VII.C. Inner products

Let V / \mathbb{R} be an n-dimensional real vector space. Recall from the end of §VII.B that a symmetric bilinear form

$$
B: V \times V \rightarrow \mathbb{R}
$$

is called positive-definite if it is nondegenerate of signature $(p, q)=$ $(n, 0)$ - or equivalently, if

$$
\vec{v} \neq \overrightarrow{0} \quad \Longrightarrow \quad B(\vec{v}, \vec{v})>0 .
$$

VII.C.1. DEFINITION. An inner product is a positive-definite symmetric bilinear form.

Notation: Instead of $B(\vec{u}, \vec{w})$ we shall write $\langle\vec{u}, \vec{w}\rangle$. Since $\langle\cdot, \cdot\rangle$ is definite,

$$
0=\|\vec{v}\|^{2}:=\langle\vec{v}, \vec{v}\rangle \quad \Longrightarrow \quad \vec{v}=\overrightarrow{0} .
$$

A given inner product determines notions of length and orthogonality on V :

$$
\vec{u} \perp \vec{w} \Leftrightarrow\langle\vec{u}, \vec{w}\rangle=0, \quad\|\vec{u}\|=\sqrt{\langle\vec{u}, \vec{u}\rangle} .
$$

If $V=\mathbb{R}^{n}$ these should not be mixed with the $\|\cdot\|$ and \perp coming from the dot product. ${ }^{11}$

For any symmetric bilinear form B, Sylvester's theorem guarantees the existence of a basis \mathcal{B} such that

$$
B(\vec{u}, \vec{w})={ }^{t}[\vec{u}]_{\mathcal{B}}\left(\begin{array}{ccc}
\mathbb{I}_{p} & 0 & 0 \\
0 & -\mathbb{I}_{q} & 0 \\
0 & 0 & 0
\end{array}\right)[\vec{w}]_{\mathcal{B}} .
$$

Clearly in order for $B(\vec{u}, \vec{u})$ to be always positive ($\vec{u} \neq 0$) we must have $q=0$ and $p=n$ (all 1's along the diagonal). Therefore any given inner product has a basis with respect to which

$$
\langle\vec{u}, \vec{w}\rangle={ }^{t}[\vec{u}]_{\mathcal{B}}[\vec{w}]_{\mathcal{B}}=\left\{\begin{array}{c}
\text { "dot product" in that } \\
\text { coordinate system }
\end{array} .\right.
$$

[^0]WARNING: If $V=\mathbb{R}^{n}$ this is not necessarily the usual dot product, unless $\mathcal{B}=\hat{e}$!

If instead V is a vector space over \mathbb{C}, then by "inner product" we shall mean a positive-definite Hermitian form $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$. In particular, the $1^{\text {st }}$ entry is conjugate-linear $[\langle\alpha \vec{u}, \vec{w}\rangle=\bar{\alpha}\langle\vec{u}, \vec{w}\rangle]$, the $2^{\text {nd }}$ linear $[\langle\vec{u}, \alpha \vec{w}\rangle=\alpha\langle\vec{u}, \vec{w}\rangle]$, and $\langle\vec{u}, \vec{w}\rangle=\overline{\langle\vec{w}, \vec{u}\rangle}$. By Sylvester there is a basis with respect to which

$$
\langle\vec{u}, \vec{w}\rangle=[\vec{u}]_{\mathcal{B}}^{*}[\vec{w}]_{\mathcal{B}},
$$

which is "like" the complex dot product (and the same warning applies when $V=\mathbb{C}^{n}$). By "plugging in" the basis elements for \vec{u}, \vec{w} one has:
VII.C.2. Proposition. For any inner product on a complex (real) vector space V, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ for V such that $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=$ $\delta_{i j}$, i.e. \mathcal{B} is a unitary (orthonormal) basis under the inner product.

WARNING: For $\mathbb{C}^{n}\left(\right.$ resp. $\left.\mathbb{R}^{n}\right), \hat{e}$ is unitary (orthonormal) only under the standard inner $(=\operatorname{dot})$ product.
VII.C.3. Remark. V together with some inner product $\langle\cdot, \cdot\rangle$ (and the accompanying notions of \perp and length) is called an "inner product space". The Proposition simply says: any inner product space has a unitary (orthonormal) basis, though (as the next Example attests) this basis is far from unique. The practical way to obtain one, starting from any given basis for V, is by the Gram-Schmidt procedure (exactly as we did it for the dot product); see for example Exercise III.B.2(a).
VII.C.4. Example. Consider the symmetric bilinear form

$$
B(\vec{x}, \vec{y})=\langle\vec{x}, \vec{y}\rangle={ }^{t} \vec{x} M \vec{y}:=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{8} & 0 \\
0 & \frac{1}{2}
\end{array}\right)\binom{y_{1}}{y_{2}}=\frac{x_{1} y_{1}}{8}+\frac{x_{2} y_{2}}{2}
$$

on $V=\mathbb{R}^{2}$ (with vectors written with respect to the standard basis). Clearly this is positive definite, hence an inner product, and $\mathcal{B}=$
$\left\{\vec{v}_{1}, \vec{v}_{2}\right\}:=\left\{\binom{\sqrt{8}}{0},\binom{0}{\sqrt{2}}\right\}$ is an orthonormal basis of this inner product space, i.e. $\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=\delta_{i j}$.

For any matrix S satisfying ${ }^{12}$ t $S M S=M$, we have

$$
\left\langle S \vec{v}_{i}, S \vec{v}_{j}\right\rangle={ }^{t} \vec{v}_{i}^{t} S M S \vec{v}_{j}={ }^{t} \vec{v}_{i} M \vec{v}_{j}=\left\langle\vec{v}_{i}, \vec{v}_{j}\right\rangle=\delta_{i j}
$$

hence $S \mathcal{B}=\left\{S \vec{v}_{1}, S \vec{v}_{2}\right\}$ is another orthonormal basis. These matrices are precisely the ones of the form

$$
S=\left(\begin{array}{cc}
\cos \theta & -2 \sin \theta \\
\frac{1}{2} \sin \theta & \cos \theta
\end{array}\right) .
$$

So taking $\theta=-\frac{\pi}{4}$, we get $S=\left(\begin{array}{cc}\sqrt{2} / 2 & \sqrt{2} \\ -\sqrt{2} / 4 & \sqrt{2} / 2\end{array}\right)$ and $S \mathcal{B}=\left\{\binom{2}{-1},\binom{2}{1}\right\}$, which as you can check, is indeed orthonormal in $\langle\cdot, \cdot\rangle$.

Generalizing one more notion from the dot product setting to an arbitrary complex (resp. real) inner product space, we have the
VII.C.5. Definition. Call a transformation $T: V \rightarrow V$ unitary (resp. orthogonal) in the given inner product if $\|T \vec{v}\|=\|\vec{v}\|$ for all $\vec{v} \in V$. (Equivalently, $\langle T \vec{v}, T \vec{w}\rangle=\langle\vec{v}, \vec{w}\rangle \forall \vec{v}, \vec{w} \in V$; see Exercise (5).)

Multiplication by S in Example VII.C. 4 is orthogonal in this sense.
Gram coefficients, Fourier expansion. Next let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space over \mathbb{C} (resp. \mathbb{R}), $\mathcal{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ a unitary (orthonormal) basis, and $T: V \rightarrow V$ a linear transformation. Write $a_{i j}$ for the entries of $A=[T]_{\mathcal{B}}$ so that

$$
T \vec{v}_{j}=\sum_{i} a_{i j} \vec{v}_{i},
$$

and notice that

$$
\begin{gathered}
\left\langle\vec{v}_{i}, T \vec{v}_{j}\right\rangle=\left\langle\vec{v}_{i}, \sum_{k} a_{k j} \vec{v}_{k}\right\rangle=\sum_{k} a_{k j}\left\langle\vec{v}_{i}, \vec{v}_{k}\right\rangle=\sum_{k} a_{k j} \delta_{i k}=a_{i j} \\
\Longrightarrow T \vec{v}_{j}=\sum_{i}\left\langle\vec{v}_{i}, T \vec{v}_{j}\right\rangle \vec{v}_{i} \Longrightarrow \quad \Longrightarrow \quad T \vec{x}=\sum_{i}\left\langle\vec{v}_{i}, T \vec{x}\right\rangle \vec{v}_{i},
\end{gathered}
$$

where the last implication is by linear extension. Notice that (for $T=$ Id) we've recovered the Fourier expansion formula $\vec{x}=\sum_{i}\left\langle\vec{v}_{i}, \vec{x}\right\rangle \vec{v}_{i}$
${ }^{12}$ That is, in the notation of §VII.B, $S \in \mathrm{O}_{2}(\mathbb{R}, B)$; we have $\langle S \vec{x}, S \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$, and S preserves the inner product/bilinear form.
from §VII.A, but for a general inner product. The coefficients $\left\langle\vec{v}_{i}, T \vec{v}_{j}\right\rangle$ are called Gram coefficients. WARNING: They only compute the entries of $[T]_{\mathcal{B}}$ if \mathcal{B} is unitary (orthonormal).

Adjoint of a linear transformation. Now we define a new transformation, ${ }^{13}$ the adjoint

$$
T^{\dagger}: V \rightarrow V
$$

of T, by demanding that for all \vec{u}, \vec{w}

$$
\begin{equation*}
\left\langle T^{\dagger} \vec{u}, \vec{w}\right\rangle=\langle\vec{u}, T \vec{w}\rangle . \tag{VII.C.6}
\end{equation*}
$$

How do we know such a transformation exists? If it did then we could apply the expansion formula to obtain ${ }^{14}$

$$
T^{+} \vec{x}=\sum_{i}\left\langle\vec{v}_{i}, T^{+} \vec{x}\right\rangle \vec{v}_{i}=\sum_{i} \overline{\left\langle T^{+} \vec{x}, \vec{v}_{i}\right\rangle} \vec{v}_{i}=\sum_{i} \overline{\left\langle\vec{x}, T \vec{v}_{i}\right\rangle} \vec{v}_{i}
$$

and the latter expression is as good as a definition (plug it in to (VII.C.6) and check). Since

$$
\left.T^{\dagger} \vec{v}_{j}=\sum \overline{\left\langle\vec{v}_{j}, T \vec{v}_{i}\right\rangle}\right\rangle \vec{v}_{i}=\sum \bar{a}_{j i} \vec{v}_{i}
$$

the matrix $\left[T^{\dagger}\right]_{\mathcal{B}}$ is the conjugate transpose of $[T]_{\mathcal{B}}$ (or just the transpose if V / \mathbb{R}). WARNING: While this matrix point of view on the adjoint is very important, you can't just write the matrix of T with respect to an arbitrary basis, conjugate transpose it and claim you found the matrix of T^{\dagger}. (If that were possible then T^{\dagger} would have nothing to do with the inner product.) As usual, $\left[T^{\dagger}\right]_{\mathcal{B}}={ }^{t} \overline{[T]_{\mathcal{B}}}$ only holds for \mathcal{B} unitary/orthogonal (under the given inner product).

Here's a slightly more abstract point of view on what the adjoint "is": for fixed $\vec{w} \in V,\langle\vec{w}, \cdot\rangle$ is a linear functional on V (defined by $\langle\vec{w}, \cdot\rangle(\vec{v})=\langle\vec{w}, \vec{v}\rangle)$, i.e. an element of $V^{\vee} .{ }^{15}$ In fact the map sending $\vec{w} \mapsto\langle\vec{w}, \cdot\rangle$ gives an isomorphism of V with its dual space.
$\overline{13}$ not to be confused with the classical adjoint (or adjugate) $\operatorname{Adj}(M)$ of a matrix M.
${ }^{14}$ This computation and those that follow are valid for V over either \mathbb{R} or \mathbb{C}. You may ignore the bars (denoting complex conjugation) in the real case, since the numbers are all real.
${ }^{15}$ Recall from §III.D that the symbol " \vee " dualizes vector spaces and linear transformations.

QUESTION: What transformation on V corresponds under this isomorphism to the dual transformation $T^{\vee}: V^{\vee} \rightarrow V^{\vee}$? That is, what dotted map makes the following diagram "commute"?

The answer: T^{\dagger}. In other words, the top map followed by (composed with) T^{\vee} is the same as T^{\dagger} followed by the bottom map:

$$
\left\langle T^{\dagger} \vec{w}, \cdot\right\rangle=T^{\vee}\langle\vec{w}, \cdot\rangle
$$

as elements of V^{\vee}. One sees this by applying both sides to $\vec{v} \in V$: using the definition of T^{\vee},

$$
\left(T^{\vee}\langle\vec{w}, \cdot\rangle\right)(\vec{v})=\langle\vec{w}, \cdot\rangle(T \vec{v})=\langle\vec{w}, T \vec{v}\rangle=\left\langle T^{\dagger} \vec{w}, \vec{v}\right\rangle=\left\langle T^{\dagger} \vec{w}, \cdot\right\rangle(\vec{v}) .
$$

CONCLUSION: Let V be an inner product space and $T: V \rightarrow V a$ linear transformation. Then if we use the inner product $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ to view V as its own dual space, $T^{\dagger}: V \rightarrow V$ plays the role of T^{\vee}.

Since $\left(T^{\vee}\right)^{\vee}=T$ you might think $\left(T^{\dagger}\right)^{\dagger}=T$, and this is correct: write for any $\vec{w}, \vec{u} \in V$

$$
\langle\vec{w}, T \vec{u}\rangle=\left\langle T^{\dagger} \vec{w}, \vec{u}\right\rangle=\overline{\left\langle\vec{u}, T^{\dagger} \vec{w}\right\rangle}=\overline{\left\langle\left(T^{\dagger}\right)^{\dagger} \vec{u}, \vec{w}\right\rangle}=\left\langle\vec{w},\left(T^{\dagger}\right)^{\dagger} \vec{u}\right\rangle ;
$$

thus

$$
\left\langle\vec{w}, T \vec{u}-\left(T^{\dagger}\right)^{\dagger} \vec{u}\right\rangle=0 \quad \forall \vec{u}, \vec{w} .
$$

In particular, by taking $\vec{w}=T \vec{u}-\left(T^{\dagger}\right)^{\dagger} \vec{u}$ we have $\left\|T \vec{u}-\left(T^{\dagger}\right)^{\dagger} \vec{u}\right\|=$ 0 , and thus $T \vec{u}-\left(T^{\dagger}\right)^{\dagger}=0$ or $T \vec{u}=\left(T^{\dagger}\right)^{\dagger} \vec{u}$ for all $\vec{u} \in V$.
VII.C.7. Remark. The adjoint gives another way to characterize unitary transformations (Defn. VII.C.5). From $\langle T \vec{x}, T \vec{y}\rangle=\langle\vec{x}, \vec{y}\rangle$ $(\forall \vec{x}, \vec{y} \in V)$ we get $\left\langle T^{\dagger} T \vec{x}, \vec{y}\right\rangle=\langle\vec{x}, \vec{y}\rangle$ hence $\left\langle\left(T^{\dagger} T-\mathbb{I}\right) \vec{x}, \vec{y}\right\rangle=0$. Taking $\vec{y}=\left(T^{\dagger} T-\mathbb{I}\right) \vec{x}$ gives $\left\|\left(T^{\dagger} T-\mathbb{I}\right) \vec{x}\right\|=0$ hence $\left(T^{\dagger} T-\mathbb{I}\right) \vec{x}=\overrightarrow{0}$ for all \vec{x}. So $T^{\dagger} T-\mathbb{I}=0$ whence

$$
\begin{equation*}
T^{\dagger} T=\mathbb{I}=T T^{\dagger} \tag{VII.C.8}
\end{equation*}
$$

VII.C.9. EXAMPLE. Let V be the real vector space of all continuously differentiable (real-valued) functions on \mathbb{R} which are periodic of period 1: i.e. $f(t)=f(t+1)$ for all t. (This is infinite-dimensional, but no matter.) Then ${ }^{16}$

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

defines an inner product: it is clearly bilinear, and for any nonzero function f we have $\langle f, f\rangle=\int_{0}^{1} f(t)^{2} d t>0$. Now define a transformation $T: V \rightarrow V$ by $T(f)=3 f-f^{\prime}$ (i.e., $T=3-\frac{d}{d t}$). We use integration by parts to find the adjoint:

$$
\begin{gathered}
\langle f, T g\rangle=\int_{0}^{1} f\left(3 g-g^{\prime}\right) d t=3 \int_{0}^{1} f g d t-\int_{0}^{1} f g^{\prime} d t \\
=3 \int_{0}^{1} f g d t+\int_{0}^{1} f^{\prime} g d t=\int_{0}^{1}\left(3 f+f^{\prime}\right) g d t=\left\langle T^{\dagger} f, g\right\rangle
\end{gathered}
$$

that is, $T^{\dagger}=3+\frac{d}{d t}$. (There was no $f(1) g(1)-f(0) g(0)$ term in the \int-by-parts because this is zero by the periodicity hypothesis!)

Exercises

(1) Let $V=\mathbb{R}^{2}$, and specify an inner product $\langle\cdot, \cdot\rangle$ by

$$
\|\vec{x}\|^{2}:=\left(x_{1}-x_{2}\right)^{2}+3 x_{2}^{2}
$$

(Here $\vec{x}=x_{1} \hat{e}_{1}+x_{2} \hat{e}_{2}$.) Find the matrix, with respect to \hat{e}, of the orthogonal projection (orthogonal with respect to $\langle\cdot, \cdot\rangle$, not the dot product) onto the line generated by $3 \hat{e}_{1}+4 \hat{e}_{2}$. Show that this projection is its own adjoint.
(2) Check that $T^{\dagger} \vec{x}:=\sum_{i} \overline{\left\langle\vec{x}, T \vec{v}_{i}\right\rangle} \vec{v}_{i}$ satisfies equation (VII.C.6) as claimed in the notes. (Here $\left\{\vec{v}_{i}\right\}_{i=1}^{n}$ is a unitary/orthonormal basis.)
(3) In Exercise VII.B.2, you found an orthonormal basis \mathcal{B} of $\mathcal{P}_{2}(\mathbb{R})$ under $\langle f, g\rangle:=\int_{0}^{1} f(t) g(t) d t$, and computed the matrix $[T]_{\mathcal{B}}$, where $(T f)(t):=f(t-1)$.

[^1](a) Find $\left[T^{\dagger}\right]_{\mathcal{B}}$, and compute $T^{\dagger}(1)$. Check your answer by "plugging it in" to the definition for adjoint. It should be a quadratic polynomial with rather nasty coefficients.
(b) What is the adjoint of $S:=\frac{d}{d t}$?
(4) (a) For $V=M_{n}(\mathbb{C})$, check that $\langle A, B\rangle:=\operatorname{tr}\left(A B^{*}\right)$ defines an inner product.
(b) Now let P be a fixed invertible matrix in V, and define T_{P} : $V \rightarrow V$ by $T_{P}(A):=P^{-1} A P$. What is T_{P}^{+}?
(5) By definition, unitary / orthogonal transformations preserve $\|\cdot\|$; show that this implies they preserve $\langle\cdot, \cdot\rangle$. [Hint: in the orthogonal (real) case you can write $\langle\vec{x}, \vec{y}\rangle=\frac{1}{2}\langle\vec{x}+\vec{y}, \vec{x}+\vec{y}\rangle-\frac{1}{2}\langle\vec{x}, \vec{x}\rangle-$ $\frac{1}{2}\langle\vec{y}, \vec{y}\rangle$. What do you have to do differently in the unitary (complex) case?]

[^0]: $\overline{11}$ often called the "Euclidean" or "standard" inner product on \mathbb{R}^{n}.

[^1]: ${ }^{16}$ If we considered complex-valued functions, then $\langle f, g\rangle$ would be $\int_{0}^{1} \overline{f(t)} g(t) d t$.

