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VII.B. Bilinear forms

There are two standard “generalizations” of the dot product on
Rn to arbitrary vector spaces. The idea is to have a “product” that
takes two vectors to a scalar. Bilinear forms are the more general
version, and inner products (a kind of bilinear form) the more specific
— they are the ones that “look like” the dot product (= “Euclidean
inner product”) with respect to some basis.2 Here we tour the zoo of
various classes of bilinear forms, before narrowing our focus to inner
products in the next section.

Now let V/R be an n-dimensional vector space:

VII.B.1. DEFINITION. A bilinear form is a function B : V × V →
R such that

B(a!u + b!v, !w) = aB(!u, !w) + bB(!v, !w)

B(!u, a!v + b!w) = aB(!u,!v) + bB(!u, !w)

for all !u, !v, !w ∈ V. It is called symmetric if also B(!u, !w) = B(!w,!u).

Now let’s lay down the following law: whenever we are consid-
ering a bilinear form B on a vector space V (even if V = Rn!), all
orthogonality (or orthonormality) is relative to B. That is, “!u ⊥ !w”
by definition means B(!u, !w) = 0. Sounds fine, huh?

VII.B.2. EXAMPLE. Take a look at the (non-symmetric) bilinear
form

B(!x,!y) =
!

x1 x2

"#
0 0
1 0

$#
y1

y2

$
= x2y1

on R2. Its simplicity belies an unpleasant nature: while allowing
that

%
1
0
&
⊥

%
0
1

&
, it turns right around on us with

%
0
1

&
∕⊥

%
1
0
&
! We

can avoid this sort of character if we work with symmetric3 bilinear
forms.
2We should warn the reader right away that the only bilinear form or inner product
on Rn for which B(êi, êj) = δij (i.e. under which ê is an orthonormal basis) is the dot
product! In order to avoid confusion coming from ê we will often use the language
of an abstract n-dimensional vector space V instead of Rn.
3or anti-symmetric, or Hermitian symmetric — see below.
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So try instead

B̃(!x,!y) =
!

x1 x2

"#
1 0
0 −1

$#
y1

y2

$
= x1y1 − x2y2;

B̃ is symmetric but its notion of norm is not what we are used to from
the dot product: B̃(ê2, ê2) = −1, while B̃

%%
1
1

&
,
%

1
1

&&
= 0 — that is,

under B̃ there exists a nonzero self-perpendicular vector
%

1
1

&
⊥

%
1
1

&
.

Such pathologies with general bilinear forms are routine; the point
of defining inner products in §VII.C will be to get rid of them.

The Matrix of a Bilinear form. Consider a basis B = {!v1, . . . ,!vn}
for V and write !u = ∑ ui!vi , !w = ∑ wi!vi. Let B be any bilinear form
on V, and set

(VII.B.3) bij = B(!vi,!vj);

we have

B(!u, !w) = B
!

∑i ui!vi, ∑j wj!vj

"
= ∑

i,j
ui bij wj

=
!

u1 · · · un

"
'

()
b11 · · · b1n
... . . . ...

bn1 · · · bnn

*

+,

'

()
w1
...

wn

*

+, =: t[!u]B [B]B [!w]B,

defining a matrix for B. We write the basis B as a superscript, because
change-of-basis does not work the same way as for transformation
matrices: since (for any other basis C)

t([!u]B) [B]B([!w]B) = t(PC→B [!u]C) [B]B(PC→B [!w]C)

= t[!u]C
!

tPC→B [B]BPC→B
"
[!w]C

for all !u, !w, we find that

(VII.B.4) [B]C = tP[B]BP.

Matrices related in this fashion (where P is invertible) are said to be
cogredient. Such matrices have the same rank (why?).
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Symmetric Bilinear forms. Next let B be an arbitrary symmetric
bilinear form, so that ⊥ is a symmetric relation, and the subspace

V⊥!w = {!v ∈ V | B(!w,!v) = 0} = {!v ∈ V | B(!v, !w) = 0}

makes sense. Now already the matrix of such a form (with respect to any
basis) is symmetric;4 that is,

t[B]B = [B]B,

since bij = bji in (VII.B.3). We now explain how to put it into an
especially nice form.

VII.B.5. LEMMA. There exists a basis B such that

[B]B = diag{b1, . . . , br, 0, . . . , 0},

where the bi ∕= 0.

PROOF. This is by induction on n = dim V (clear for n = 1): we
assume the result for (n − 1)-dimensional spaces and prove it for V.

If B(!u, !w) = 0 for all !u, !w ∈ V, then [B]B = 0 in any basis and
we are done. Moreover, if B(!v,!v) = 0 for all !v ∈ V then (using
symmetry and bilinearity)

2B(!u, !w) = B(!u, !w) + B(!w,!u)

= B(!u + !w,!u + !w)− B(!u,!u)− B(!w, !w) = 0

for all !u, !w and we’re done once more. So assume otherwise: that
there exists !v1 ∈ V such that B(!v1,!v1) =: b1 ∕= 0.

Clearly B(!v1,!v1) ∕= 0 =⇒ (i) span{!v1} ∩ V⊥!v1 = {0}. Further-
more, (ii) V = span{!v1}+ V⊥!v1 : any !w ∈ V can be written

!w = (!w − B(!w,!v1)b−1
1 !v1) + B(!w,!v1)b−1

1 !v1

4The converse is also true: in fact, if [B]B is a symmetric matrix for any B, then B is
symmetric. Since B(!w,!u) is a scalar, it equals its own transpose (as a 1× 1 matrix),
and so B(!w,!u) = tB(!w,!u) = t(t[!w]B [B]B [!u]B) = t[!u]B [B]B [!w]B = B(!u, !w).
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where the second term is in span{!v1}, and the first is in V⊥!v1 since
B(first term,!v1) = B(!w,!v1)− B(!w,!v1)b−1

1 B(!v1,!v1) = 0. Combining
(i) and (ii), V = span{!v1}⊕ V⊥!v1 .

Applying the inductive hypothesis to V⊥!v1 establishes the exis-
tence of a basis {!v2, . . . ,!vn} with B(!vi,!vj) = biδij (i, j ≥ 2). Combin-
ing this with the direct-sum decomposition of V, B = {!v1,!v2, . . . ,!vn}
is a basis for V. By definition of V⊥!v1 , B(!v1,!vj) = B(!vj,!v1) = 0 for
j ≥ 2. Therefore B(!vi,!vj) = biδij for i, j ≥ 1 and we’re through. □

Reorder the basis elements so that

[B]B = diag{ b1, . . . , bp- ./ 0
>0

, bp+1, . . . , bp+q- ./ 0
<0

, 0, . . . , 0}

and then normalize: take

B′ =

1
!v1√

b1
, . . . ,

!vp2
bp

;
!vp+12
−bp+1

, . . . ,
!vp+q2
−bp+q

;!vp+q+1, . . . ,!vn

3
,

so that

[B]B
′
= diag{ 1, . . . , 1- ./ 0

p

, −1, . . . ,−1- ./ 0
q

, 0, . . . , 0}.

Suppose that for some other basis C = {!w1, . . . , !wn}

[B]C = diag{ c1, . . . , cp′- ./ 0
>0

, cp′+1, . . . , cp′+q′- ./ 0
<0

, 0, . . . , 0}.

Are p, q and p′, q′ necessarily the same?
Since [B]C and [B]B are cogredient they must have the same rank,

p+ q = p′+ q′. Now any nonzero!u ∈ span{!v1, . . . ,!vp} has B(!u,!u) >
0, while a nonzero !u ∈ span{!wp′+1, . . . , !wn} has B(!u,!u) ≤ 0. There-
fore the only intersection of these two spans can be at {0}, which
says that the sum of their dimensions cannot exceed dim V: that is,
p + (n − p′) ≤ n, which implies p ≤ p′. An exactly symmetric argu-
ment (interchanging the !v’s and !w’s) shows that p′ ≤ p. So p = p′,
and q = q′ follows immediately. We have proved:
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VII.B.6. THEOREM (Sylvester). Given a symmetric bilinear form B on
V/R, there exists a basis B = {!v1, . . . ,!vn} for V such that B(!vi,!vj) = 0
for i ∕= j, and B(!vi,!vi) =

4 0
±1 where the number of +1’s, −1’s, and 0’s

is well-defined (another such choice of basis will not change these numbers).

The corresponding statement for the matrix of B gives rise to the
following

VII.B.7. COROLLARY. Any symmetric real matrix is cogredient to ex-
actly one matrix of the form diag{+1, . . . ,+1,−1, . . . ,−1, 0, . . . , 0}.

For a given symmetric bilinear form (or symmetric matrix), we
call the # of +1’s and −1’s in the form guaranteed by the Theorem (or
Corollary) the “index of positivity”(= p) and “index of negativity”(=
q) of B (or [B]). Their sum r = p + q is (for obvious reasons) referred
to as the rank, and the pair (p, q) (or triple (p, q, n − r), or sometimes
the difference p − q) is referred to as the signature of B (or [B]).

Anti-symmetric bilinear forms. Now if B : V × V → R is anti-
symmetric (or “alternating”), i.e.

B(!u,!v) = −B(!v,!u),

for all !u,!v ∈ V, then ⊥ is still a symmetric relation. In this case the
matrix of B with respect to any basis is skew-symmetric,

t[B]B = −[B]B,

and the analogue of Sylvester’s Theorem VII.B.6 is actually simpler:

VII.B.8. PROPOSITION. There exists a basis B such that (in terms of
matrix blocks)

[B]B =

'

()
0 −Im 0

Im 0 0
0 0 0

*

+, ,

where r = 2m ≤ n is the rank of B.
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VII.B.9. REMARK. This matrix can be written more succinctly as

[B]B =

#
J2m 0
0 0

$
,

where we define

(VII.B.10) J2m :=

#
0 −Im

Im 0

$
.

PROOF OF PROPOSITION VII.B.8. We induce on n: clearly the re-
sult holds (B = 0) if n = 1, since B(!v,!v) = −B(!v,!v) must be 0.

Now assume the result is known for all dimensions less than n.
If V (of dimension n) contains any vector!v with B(!v, !w) = 0 ∀!w ∈

V, take !vn := !v. Let U ⊂ V be any (n − 1)-dimensional subspace
with V = span{!v}⊕ U, and obtain the rest of the basis by applying
induction to U.

If V does not contain such a vector, then the columns of [B] (with
respect to any basis) are independent and det([B]) ∕= 0, with the
immediate consequence that n = 2m is even (by Exercise IV.B.4). So
choose !v2m ∈ V\{0} arbitrarily, and !vm ∈ V so that B(!v2m,!vm) = 1.
Writing W := span{!vm,!v2m}, and W⊥ := {!v ∈ V | B(!v, !w) = 0 ∀!w ∈
W}, we claim that V = W ⊕ W⊥.

Indeed, if !w ∈ W ∩W⊥ then !w = a!vm + b!v2m has 0 = B(!w,!vm) =

b and 0 = B(!w,!v2m) = −a =⇒ !w = !0. Moreover, given !v ∈ V
we may consider !w := B(!v,!vm)!v2m − B(!v,!v2m)!vm ∈ W and !w⊥ :=
!v − !w, which satisfies

B(!w⊥,!vm) = B(!v,!vm)− B(!v,!vm)B(!v2m,!vm)! "# $
1

+ B(!v,!v2m)B(!vm,!vm)! "# $
0

= 0

and B(!w⊥,!v2m) =

B(!v,!v2m)− B(!v,!vm)B(!v2m,!v2m)! "# $
0

+ B(!v,!v2m)B(!vm,!v2m)! "# $
−1

= 0.

Thus !w⊥ ∈ W⊥, !v = !w + !w⊥, and the claim is proved.
Now apply induction to W⊥ to get the remaining 2m − 2 basis

elements !v1, . . . ,!vm−1,!vm+1, . . . ,!v2m−1. □



236 VII. INNER PRODUCT SPACES

Hermitian symmetric forms. Given an n-dimensional complex
vector space V/C, a Hermitian-linear5 form H : V × V → C satisfies

H(α!u, !w) = ᾱH(!u, !w) , H(!u, α!w) = αH(!u !w) ,

H(!u1 + !u2, !w) = H(!u1, !w) + H(!u2, !w) ,

H(!u, !w1 + !w2) = H(!u, !w1) + H(!u, !w2).

It is Hermitian symmetric if it also satisfies H(!u, !w) = H(!w,!u); we will
often call such forms simply “Hermitian”.

The passage to matrices (where as usual B = {!v1, . . . ,!vn}, !u =

∑i ui!vi, !w = ∑j wj!vj, hij = H(!vi,!vj)) looks like

H(!u, !w) = ∑i,j ūihijwj = [!u]∗B [H]B [!w]B;

the relevant version of cogredience for coordinate transformations is
S∗[H]S. If H is Hermitian symmetric then hij = h̄ji; that is, [H]B =

([H]B)∗ is a Hermitian symmetric matrix. For such forms/matrices
Sylvester holds verbatim. For the purpose of studying inner product
spaces in the next two sections, you can think of Hermitian symmet-
ric matrices (A = t Ā) as being the “right” complex generalization of
the real symmetric matrices (which they include), and similarly for
the forms.

But there is an important caveat here: Hermitian forms aren’t
really bilinear over C, due to their conjugate-linearity in the first ar-
gument. If we view V as a 2n-dimensional vector space over R, then
they are bilinear over R. In fact, if we go that route, then we may
view

H = Bre +
√
−1Bim : R2n × R2n → C = R ⊕

√
−1R

as splitting up into two bilinear forms over R. Moreover, since

Bre(!v,!u) +
√
−1Bim(!v,!u) = H(!v,!u) = H(!u,!v)

= Bre(!u,!v)−
√
−1Bim(!u,!v)

for all !u,!v ∈ R2n, Bre is symmetric and Bim is anti-symmetric.

5or sesquilinear, from the Latin for “one and a half”, since it’s only conjugate-linear
in the first entry.



VII.B. BILINEAR FORMS 237

Now given a basis B = {!v1, . . . ,!vn} for V as a C-vector space,
B̃ := {!v1, . . . ,!vn,

√
−1!v1, . . . ,

√
−1!vn} =: {!w1, . . . , !w2n} is a basis for

V as an R-vector space. The matrix of6

J := {multiplication by
√
−1} : V → V

is clearly [J ]B̃ = J2n (as defined in (VII.B.10)). The complex anti-
linearity of H in the first argument gives

Bre(J!u,!v) +
√
−1Bim(J!u,!v) = H(

√
−1!u,!v) = −

√
−1H(!u,!v)

= Bim(!u,!v)−
√
−1Bre(!u,!v)

hence

Bre(J!u,!v) = Bim(!u,!v) and − Bim(J!u,!v) = Bre(!u,!v).

Writing !v = J !w, this gives

Bre(J!u,J !w) = Bim(!u,J !w) = −Bim(J !w,!u) = Bre(!w,!u) = Bre(!u, !w)

and similarly Bim(J!u,J !w) = Bim(!u, !w). In this way one deduces
that giving a Hermitian form on V is equivalent to giving a (real)
symmetric or antisymmetric form which is “invariant” under the
complex structure map J.

Finally, if [H]B = diag{+1, . . . ,+1,−1, . . . ,−1, 0 . . . , 0} =: D
then one finds that

[Bre]
B̃ =

#
D 0
0 D

$
and [Bim]B̃ =

#
0 D

−D 0

$
;

that is, the signature of Bre is exactly “double” that of H.

Quadratic Forms. Now let’s return to unambiguously real vec-
tor spaces.

VII.B.11. DEFINITION. A quadratic form is a function Q : V → R

of the form
Q(!u) = B(!u,!u),

for some symmetric bilinear form B.

6Conversely, given a 2n-dimensional real vector space V with a linear transforma-
tion J with J2 = −Id (or equivalently, matrix J2n in some basis), we call J a complex
structure on V.
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Let B = {!v1, . . . ,!vn}, use this basis to expand a given vector !u =

∑i xi!vi, and set bij = B(!vi,!vj) = entries of [B]B; then

Q(!u) = t[!u]B [B]B [!u]B = ∑i,j xi bij xj .

Basically this is a homogeneous quadratic function of several vari-
ables, with cross-terms (like x2x3). Sylvester effectively says “so
long” to the cross-terms. It gives us a new basis C = {!w1, . . . , !wn}
such that

[B]C = diag{ +1, . . . ,+1- ./ 0
p

, −1, . . . ,−1- ./ 0
q

, 0, . . . , 0};

expanding !u = ∑ yi!wi in this new basis, we have
(VII.B.12)

Q(!u) = t[!u]C [B]C [!u]C = y2
1 + . . . + y2

p − (y2
p+1 + . . . + y2

p+q).

Application to Calculus. Say f : Rn → R (nonlinear) has a station-
ary (or “critical”) point at 0 = (0, . . . , 0),

∂ f
∂x1

5555
0

= . . . =
∂ f
∂xn

5555
0

= 0.

Consider its Taylor expansion about 0:

f (x1, . . . , xn) = constant +
n

∑
i,j=1

xixjbij + higher-order terms,

where
bij =

∂2 f
∂xi∂xj

55555
0

.

These are the entries of the so-called “Hessian” matrix of f (eval-
uated at 0); sometimes Hess( f ) is just called the “matrix of second
partials” in calculus texts.

Now Sylvester’s theorem, applied exactly as above, gives us a
linear change of coordinates (y1, . . . , yn) so that the second term in
the Taylor series takes exactly the form (VII.B.12). This is otherwise
known as completing squares! If p = n then we have y2

1 + · · · +
y2

n and a local minimum; if q = n then −y2
1 − · · · − y2

n and a local
maximum. The other cases where p + q = n are saddle points, and if
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p + q < n (i.e., Hess( f )|0 is not of maximal rank) then one must look
to the higher-order terms. Incidentally in this latter case we say 0 is
a degenerate critical point.

Is there any way you can tell what situation you’re in without
finding the basis guaranteed by Sylvester’s theorem? Certainly if
det(Hess( f )|0) ∕= 0 then p + q = n — we have a nondegenerate crit-
ical point. Where do we go from there? If n = 2 (notice that this
is the situation in your calculus text), then we can use the fact that
determinants of cogredient matrices have the same sign: tSAS =

B =⇒ det A · (det S)2 = det B. If det(Hess( f )|0) > 0 then either
(p, q) = (2, 0) or (0, 2) (a “++” or “−−” situation), which means
a local extremum; if det(Hess( f )|0) < 0 then we have p = q = 1
(“+−”) and a saddle point.

More generally (n ≥ 2) if Hess( f )|0 is diagonalizable via an or-
thogonal change of basis, that could substitute for Sylvester (how?)
and tell us the signs. In fact, in the next section we will see that real
symmetric matrices can always be “orthogonally diagonalized”!

Nondegenerate bilinear forms. A bilinear (or Hermitian) form
B on a vector space V is said to be nondegenerate if and only if, for
every vector!v ∈ V, there exists !w ∈ V such that B(!v, !w) ∕= 0. (Equiv-
alently, the matrix of the form has nonzero determinant.)

• A nondegenerate symmetric form B is called orthogonal.7 If the
signs in Sylvester’s theorem are all positive (resp. negative), B is
positive (resp. negative) definite; otherwise, B is indefinite of signa-
ture (p, q), where p + q = n.

• A nondegenerate anti-symmetric form B is termed symplectic. In
this case dim(V) is necessarily even: n = 2m, and (in some basis
B) [B]B = J2m.

• A nondegenerate Hermitian form H is called unitary. The same
terminology applies as in the orthogonal case.

7Calling a form “orthogonal” or “unitary” is a bit nonstandard, but is more consis-
tent with the standard use of “symplectic”.
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VII.B.13. EXAMPLE. On R4 with “spacetime” coordinates (x, y, z, t),
we define an indefinite orthogonal form of signature (3, 1) via its
quadratic form x2 + y2 + z2 − t2. The resulting “Minkowski space”
is closely associated with the theory of special relativity.

Nondegenerate symplectic and indefinite-orthogonal forms also
play a central role in the topology of projective manifolds.

∗ ∗ ∗

We conclude this section with a brief (and somewhat sketchy)
account of the simplest of the so-called “classical groups”. This ma-
terial will not be used in the remainder of the text.

Linear algebraic groups. These are those subgroups of GLn(C)

or GLn(R), the general linear groups of invertible n × n matrices
with entries in C or R, that are defined by “linear algebraic condi-
tions”. We’ll only be interested in examples of reductive such groups,
which are the ones with the property that whenever a vector sub-
space W is closed under their action on a vector space V, there is
another subspace W ′ also closed under this action, such that V =

W ⊕ W ′. In general, one can show (Chevalley’s Theorem) that the
reductive linear algebraic groups are the subgroups of GLn defined
by the property of fixing a subalgebra of the tensor algebra8

⊕a,bV⊗a ⊗ (V∨)⊗b,

where V = Cn resp. Rn. But that is a subject for a different course;
here we’ll just define a few of these groups, using only determinants
and nondegenerate bilinear forms.

For B orthogonal resp. symplectic, the corresponding orthogonal
resp. symplectic group consists of all g ∈ GLn(F) (F = R or C)

8We have not discussed tensor products of vector spaces, but they’re easy to de-
fine: given vector spaces V and W with bases {!vi}n

i=1 and {!wj}m
j=1, you simply

take V ⊗ W to be the nm-dimensional vector space with basis {!vi ⊗ !wj} i=1,...,n
j=1,...,m

.

(These symbols obey the distributive property.) These aren’t unfamiliar objects ei-
ther. You could try to prove, for instance, that V∨ ⊗W is the vector space of linear
transformations from V to W, or that a bilinear form is an element of (V∨)⊗2.
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satisfying

(VII.B.14) B(g!v, g!w) = B(!v, !w) ∀!v, !w ∈ Fn.

(We write Spn(F, B) resp. On(F, B) for these groups.) By Proposition
VII.B.8, all the symplectic groups are isomorphic (via conjugation by
a change-of-basis matrix, see Exercise 8) to

Sp2m(F) := {g ∈ GL2m(F) | tgJ2mg = J2m}

for F = C resp. R. Similarly, by Sylvester’s Theorem, the real or-
thogonal groups are isomorphic to one of the

O(p, q) := {g ∈ GLp+q(R) | tgIp,qg = Ip,q},

where Ip,q := diag{Ip,−Iq}. Note that O(p, q) ∼= O(q, p), and O(n, 0)
is written On(R); these are called indefinite resp. definite orthogonal
groups. All the complex orthogonal groups are isomorphic to

On(C) := {g ∈ GLn(C) | tgg = In}.

The unitary groups Un(H) are defined by the property of pre-
serving a Hermitian form: they consist of those g ∈ GLn(C) with

(VII.B.15) H(g!u, g!v) = H(!u,!v) ∀!u,!v ∈ Cn,

and are each conjugate to one of the

U(p, q) := {g ∈ GLp+q(C) | g∗Ip,qg = Ip,q}.

(Write U(n, 0) =: U(n) for the definite unitary group.) But this is a
little deceptive, as (VII.B.15) is not a C-linear condition: the U(p, q)
are actually real linear algebraic groups. If (as above) we think of Cn

as R2n, and write H = Bre +
√
−1Bim, then I claim that

Un(H) = O2n(R, Bre) ∩ Sp2n(R, Bim)

as a subgroup of GL2n(R). The “⊆” inclusion is clear, since to pre-
serve H, γ ∈ GL2n(R) must preserve its real and imaginary parts.
Conversely, we just need to show that preserving Bre and Bim also
implies that γ “comes from” an element of GLn(C), or equivalently
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commutes with J (cf. Exercise 6 below). This follows from

Bre(gJ!u, g!v) = Bre(J!u,!v) = Bim(!u,!v) = Bim(g!u, g!v) = Bre(Jg!u, g!v)

and nondegeneracy of Bre.
The special linear groups SLn(F) simply consist of the elements

of GLn(F) with determinant 1. They contain the symplectic groups
(see Exercise 5), from which it also follows that SL2n(R) contains
Un(H). On the other hand, SLn(C) does not contain Un(H); intersect-
ing them gives the special unitary groups SUn(H) (and SU(p, q)).
The special orthogonal groups (denoted SOn(F, B), SO(p, q), etc.)
are given by intersecting the orthogonal and special linear groups.

Jordan decomposition. Let G be one of the above linear alge-
braic groups (over R or C).9 Since G is a subgroup of GLn(F) for
some n, we may think of elements of G as invertible matrices (with
additional constraints) acting on Rn or Cn. We close this section with
a fundamental result which is closely related to Jordan normal form.

VII.B.16. DEFINITION. An element g ∈ G is
• semisimple if g is diagonalizable over C

• unipotent if a power of (g − In) is zero.

VII.B.17. THEOREM. Every g∈G may be written UNIQUELY as a
product

(VII.B.18) g = gssgun

of COMMUTING semisimple and unipotent elements OF G.

PROOF. Begin with the case of G = GLn(C). A Jordan form ma-
trix J admits such a decomposition, since each block decomposes:
'

(((()

σ

1 σ
. . . . . .

1 σ

*

++++,
=

'

(((()

σ

σ
. . .

σ

*

++++,

'

(((()

1
σ−1 1

. . . . . .
σ−1 1

*

++++,
.

9Even more generally, Theorem VII.B.17 will hold for all reductive linear algebraic
groups over a perfect field, though that is obviously beyond our scope here.
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By Theorem VI.E.11 (the existence part), we have

g = γJ(g)γ−1 = γJss Junγ−1 = γJssγ−1
- ./ 0

=:gss

γJunγ−1
- ./ 0

=:gun

,

and gss, gun commute because Jss, Jun do. Conversely, given a decom-
position (VII.B.18) and !v ∈ Eσ(gss), we have

(g − σIn)
n!v = (gungss − σIn)

n!v = σn(gun − In)
n!v =!0

since gss and gun commute, and so !v ∈ 6Eσ(g). Writing

Cn = ⊕s
j=1Eσj(gss),

this shows that Eσj(gss) ⊆ 6Eσj(g). Since the dimensions of 6Eσj(g)
cannot sum to more than n, these inclusions are equalities. Therefore,
the eigenspaces of gss, and so gss itself (and thus gun = gg−1

ss ), are
determined uniquely by g.

It remains to show that if g belongs to one of the classical groups
G ≤ GLn(C) above, then gss and gun belong as well. First, if g
has real entries, then 7ker(σI − g) (= Eσ(gss)) and 7ker(σ̄I − g) (=
Eσ̄(gss)) are complex-conjugate, from which one deduces that gss

(hence gun) is real. Next, if det(g) = 1, then since the determinant
of a unipotent matrix is always 1, det(gss) = det(g−1

un ) = 1. Finally, if
g preserves a nondegenerate symmetric or alternating bilinear form
B, we claim that gss, gun do too. (This will finish the proof, as all the
above groups are “cut out” of GLn(C) by some combination of these
constraints.)

Write Vi := 6Eσi(g) = Eσi(gss). Since any vector decomposes into
a sum of vectors in these Vi, it will suffice to show that

(VII.B.19) B(g!v, g!w) = B(!v, !w) ∀i, j, !v ∈ Vi, !w ∈ Vj

implies

(VII.B.20) B(gss!v, gss!w) = B(!v, !w) ∀i, j, !v ∈ Vi, !w ∈ Vj.

The latter is equivalent to

(VII.B.21) B(Vi, Vj) = 0 if σiσj ∕= 1,
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since LHS(VII.B.20) is just σiσjB(!v, !w). Suppose σiσj ∕= 1; then (σ−1
i I−

g) is invertible on Vj, and g invertible on Vi. Given !v ∈ Vi, !w ∈ Vj,
write !wℓ := (σ−1

i I − g)−ℓ!w ∈ Vj and !vℓ := g−ℓ!v ∈ Vi; and note that
(g − σiI)

kVi = {!0} for some k. Applying (VII.B.19),

B(!v, !w) = B
!
!v, (σ−1

i I − g)!w1

"
= σ−1

i B(!v, !w1)− B(!v, g!w1)

= σ−1
i B(!v, !w1)− B(g−1!v, !w1) = σ−1

i B ((g − σiI)!v1, !w1)

= · · · = σ−k
i B

!
(g − σiI)

k!vk, !wk

"
= 0

establishes (VII.B.21) and we are done. □

Exercises
(1) A quadratic form on R3 is given by Q(x, y, z) = x2 + 3y2 + z2 −

4xy + 2xz − 2yz.
(a) Write the matrix of the corresponding symmetric bilinear form
B with respect to ê. (Be careful: if −4 is an entry in your matrix,
it isn’t quite correct.)
(b) Find S such that tS[B]êS is diagonal by following the steps in
the proof of Sylvester’s theorem.
(c) What is the signature of B?

(2) Consider the vector space P2(R) of polynomials of degree ≤ 2
with (symmetric) bilinear form

B( f , g) :=
! 1

0
f (t)g(t)dt.

(a) Find a basis B of P2(R) in which [B]B = I3. [Hint: work as if
B were the dot product and use “Gram-Schmidt”, starting from
the basis {1, t, t2}.]
(b) Let T : P2(R) → P2(R) be the “shift” operator T f (t) =

f (t − 1). Compute [T]B (where B is the basis found in part (a)).
(3) Find a basis of the vector space(!) of all alternating bilinear forms

on Rn. What’s the dimension? [Hint: you could use matrices.]
(4) Write out the proof of “Sylvester’s theorem” for Hermitian forms.
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(5) Show that Sp2m(F) is in fact a subgroup of SL2m(F). [Hint: use
Jordan to reduce to gss.]

(6) Deduce that the image of GLn(C) → GL2n(R), given by regard-
ing Cn as R2n via

(z1, . . . , zn) 3→ (Re(z1), . . . , Re(zn), Im(z1), . . . , Im(zn)),

consists of those elements commuting with J2n.
(7) (i) Let B be an orthogonal form on Rn, and !w ∈ Rn be such that

B(!w, !w) = 2. Show that the (matrix of the) reflection µ(!v) :=
!v − B(!w,!v)!w belongs to On(R, B).
(ii) Let B be a symplectic form on R2m, !w ∈ R2m, and c ∈ R.
Show that the (matrix of the) transvection τ(!v) := !v − cB(!w,!v)!w
belongs to Sp2m(R, B).
[Note: standard results in abstract algebra (beyond our scope
here) state that every element of an orthogonal resp. symplectic
group is a product of reflections resp. transvections.]

(8) (a) Let B be a symplectic form on R2m. Use Prop. VII.B.8 to show
that there exists an invertible matrix S ∈ M2m(R) such that send-
ing g 3→ SgS−1 produces a bijection10 between Sp2m(R, B) and
Sp2m(R) (as defined above).
(b) Let B be an orthogonal form on Rn. Use Sylvester’s Theorem
VII.B.6 to produce an isomorphism (as in (a)) between On(R, B)
and some O(p, q) (with p + q = n).

10In fact, a group isomorphism, meaning that it respects products and inverses.


