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VII.C. Inner products

Let V /IR be an n-dimensional real vector space. Recall from the
end of §VII.B that a symmetric bilinear form

B:VxV =R

is called positive-definite if it is nondegenerate of signature (p,q) =
(n,0) — or equivalently, if

740 = B(5,9) > 0.

VIL.C.1. DEFINITION. Aninner productis a positive-definite sym-
metric bilinear form.

NOTATION: Instead of B(ii, @) we shall write (if, @). Since (-, -)
is definite,
0=|7)%:=(7,5) = 7=0.

A given inner product determines notions of length and orthogonal-

ityon V:

ilw < (io)=0, |ul=./(i1i).
If V.= IR" these should not be mixed with the || - || and L coming
from the dot product.!

For any symmetric bilinear form B, Sylvester’s theorem guaran-
tees the existence of a basis B such that

I, 0 0
B(ii,®) = 'il]g | © ~I, 0 | [@]g.
0 0 0

Clearly in order for B(i, i) to be always positive (i # 0) we must
have g = 0 and p = n (all 1’s along the diagonal). Therefore any
given inner product has a basis with respect to which

(it, @) = il g[@] 5 = { dot product” in that .

coordinate system

Hoften called the “Euclidean” or “standard” inner product on IR".
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WARNING: If V = IR" this is not necessarily the usual dot product,
unless B = ¢!

If instead V is a vector space over C, then by “inner product” we
shall mean a positive-definite Hermitian form (-,-) : V. xV — C. In
particular, the 1% entry is conjugate-linear [(wil, @) = & (if, @)], the
2"d linear [(if,a®) = a (i, ®)], and (il, @) = (@,ii). By Sylvester
there is a basis with respect to which

(it @) = [il] 5[@],
which is “like” the complex dot product (and the same warning ap-

plies when V' = C"). By “plugging in” the basis elements for i, w
one has:

VIL.C.2. PROPOSITION. For any inner product on a complex (real)
vector space V, there is a basis B = {0y, ..., 0y} for V such that (7;, U;) =
bij, i.e. B is a unitary (orthonormal) basis under the inner product.

WARNING: For C" (resp. R"), € is unitary (orthonormal) only un-
der the standard inner (= dot) product.

VII.C.3. REMARK. V together with some inner product (-, -) (and
the accompanying notions of L and length) is called an “inner prod-
uct space”. The Proposition simply says: any inner product space
has a unitary (orthonormal) basis, though (as the next Example at-
tests) this basis is far from unique. The practical way to obtain one,
starting from any given basis for V, is by the Gram-Schmidt procedure
(exactly as we did it for the dot product); see for example Exercise
III.B.2(a).

VIL.C.4. EXAMPLE. Consider the symmetric bilinear form
1
R T s 0) (wn X1y1 | X2l2
B(X,7) = (%, 1) = 'xMij := 8 =
(%9) = (£5) = '¥Mj = (11 x) (0 %> (yz) 4=
on V = R? (with vectors written with respect to the standard basis).
Clearly this is positive definite, hence an inner product, and B =
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{1, 72} = {(%g ) , (\%)} is an orthonormal basis of this inner

product space, i.e. (7;, 7;) = Jj;.
For any matrix S satisfying'? {SMS = M, we have
<SZ7{, SZ7J> = tﬁfSMSﬁj = tZ?,‘Mffj = <Z7i, 27]> = (51‘]'

hence SB = {57, St} is another orthonormal basis. These matrices
are precisely the ones of the form

g _ cosf —2sinf
B %sin@ cosf |-

Sotaking 0 = —7, wegetS = (_\/\%/24 \/\52> and SB = {(—21)/ (1)}

which as you can check, is indeed orthonormal in (-, -).

Generalizing one more notion from the dot product setting to an
arbitrary complex (resp. real) inner product space, we have the

VII.C.5. DEFINITION. Call a transformation T: V — V unitary
(resp. orthogonal) in the given inner product if ||T7|| = ||7|| for all
7 € V. (Equivalently, (T, Tw) = (¥, @) V0, € V; see Exercise (5).)

Multiplication by S in Example VII.C.4 is orthogonal in this sense.

Gram coefficients, Fourier expansion. Next let (V, (-,-)) be an
inner product space over C (resp. R), B = {71,...,7,} a unitary
(orthonormal) basis, and T : V — V a linear transformation. Write
a;j for the entries of A = [T]g so that

T7; = }; a;v;,
and notice that
(i, TT;) = (T, L axjTx) = L ki (05, Ok) = L kjoix = i
— Tv; =Y <5i, TZ_J']-> i, = Tx=Y,(7,TX)7,

where the last implication is by linear extension. Notice that (for T =
Id) we’ve recovered the Fourier expansion formula ¥ = Y_;(7;, X)7;

127hat is, in the notation of §VILB, S € Oy(IR, B); we have (S¥, Sij) = (X,¥), and S
preserves the inner product/bilinear form.
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from §VILA, but for a general inner product. The coefficients (7;, T7;)
are called Gram coefficients. WARNING: They only compute the en-
tries of [T|p if B is unitary (orthonormal).

Adjoint of a linear transformation. Now we define a new trans-
formation,'® the adjoint

TH: V=V
of T, by demanding that for all i, @
(VILC.6) <:r’fa*, w> = (il T@).

How do we know such a transformation exists? If it did then we

could apply the expansion formula to obtain'*

T'x =Y, (3, T'X) 0, = ¥, (T'X,0,)5; = ¥, (X, T0:)7,,

and the latter expression is as good as a definition (plug it in to
(VIL.C.6) and check). Since

T'%; =) (9, T0:)0; = ) a;0;

the matrix [T*]g is the conjugate transpose of [T]z (or just the trans-
pose if V/IR). WARNING: While this matrix point of view on the
adjoint is very important, you can’t just write the matrix of T with
respect to an arbitrary basis, conjugate transpose it and claim you
found the matrix of TT. (If that were possible then TT would have
nothing to do with the inner product.) As usual, [Ttz = ![T|3 only
holds for B unitary/orthogonal (under the given inner product).

Here’s a slightly more abstract point of view on what the adjoint
“is”: for fixed @ € V, (@, -) is a linear functional on V (defined by
(@,-)(7) = (@, 7)), i.e. an element of VV.!® In fact the map sending
W — (W, -) gives an isomorphism of V with its dual space.

13not to be confused with the classical adjoint (or adjugate) Adj(M) of a matrix M.

14This computation and those that follow are valid for V over either R or C. You
may ignore the bars (denoting complex conjugation) in the real case, since the
numbers are all real.

15Recall from SIII.D that the symbol “V” dualizes vector spaces and linear transfor-
mations.
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QUESTION: What transformation on V corresponds under this iso-
morphism to the dual transformation TV: VV — VV? That is, what
dotted map makes the following diagram “commute”?

% Vv

| W (W, )

| lTV

A ~

\% — vV
W (W, )

The answer: T'. In other words, the top map followed by (composed
with) TV is the same as T" followed by the bottom map:

<T*u7,-> =TV (@, )

as elements of V. One sees this by applying both sides to 7 € V:
using the definition of TV,

(TY (@, ) (8) = (@, ) (TF) = (@, TF) = <T+as,z7> = <T+w,-> (@).
CONCLUSION: Let V be an inner product space and T: V. — V a

linear transformation. Then if we use the inner product (-,-) : V.xV — C
to view V as its own dual space, T*: V — V plays the role of TV,

Since (TV)Y = T you might think (T*)" = T, and this is correct:
write for any w, i € V

(@, Ti) = (T'®,7) = (@, T'%) = ((T")%,@) = (,(T")'7);

thus

In particular, by taking @ = Tii — (T")"ii we have || Tit — (TH)ii|| =
0, and thus Tii — (TT)* = 0or Tii = (T")%ii forallii € V.

VIL.C.7. REMARK. The adjoint gives another way to character-
ize unitary transformations (Defn. VIL.C.5). From (TX,Ty) = (X,¥)
(VX, i € V) we get (TTTX,j) = (%) hence ((T'T —1)%,7) = 0. Tak-
ing ij = (T'T — )% gives ||(T*T — 1)¥|| = 0 hence (T*T — )X = 0
forall . So T'T — I = 0 whence

(VIL.C.8) T'T=1=TT".
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VIL.C.9. EXAMPLE. Let V be the real vector space of all continu-
ously differentiable (real-valued) functions on IR which are periodic
of period 1: i.e. f(t) = f(t+1) for all . (This is infinite-dimensional,
but no matter.) Then!®

(f.8) = [ F)gta

defines an inner product: it is clearly bilinear, and for any nonzero
function f we have (f, f) = fo (t)2dt > 0. Now defme a trans-
formation T: V — V by T(f) = 3f — f' (ie., T = 3 — 4). We use
integration by parts to find the adjoint:

(f, Tg) =/01f(3g—g’)dt = 3/01fgdt - /Olfg’dt

= 3/01fgdt + /Olf’gdt = /01(3f+f’)gdt = (T*,3);

that is, TT = 3 + %. (There was no f(1)g(1) — f(0)g(0) term in the
[-by-parts because this is zero by the periodicity hypothesis!)

Exercises
(1) Let V = RR?, and specify an inner product (-, -) by

1%]12 := (x1 — x2)? + 3x3.

(Here X = x161 + x263.) Find the matrix, with respect to é, of the
orthogonal projection (orthogonal with respect to (-, -), not the
dot product) onto the line generated by 3é; + 4é;. Show that this
projection is its own adjoint.

(2) Check that T'¥ := Y ; (¥, Td;)0; satisfies equation (VIL.C.6) as
claimed in the notes. (Here {7;}" , is a unitary/orthonormal ba-

sis.)
(3) In Exercise VIL.B.2, you found an orthonormal basis B of P,(RR)
under (f,g) fo t)dt, and computed the matrix [T]g,

where (Tf)(t ) : f(t— 1).

161f we considered complex-valued functions, then (f, g) would be fol f(t)g(t)dt.
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(a) Find [T*]g, and compute T*(1). Check your answer by “plug-
ging it in” to the definition for adjoint. It should be a quadratic
polynomial with rather nasty coefficients.

(b) What is the adjoint of S := %?

(4) (a)For V. = M, (C), check that (A, B) := tr(AB*) defines an inner
product.

(b) Now let P be a fixed invertible matrix in V, and define Tp :
V — Vby Tp(A) := P~1AP. What is T}?

(5) By definition, unitary/orthogonal transformations preserve || - ||;
show that this implies they preserve (-, -). [Hint: in the orthogo-
nal (real) case you can write (X,7) = (X + 7, ¥+ ) — 3(¥ %) —
(7, 7). What do you have to do differently in the unitary (com-
plex) case?]



