}, \vec{u})$ is a scalar, it equals its own transpose (as a 1×1 matrix), and so $B(\vec{w}, \vec{u})={ }^{t} B(\vec{w}, \vec{u})={ }^{t}\left({ }^{t}[\vec{w}]_{\mathcal{B}}[B]^{\mathcal{B}}[\vec{u}]_{\mathcal{B}}\right)={ }^{t}[\vec{u}]_{\mathcal{B}}[B]^{\mathcal{B}}[\vec{w}]_{\mathcal{B}}=B(\vec{u}, \vec{w})$.

[^2]: ${ }^{5}$ or sesquilinear, from the Latin for "one and a half", since it's only conjugate-linear in the first entry.

[^3]: ${ }^{6}$ Conversely, given a $2 n$-dimensional real vector space V with a linear transformation J with $J^{2}=-$ Id (or equivalently, matrix $\mathbb{J}_{2 n}$ in some basis), we call J a complex structure on V.

[^4]: ${ }^{7}$ Calling a form "orthogonal" or "unitary" is a bit nonstandard, but is more consistent with the standard use of "symplectic".

[^5]: ${ }^{8}$ We have not discussed tensor products of vector spaces, but they're easy to define: given vector spaces V and W with bases $\left\{\vec{v}_{i}\right\}_{i=1}^{n}$ and $\left\{\vec{w}_{j}\right\}_{j=1}^{m}$, you simply take $V \otimes W$ to be the $n m$-dimensional vector space with basis $\left\{\vec{v}_{i} \otimes \vec{w}_{j}\right\}_{\substack{i=1, \ldots, n \\ j=1, \ldots, m}}$.
 (These symbols obey the distributive property.) These aren't unfamiliar objects either. You could try to prove, for instance, that $V^{\vee} \otimes W$ is the vector space of linear transformations from V to W, or that a bilinear form is an element of $\left(V^{\vee}\right)^{\otimes 2}$.

[^6]: ${ }^{9}$ Even more generally, Theorem VII.B. 17 will hold for all reductive linear algebraic groups over a perfect field, though that is obviously beyond our scope here.

[^7]: ${ }^{10}$ In fact, a group isomorphism, meaning that it respects products and inverses.

