VII.C. Inner products

Let V/\mathbb{R} be an *n*-dimensional *real* vector space. Recall from the end of §VII.B that a symmetric bilinear form

$$B: V \times V \to \mathbb{R}$$

is called *positive-definite* if it is nondegenerate of signature (p,q) = (n,0) — or equivalently, if

$$\vec{v} \neq \vec{0} \implies B(\vec{v}, \vec{v}) > 0$$

VII.C.1. DEFINITION. An **inner product** is a positive-definite symmetric bilinear form.

NOTATION: Instead of $B(\vec{u}, \vec{w})$ we shall write $\langle \vec{u}, \vec{w} \rangle$. Since $\langle \cdot, \cdot \rangle$ is definite,

$$0 = \|ec{v}\|^2 := \langle ec{v}, ec{v}
angle \implies ec{v} = ec{0}.$$

A given inner product determines notions of length and orthogonality on *V*:

$$\vec{u} \perp \vec{w} \iff \langle \vec{u}, \vec{w} \rangle = 0, \quad \|\vec{u}\| = \sqrt{\langle \vec{u}, \vec{u} \rangle}.$$

If $V = \mathbb{R}^n$ these should *not* be mixed with the $\|\cdot\|$ and \perp coming from the dot product.¹¹

For *any* symmetric bilinear form *B*, Sylvester's theorem guarantees the existence of a basis \mathcal{B} such that

$$B(\vec{u}, \vec{w}) = {}^{t} [\vec{u}]_{\mathcal{B}} \begin{pmatrix} \mathbb{I}_{p} & 0 & 0 \\ 0 & -\mathbb{I}_{q} & 0 \\ 0 & 0 & 0 \end{pmatrix} [\vec{w}]_{\mathcal{B}}$$

Clearly in order for $B(\vec{u}, \vec{u})$ to be always positive ($\vec{u} \neq 0$) we must have q = 0 and p = n (all 1's along the diagonal). Therefore any given *inner product* has a basis with respect to which

$$\langle \vec{u}, \vec{w} \rangle = {}^{t} [\vec{u}]_{\mathcal{B}} [\vec{w}]_{\mathcal{B}} = \begin{cases} \text{"dot product" in that} \\ \text{coordinate system} \end{cases}$$

246

¹¹often called the "Euclidean" or "standard" inner product on \mathbb{R}^n .

WARNING: If $V = \mathbb{R}^n$ this is *not* necessarily the usual dot product, unless $\mathcal{B} = \hat{e}!$

If instead *V* is a vector space over C, then by "inner product" we shall mean a positive-definite Hermitian form $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$. In particular, the 1st entry is conjugate-linear $[\langle \alpha \vec{u}, \vec{w} \rangle = \bar{\alpha} \langle \vec{u}, \vec{w} \rangle]$, the 2^{nd} linear $[\langle \vec{u}, \alpha \vec{w} \rangle = \alpha \langle \vec{u}, \vec{w} \rangle]$, and $\langle \vec{u}, \vec{w} \rangle = \overline{\langle \vec{w}, \vec{u} \rangle}$. By Sylvester there is a basis with respect to which

$$\langle \vec{u}, \vec{w} \rangle = [\vec{u}]^*_{\mathcal{B}} [\vec{w}]_{\mathcal{B}},$$

which is "like" the complex dot product (and the same warning applies when $V = \mathbb{C}^n$). By "plugging in" the basis elements for \vec{u}, \vec{w} one has:

VII.C.2. PROPOSITION. For any inner product on a complex (real) vector space V, there is a basis $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_n\}$ for V such that $\langle \vec{v}_i, \vec{v}_i \rangle =$ δ_{ij} , i.e. \mathcal{B} is a unitary (orthonormal) basis under the inner product.

WARNING: For \mathbb{C}^n (resp. \mathbb{R}^n), \hat{e} is unitary (orthonormal) *only* under the standard inner (= dot) product.

VII.C.3. REMARK. V together with some inner product $\langle \cdot, \cdot \rangle$ (and the accompanying notions of \perp and length) is called an "inner product space". The Proposition simply says: any inner product space has a unitary (orthonormal) basis, though (as the next Example attests) this basis is *far* from unique. The practical way to obtain one, starting from any given basis for V, is by the Gram-Schmidt procedure (exactly as we did it for the dot product); see for example Exercise III.B.2(a).

VII.C.4. EXAMPLE. Consider the symmetric bilinear form

$$B(\vec{x}, \vec{y}) = \langle \vec{x}, \vec{y} \rangle = {}^{t}\vec{x}M\vec{y} := \begin{pmatrix} x_{1} & x_{2} \end{pmatrix} \begin{pmatrix} \frac{1}{8} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} y_{1} \\ y_{2} \end{pmatrix} = \frac{x_{1}y_{1}}{8} + \frac{x_{2}y_{2}}{2}$$

,

on $V = \mathbb{R}^2$ (with vectors written with respect to the standard basis). Clearly this is positive definite, hence an inner product, and \mathcal{B} =

 $\{\vec{v}_1, \vec{v}_2\} := \left\{ \begin{pmatrix} \sqrt{8} \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ \sqrt{2} \end{pmatrix} \right\}$ is an orthonormal basis of this inner product space, i.e. $\langle \vec{v}_i, \vec{v}_j \rangle = \delta_{ij}$.

For any matrix *S* satisfying ${}^{12} {}^{t}SMS = M$, we have

$$\langle S\vec{v}_i, S\vec{v}_j \rangle = {}^t \vec{v}_i {}^t SMS\vec{v}_j = {}^t \vec{v}_i M\vec{v}_j = \langle \vec{v}_i, \vec{v}_j \rangle = \delta_{ij}$$

hence $SB = \{S\vec{v}_1, S\vec{v}_2\}$ is another orthonormal basis. These matrices are precisely the ones of the form

$$S = \begin{pmatrix} \cos\theta & -2\sin\theta \\ \frac{1}{2}\sin\theta & \cos\theta \end{pmatrix}.$$

So taking $\theta = -\frac{\pi}{4}$, we get $S = \begin{pmatrix} \sqrt{2}/2 & \sqrt{2} \\ -\sqrt{2}/4 & \sqrt{2}/2 \end{pmatrix}$ and $S\mathcal{B} = \{ \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \}$, which as you can check, is indeed orthonormal in $\langle \cdot, \cdot \rangle$.

Generalizing one more notion from the dot product setting to an arbitrary complex (resp. real) inner product space, we have the

VII.C.5. DEFINITION. Call a transformation $T: V \to V$ unitary (resp. orthogonal) in the given inner product if $||T\vec{v}|| = ||\vec{v}||$ for all $\vec{v} \in V$. (Equivalently, $\langle T\vec{v}, T\vec{w} \rangle = \langle \vec{v}, \vec{w} \rangle \forall \vec{v}, \vec{w} \in V$; see Exercise (5).)

Multiplication by *S* in Example VII.C.4 is orthogonal in this sense.

Gram coefficients, Fourier expansion. Next let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space over \mathbb{C} (resp. \mathbb{R}), $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_n\}$ a unitary (orthonormal) basis, and $T : V \to V$ a linear transformation. Write a_{ij} for the entries of $A = [T]_{\mathcal{B}}$ so that

$$T\vec{v}_j = \sum_i a_{ij}\vec{v}_i,$$

and notice that

$$\langle \vec{v}_i, T \vec{v}_j \rangle = \langle \vec{v}_i, \sum_k a_{kj} \vec{v}_k \rangle = \sum_k a_{kj} \langle \vec{v}_i, \vec{v}_k \rangle = \sum_k a_{kj} \delta_{ik} = a_{ij}$$
$$\implies T \vec{v}_j = \sum_i \langle \vec{v}_i, T \vec{v}_j \rangle \vec{v}_i \implies T \vec{x} = \sum_i \langle \vec{v}_i, T \vec{x} \rangle \vec{v}_i,$$

where the last implication is by linear extension. Notice that (for T = Id) we've recovered the Fourier expansion formula $\vec{x} = \sum_i \langle \vec{v}_i, \vec{x} \rangle \vec{v}_i$

248

¹²That is, in the notation of §VII.B, $S \in O_2(\mathbb{R}, B)$; we have $\langle S\vec{x}, S\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$, and *S* preserves the inner product/bilinear form.

from §VII.A, but for a general inner product. The coefficients $\langle \vec{v}_i, T\vec{v}_j \rangle$ are called *Gram* coefficients. WARNING: They only compute the entries of $[T]_{\mathcal{B}}$ if \mathcal{B} is unitary (orthonormal).

Adjoint of a linear transformation. Now we define a new transformation,¹³ the **adjoint**

$$T^{\dagger}: V \to V$$

of *T*, by demanding that for all \vec{u} , \vec{w}

(VII.C.6)
$$\left\langle T^{\dagger}\vec{u}, \vec{w} \right\rangle = \left\langle \vec{u}, T\vec{w} \right\rangle$$

How do we know such a transformation exists? If it did then we could apply the expansion formula to obtain¹⁴

$$T^{\dagger}\vec{x} = \sum_{i} \left\langle \vec{v}_{i}, T^{\dagger}\vec{x} \right\rangle \vec{v}_{i} = \sum_{i} \overline{\left\langle T^{\dagger}\vec{x}, \vec{v}_{i} \right\rangle} \vec{v}_{i} = \sum_{i} \overline{\left\langle \vec{x}, T\vec{v}_{i} \right\rangle} \vec{v}_{i},$$

and the latter expression is as good as a definition (plug it in to (VII.C.6) and check). Since

$$T^{\dagger}\vec{v}_{j} = \sum \overline{\langle \vec{v}_{j}, T\vec{v}_{i} \rangle} \vec{v}_{i} = \sum \overline{a_{ji}} \vec{v}_{i}$$

the matrix $[T^{\dagger}]_{\mathcal{B}}$ is the conjugate transpose of $[T]_{\mathcal{B}}$ (or just the transpose if V/\mathbb{R}). WARNING: While this matrix point of view on the adjoint is very important, you can't just write the matrix of T with respect to an arbitrary basis, conjugate transpose it and claim you found the matrix of T^{\dagger} . (If that were possible then T^{\dagger} would have nothing to do with the inner product.) As usual, $[T^{\dagger}]_{\mathcal{B}} = {}^{t}\overline{[T]_{\mathcal{B}}}$ only holds for \mathcal{B} unitary/orthogonal (under the given inner product).

Here's a slightly more abstract point of view on what the adjoint "is": for fixed $\vec{w} \in V$, $\langle \vec{w}, \cdot \rangle$ is a linear functional on V (defined by $\langle \vec{w}, \cdot \rangle(\vec{v}) = \langle \vec{w}, \vec{v} \rangle$), i.e. an element of V^{\vee} .¹⁵ In fact the map sending $\vec{w} \mapsto \langle \vec{w}, \cdot \rangle$ gives an isomorphism of V with its dual space.

¹³not to be confused with the *classical adjoint* (or *adjugate*) Adj(M) of a matrix M.

¹⁴This computation and those that follow are valid for *V* over either \mathbb{R} or \mathbb{C} . You may ignore the bars (denoting complex conjugation) in the real case, since the numbers are all real.

 $^{^{15}\}text{Recall}$ from §III.D that the symbol " \lor " dualizes vector spaces and linear transformations.

QUESTION: What transformation on V corresponds under this isomorphism to the dual transformation $T^{\vee}: V^{\vee} \rightarrow V^{\vee}$? That is, what dotted map makes the following diagram "commute"?

$$V \xrightarrow{\cong} V^{\vee} \downarrow_{T^{\vee}} \downarrow$$

The answer: T^{\dagger} . In other words, the top map followed by (composed with) T^{\vee} is the same as T^{\dagger} followed by the bottom map:

$$\left\langle T^{\dagger}\vec{w},\cdot\right\rangle =T^{\vee}\left\langle \vec{w},\cdot\right\rangle$$

as elements of V^{\vee} . One sees this by applying both sides to $\vec{v} \in V$: using the definition of T^{\vee} ,

$$(T^{\vee}\langle \vec{w}, \cdot \rangle)(\vec{v}) = \langle \vec{w}, \cdot \rangle(T\vec{v}) = \langle \vec{w}, T\vec{v} \rangle = \langle T^{\dagger}\vec{w}, \vec{v} \rangle = \langle T^{\dagger}\vec{w}, \cdot \rangle(\vec{v}).$$

CONCLUSION: Let V be an inner product space and $T: V \to V$ a linear transformation. Then if we use the inner product $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ to view V as its own dual space, $T^{\dagger}: V \to V$ plays the role of T^{\vee} .

Since $(T^{\vee})^{\vee} = T$ you might think $(T^{\dagger})^{\dagger} = T$, and this is correct: write for any $\vec{w}, \vec{u} \in V$

$$\langle \vec{w}, T\vec{u} \rangle = \left\langle T^{\dagger}\vec{w}, \vec{u} \right\rangle = \overline{\langle \vec{u}, T^{\dagger}\vec{w} \rangle} = \overline{\langle (T^{\dagger})^{\dagger}\vec{u}, \vec{w} \rangle} = \left\langle \vec{w}, (T^{\dagger})^{\dagger}\vec{u} \right\rangle;$$

thus

$$\left\langle \vec{w}, T\vec{u} - (T^{\dagger})^{\dagger}\vec{u} \right\rangle = 0 \quad \forall \vec{u}, \vec{w}.$$

In particular, by taking $\vec{w} = T\vec{u} - (T^{\dagger})^{\dagger}\vec{u}$ we have $||T\vec{u} - (T^{\dagger})^{\dagger}\vec{u}|| = 0$, and thus $T\vec{u} - (T^{\dagger})^{\dagger} = 0$ or $T\vec{u} = (T^{\dagger})^{\dagger}\vec{u}$ for all $\vec{u} \in V$.

VII.C.7. REMARK. The adjoint gives another way to characterize *unitary transformations* (Defn. VII.C.5). From $\langle T\vec{x}, T\vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ $(\forall \vec{x}, \vec{y} \in V)$ we get $\langle T^{\dagger}T\vec{x}, \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle$ hence $\langle (T^{\dagger}T - \mathbb{I})\vec{x}, \vec{y} \rangle = 0$. Taking $\vec{y} = (T^{\dagger}T - \mathbb{I})\vec{x}$ gives $||(T^{\dagger}T - \mathbb{I})\vec{x}|| = 0$ hence $(T^{\dagger}T - \mathbb{I})\vec{x} = \vec{0}$ for all \vec{x} . So $T^{\dagger}T - \mathbb{I} = 0$ whence

(VII.C.8)
$$T^{\dagger}T = \mathbb{I} = TT^{\dagger}.$$

EXERCISES

VII.C.9. EXAMPLE. Let *V* be the real vector space of all continuously differentiable (real-valued) functions on \mathbb{R} which are periodic of period 1: i.e. f(t) = f(t+1) for all *t*. (This is infinite-dimensional, but no matter.) Then¹⁶

$$\langle f,g\rangle = \int_0^1 f(t)\,g(t)\,dt$$

defines an inner product: it is clearly bilinear, and for any nonzero function f we have $\langle f, f \rangle = \int_0^1 f(t)^2 dt > 0$. Now define a transformation $T: V \to V$ by T(f) = 3f - f' (i.e., $T = 3 - \frac{d}{dt}$). We use *integration by parts* to find the adjoint:

$$\langle f, Tg \rangle = \int_0^1 f \, (3g - g')dt = 3 \int_0^1 f \, g \, dt - \int_0^1 f \, g' \, dt$$

= $3 \int_0^1 f \, g \, dt + \int_0^1 f' \, g \, dt = \int_0^1 (3f + f')g \, dt = \left\langle T^{\dagger}f, g \right\rangle;$

that is, $T^{\dagger} = 3 + \frac{d}{dt}$. (There was no f(1)g(1) - f(0)g(0) term in the \int -by-parts because this is zero by the periodicity hypothesis!)

Exercises

(1) Let $V = \mathbb{R}^2$, and specify an inner product $\langle \cdot, \cdot \rangle$ by

$$\|\vec{x}\|^2 := (x_1 - x_2)^2 + 3x_2^2.$$

(Here $\vec{x} = x_1\hat{e}_1 + x_2\hat{e}_2$.) Find the matrix, with respect to \hat{e} , of the orthogonal projection (orthogonal with respect to $\langle \cdot, \cdot \rangle$, not the dot product) onto the line generated by $3\hat{e}_1 + 4\hat{e}_2$. Show that this projection is its own adjoint.

- (2) Check that T[†]x := ∑_i ⟨x, Tv_i⟩ v_i satisfies equation (VII.C.6) as claimed in the notes. (Here {v_i}ⁿ_{i=1} is a unitary/orthonormal basis.)
- (3) In Exercise VII.B.2, you found an orthonormal basis \mathcal{B} of $\mathcal{P}_2(\mathbb{R})$ under $\langle f, g \rangle := \int_0^1 f(t)g(t)dt$, and computed the matrix $[T]_{\mathcal{B}}$, where (Tf)(t) := f(t-1).

¹⁶If we considered complex-valued functions, then $\langle f, g \rangle$ would be $\int_0^1 \overline{f(t)} g(t) dt$.

(a) Find $[T^{\dagger}]_{\mathcal{B}}$, and compute $T^{\dagger}(1)$. Check your answer by "plugging it in" to the definition for adjoint. It should be a quadratic polynomial with rather nasty coefficients.

(b) What is the adjoint of $S := \frac{d}{dt}$?

(4) (a) For $V = M_n(\mathbb{C})$, check that $\langle A, B \rangle := \operatorname{tr}(AB^*)$ defines an inner product.

(b) Now let *P* be a fixed invertible matrix in *V*, and define T_P : $V \to V$ by $T_P(A) := P^{-1}AP$. What is T_P^{\dagger} ?

(5) By definition, unitary/orthogonal transformations preserve $\|\cdot\|$; show that this implies they preserve $\langle \cdot, \cdot \rangle$. [Hint: in the orthogonal (real) case you can write $\langle \vec{x}, \vec{y} \rangle = \frac{1}{2} \langle \vec{x} + \vec{y}, \vec{x} + \vec{y} \rangle - \frac{1}{2} \langle \vec{x}, \vec{x} \rangle - \frac{1}{2} \langle \vec{y}, \vec{y} \rangle$. What do you have to do differently in the unitary (complex) case?]

252