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VII.D. The spectral theorem

Let (V, 〈·, ·〉) be an inner-product space (henceforth denoted V).

VII.D.1. DEFINITION. A linear transformation17 T : V → V of an
inner-product space V is self-adjoint if T = T†; that is, if

〈!v, T!w〉 = 〈T!v, !w〉 ∀!v, !w ∈ V.

VII.D.2. EXAMPLE. Take V to be the vector space (over C) consist-
ing of all continuously differentiable complex-valued functions on R

which are periodic of period 1. We choose as our inner product

〈 f , g〉 =
! 1

0
f (t) g(t) dt.

Let T : V → V be the transformation i d
dt , taking f (t) to i f ′(t). Then

an integration by parts argument shows that

〈 f , Tg〉 =
! 1

0
f (t) ig′(t) dt = i

! 1

0
f (t) g′(t) dt

= −i
! 1

0
f ′(t) g(t) dt =

! 1

0
i f ′(t) g(t) dt = 〈T f , g〉 ;

that is, T = T†. More generally any operator of the form a + ib d
dt

(a, b ∈ R) is self-adjoint in this inner product, as you may check.

VII.D.3. REMARK. There are many instances of self-adjoint differ-
ential operators on spaces of functions arising in quantum physics.
Typically these functions are probability distributions for the loca-
tion of a particle, and the operator a “Hamiltonian” T which mea-
sures energy levels, in the sense that T f = λ f means that the eigen-
state f has energy λ. See Exercises (8)-(9). So when the particle (like
an electron in a hydrogen atom) jumps between discrete eigenstates,
the “light” emitted has a wavelength corresponding to the differ-
ence of eigenvalues. From this perspective, it becomes quite natural
to call the set of eigenvalues of an operator T its spectrum.

17Terminological note: we have also called linear transformations from a vector
space V to itself “endomorphisms of V”; in the present context, one more typically
calls them “operators on V”.
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The spaces of functions mentioned briefly above are, of course,
infinite-dimensional. In mathematics, the study of linear operators
on such spaces is the domain of functional analysis, which is well
beyond our scope here.18 So for the remainder of the section, V will
denote a finite-dimensional inner-product space (real or complex).

What can we say right away about self-adjoint operators?

VII.D.4. PROPOSITION. Let V be a complex (resp. real) inner product
space, and T a linear operator on V. Suppose B is a unitary (resp. or-
thonormal) basis; that is, B = {!v1, . . . ,!vn} satisfies 〈!vi,!vj〉 = δij. Then
T is self-adjoint if and only if its matrix is Hermitian (resp. symmetric),
i.e. [T]B = t[T]B.

PROOF. By §VII.C, B unitary =⇒ [T†]B = t[T]B. That’s it. □

VII.D.5. EXAMPLE. The orthogonal projection PW to any subspace
W of an inner-product space V is self-adjoint. One way to see this:
taking B to be the completion of an orthonormal basis {v̂1, . . . , v̂k} of
W to one of V, [PW ]B = diag{1, . . . , 1! "# $

k

, 0, . . . , 0} is clearly symmetric.

The next result is one of the most important in linear algebra.

VII.D.6. THEOREM (Spectral Theorem I). Let T : V → V be a self-
adjoint linear operator on a finite-dimensional complex (resp. real) inner
product space V. Then there exists a unitary (resp. orthonormal) basis B
with respect to which [T]B is a real diagonal matrix. That is, T has a unitary
(resp. o.n.) eigenbasis and all real eigenvalues.

It has a very concrete consequence for n × n matrices:

VII.D.7. COROLLARY. Any Hermitian (resp. real symmetric) matrix
is unitarily (resp. orthogonally) diagonalizable. That is, if A = A∗ (resp.
A = t A with real entries), then A = SDS−1 where
(i) S is unitary (resp. orthogonal), i.e. S∗S = I; and
(ii) D = diag{λ1, . . . , λn}, λi ∈ R.
18For one thing, in the infinite-dimensional setting, what is called the spectrum
only contains the set of eigenvalues.
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PROOF THAT THM. VII.D.6 =⇒ COR. VII.D.7. We do the real
case; you can easily modify it for the complex one. We are given
a symmetric matrix A; let’s start by making that into a self-adjoint
transformation on the inner product space (Rn, dot product). If we
take T : Rn → Rn to be multiplication by A, then [T]ê = A. Since
A = t A, we have

!x · (A!y) = t!xA!y = t!x t A!y = t(A!x)!y = (A!x) ·!y,

which says that T is self-adjoint in the dot product. Therefore Thm.
VII.D.6 provides us with an orthonormal basis B = {!v1, . . . ,!vn} such
that D = [T]B = PBAP−1

B . So (ii) is clear, while (i) (which says that
tPBPB = I) follows from the orthonormality of B in the dot product
(i.e., !vi ·!vj = δij). □

Turning to the proof of the Spectral Theorem, we first record two
of the tools we shall use:

(i) Maximum Principle. A continuous real-valued function f on a
closed, bounded subset of Euclidean space (Rn or Cn) attains a max-
imum value. If the function is also differentiable, then the point at
which this maximum value is attained is a stationary point of f .

(ii) Leibniz rule. Let !w(t), !u(t) be time dependent vectors ∈ V. If
〈·, ·〉 is an inner product on V, then 〈!w(t),!u(t)〉 is a real or complex-
valued function with derivative

d
dt

〈!w,!u〉 =
%
!w′,!u

&
+

%
!w,!u′& .

To see this, write everything in components relative to any basis:
〈!w(t),!u(t)〉 = ∑i,j wi(t)bijuj(t). The result is then clear from the
usual Leibniz rule since the bij are constants.

PROOF OF SPECTRAL THEOREM I. We do the real and complex
cases together. The main idea is to try to find an eigenvector, then ar-
gue by induction that you can continue to find more (and that these
will be orthogonal to the first, etc.). Of course, in the complex case
we know that an eigenvector exists by §V.B; but the argument here is
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independent of that and rather elegant, while taking care of the real
case too.19

Consider the closed bounded subset

S = {!x ∈ V | 〈!x,!x〉 = 1}

in V; for example, if V = Cn with 〈·, ·〉 the dot product,20 then

S =
'
(x1 + iy1, . . . , xn + iyn) ∈ Cn

((( x2
1 + y2

1 + . . . + x2
n + y2

n = 1
)

is just a real (2n − 1)-sphere of “unit length” vectors. Define a func-
tion

f : S → R

by
f (!x) = 〈!x, T!x〉 .

To show this is real-valued in the complex case, argue as follows:

〈!x, T!x〉 =

↑
T self-adjoint

〈T!x,!x〉 =

↑
Hermitian symmetry of 〈·,·〉

〈!x, T!x〉,

and any number equal to its own conjugate is real, so 〈!x, T!x〉 ∈ R.
By the maximum principle, there is a !w with 〈!w, !w〉 = 1 (i.e. in

S) such that

if 〈!v,!v〉 = 1 then

*
f (!w) ≥ f (!v), i.e.
〈!w, T!w〉 ≥ 〈!v, T!v〉

.

For this !w consider

T!w = 〈!w, T!w〉 !w + (T!w − 〈!w, T!w〉 !w)

=: λ!w + !w⊥.

19As you know, there do exist real endomorphisms/matrices with no real eigen-
vector: the characteristic polynomial might have no linear factor over R. (Part of
the content of the Spectral Theorem is that this can’t happen for a real symmetric
matrix.) Still, one can get around the argument here, by appealing to §V.B to get
a complex eigenvector !v, showing the eigenvalue is real, then observing that the
real or imaginary part of !v is a real eigenvector.
20By the “dot product” or “standard inner product” on Cn, one of course means
〈!z, !w〉 = !z · !w := t!z !w = z1w1 + · · ·+ znwn.
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[Check that !w⊥ deserves its name:

〈!w, !w⊥〉 = 〈!w, T!w〉 − 〈!w, T!w〉 〈!w, !w〉! "# $
=1

= 0.]

If !w⊥ = 0 then we have found an eigenvector.
Otherwise we can divide by ||!w⊥||. Therefore consider the path

!ϕ : R → S

defined by

!ϕ(t) = (cos t)!w + (sin t)
!w⊥

||!w⊥||
.

(Clearly this is on S since using orthonormality of !w, !w⊥

||!w⊥|| we have

〈!ϕ(t), !ϕ(t)〉 = cos2 t + sin2 t = 1.)
Now this path !ϕ(t) passes through !w at t = 0. Since f has a

stationary point at !w, the composition f ◦ ϕ has a stationary point at
t = 0. Noting that !ϕ′(0) = !w⊥

||!w⊥|| and d
dt (T !ϕ(t)) = T!ϕ′(t) because T

is constant linear, we write

0 =
d
dt
( f ◦ ϕ)

((((
t=0

=
d
dt

〈!ϕ(t), T!ϕ(t)〉
((((

t=0

=
%
!ϕ′(t), T!ϕ(t)

&
|t=0 +

%
!ϕ(t), T!ϕ′(t)

&
|t=0

=
%
!ϕ′(0), T!ϕ(0)

&
+

%
!ϕ(0), T!ϕ′(0)

&

=

+
!w⊥

||!w⊥||
, T!w

,
+

+
!w , T

!w⊥

||!w⊥||

,
.

Multiplying by ||!w⊥|| we have (using self-adjointness of T)

0 =
-
!w⊥, T!w

.
+

-
!w, T!w⊥

.
=

-
!w⊥, T!w

.
+

-
T!w, !w⊥

.

=
-
!w⊥, λ!w + !w⊥

.
+

-
λ!w + !w⊥, !w⊥

.
= 2

-
!w⊥, !w⊥

.

=⇒ !w⊥ = 0 by definiteness of 〈·, ·〉. Therefore T!w = λ!w, and in
fact !w was an eigenvector all along!

Moreover λ must be real (again because T is self-adjoint):

λ = 〈!w, T!w〉 = 〈T!w, !w〉 = 〈!w, T!w〉 = λ , so λ ∈ R.
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I also claim that T restricts21 to V⊥!w, the (n − 1)-dimensional com-
plement of !w; that is, if !x is orthogonal to !w then so is T!x:

〈!x, !w〉 = 0 =⇒ 〈T!x, !w〉 = 〈!x, T!w〉 = 〈!x, λ!w〉 = λ 〈!x, !w〉 = 0.

So now we can apply the whole above argument to V⊥!w to get a
second eigenvector (orthogonal to !w). Iterating the process produces
a basis of V consisting of orthonormal eigenvectors of T. □

Orthogonal Diagonalization. Recall that a matrix S is “orthog-
onal” if tS S = I (or tS = S−1). This is equivalent to S having or-
thonormal columns (under the dot product). So

B an orthonormal basis =⇒ SB orthogonal.

According to Corollary VII.D.7, it is (at least in theory) possi-
ble to “orthogonally diagonalize” any given symmetric real matrix
A — that is, to write A = SBDS−1

B where SB is orthogonal (and
both SB and D real). This is equivalent to finding an orthonormal
A-eigenbasis for Rn. In practice, one doesn’t really use the Spectral
theorem per se, except as a guarantee that the geometric multiplicities
di of the distinct eigenvalues {σ1, . . . , σs} of A sum to n.

In Exercise (1) below, you’ll establish the following

VII.D.8. FACT. If A is (real) symmetric then eigenvectors with distinct
eigenvalues are ⊥.

Clearly this implies that for two distinct eigenvalues σi, σj we
have22 Eσi(A) ⊥ Eσj(A). Therefore Rn decomposes into a direct sum
of orthogonal eigenspaces

Rn = Eσ1(A)
⊥
⊕ . . .

⊥
⊕ Eσs(A) ;

clearly if we can find orthonormal bases Bi for each Eσi(A), B =

{B1, . . . ,Bs} is a big orthonormal basis for all of Rn (as desired).

21It goes without saying that the restriction of T is still self-adjoint, since the inner
product on V⊥!w is just the restriction of the inner product on V.
22In words, if you pick any !v ∈ Eσi (A) and !w ∈ Eσj(A) then 〈!v, !w〉 = 0. (Recall
that Eσ(A) = ker(σI − A).)
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Now you can always find some basis B0
i for Eσi(A) = ker(σiI −

A), by the rref procedure. Applying Gram-Schmidt to B0
i then yields

the desired (orthonormal) Bi. If ker(σiI − A) is 1-dimensional then
all you have to do is normalize the spanning eigenvector (take !w

‖!w‖ ).

VII.D.9. EXAMPLE. Let’s orthogonally diagonalize

A =

/

01
1 1 1
1 1 1
1 1 1

2

34 .

(No, I will never get tired of something so easy to type into the com-
puter!) The eigenvalues are 0 (with multiplicity 2) and 3 (with mul-
tiplicity 1), and the corresponding eigenspaces are

ker(3I − A) = span

*5
1

1

1

67

ker(0I − A) = ker(A) =

*5
−1

1

0

6
,

5
−1

0

1

67
.

Normalize
8 1

1
1

9
to get 1√

3

8 1
1
1

9
, and apply Gram-Schimdt to the basis

'
!w1 =

8 −1
1
0

9
, !w2 =

8 −1
0
1

9)
for ker(A): this yields

v̂1 =
!w1

‖!w1‖
=

1√
2

5
−1

1

0

6
, and

!w′
2 = !w2 − (!w2 · v̂1)v̂1

=

5
−1

0

1

6
−

:5
−1

0

1

6
· 1√

2

5
−1

1

0

6;
1√
2

5
−1

1

0

6
=

1
2

5
−1

−1

2

6

=⇒ v̂2 =
!w′

2
‖!w′

2‖
=

1√
6

5
−1

−1

2

6
.

Now {v̂1, v̂2} gives an orthonormal basis for ker(A). Combining this

with 1√
3

8 1
1
1

9
we have

B =

*
1√
3

5
1

1

1

6
,

1√
2

5
−1

1

0

6
,

1√
6

5
−1

−1

2

67
,
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and

A =

/

001

1√
3

−1√
2

−1√
6

1√
3

1√
2

−1√
6

1√
3

0 2√
6

2

334

/

01
3

0
0

2

34

/

001

1√
3

1√
3

1√
3

−1√
2

1√
2

0
−1√

6
−1√

6
2√
6

2

334 .

Level Sets of Quadratic Forms (Conics). What does the solution
set of

8x2
1 − 4x1x2 + 5x2

2 = 1

look like? Actually it’s an ellipse, but for that to become clear you
need to perform a rotation of coordinates. Begin by recognizing the
left-hand side as a quadratic form

8
x1 x2

95
8 −2
−2 5

65
x1

x2

6
= t!xA!x = Q(!x),

where A is symmetric. The −2’s come from rewriting −4x1x2 =

−2x1x2 − 2x2x1.
Let’s step back and look more generally at the equation

t!xA!x = 1

for A symmetric n × n. By Spectral Theorem I there is an orthonor-
mal eigenbasis {v̂1, . . . , v̂n} = B ( =⇒ P−1

B = tPB) so that A =

PBDP−1
B and D = diag{λ1, . . . , λn}. Writing!c = S−1

B !x for the eigen-
coordinates,

t!xA!x = t!xPBDP−1
B !x = t(tPB!x)D(P−1

B !x) = t(P−1
B !x)D(P−1

B !x) = t!cD!c;

and so our equation has become

λ1c2
1 + . . . + λnc2

n = 1

in the new coordinates.
Let’s interpret this geometrically for n = 3, assuming λ1 < λ2 <

λ3. If all three are positive, then

λ1c2
1 + λ2c2

2 + λ3c2
3 = 1
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is an ellipsoid with principal axes (in the directions v̂1, v̂2, v̂3) of lengths
1√
λ1

, 1√
λ2

, 1√
λ3

. If only λ2, λ3 > 0 then we have a hyperboloid of
one sheet; if only λ3 > 0 a hyperboloid of two sheets. The 3 cases are
sketched below.

HYPERBOLOID OF 1 SHEETELLIPSOID HYPERBOLOID of 2 SHEETS

Back to n = 2, and our original equation: A orthogonally diagonal-
izes

5
8 −2
−2 5

6
=

5 1√
5

−2√
5

2√
5

1√
5

65
4 0
0 9

65 1√
5

2√
5

−2√
5

1√
5

6
,

and so if c1, c2 are coordinates along the axes defined by the unit
(eigen)vectors

v̂1 =

5 1√
5

2√
5

6
, v̂2 =

5 −2√
5

1√
5

6
,

our equation becomes

1 = 4c2
1 + 9c2

2 =
c2

1

(1
2)

2
+

c2
2

(1
3)

2
.

Now it’s easy to sketch the solution:

1/2

1/3

v
1

v
2

1

1
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Further Spectral Theorems. Now the first Spectral Theorem only
told us when a matrix was unitarily conjugate23 to a real diagonal
matrix. What about complex eigenvalues? This question will be an-
swered by Spectral Theorem III below. To prove it we’ll need a result
that tells us when two transformations share an eigenbasis. Again let
V be an inner product space.

VII.D.10. THEOREM (Spectral Theorem II). Let R and U be com-
muting self-adjoint transformations of V; then there is a unitary basis B
such that [R]B and [U]B are both real diagonal matrices.

In matrix terms:

VII.D.11. COROLLARY. If A and B are both Hermitian and AB =

BA, then they are simultaneously diagonalizable — that is, by the same
unitary S!

PROOF OF SPECTRAL THEOREM II. First of all, I claim that U re-
spects the decomposition

V = Eσ1(R)
⊥
⊕ · · ·

⊥
⊕ Eσs(R)

guaranteed by the first Spectral Theorem (for R). To see this, take
!v ∈ Eσi(R) = ker(σiI − R); notice that since UR = RU,

(σiI − R)U!v = U (σiI − R)!v = !0

and U!v ∈ ker(σiI − R) too!
The resulting restrictions

U
(((Eσi

: Eσi(R) → Eσi(R)

are still self-adjoint, and applying the first spectral theorem to each
one gives a unitary U-eigenbasis Bi for Eσi(R). Since the elements
of Bi are also R-eigenvectors (with eigenvalue σi!), the basis B =

{B1, . . . ,Bs} does the trick: it is a unitary eigenbasis for both R and
U. □
23“Conjugate to” just means “similar to”; “A unitarily conjugate to B” means we
have A = SBS−1 where S is unitary.
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VII.D.12. DEFINITION. A transformation T : V → V is normal if
it commutes with its own adjoint, T†T = T T†.

VII.D.13. REMARK. As T commutes with itself and its inverse,
self-adjoint and unitary transformations are normal (see (VII.C.8)).

VII.D.14. THEOREM (Spectral Theorem III). Let T : V → V be a
linear transformation of an inner product space V/C. Then

T normal ⇐⇒ ∃ unitary basis B such that [T]B is diagonal.

This has the following matrix interpretation:

VII.D.15. COROLLARY. A ∈ Mn(C) can be unitarily diagonalized if
and only if it commutes with its Hermitian conjugate A∗. (So A ∈ Mn(R)

can be unitarily diagonalized over C if and only if t AA = At A.)

PROOF OF SPECTRAL THEOREM III.

(⇒): Set R = 1
2(T + T†), U = 1

2i(T − T†). Since T and T† commute,
R and U commute also; R is clearly self-adjoint (taking † just swaps
T and T†). U is self-adjoint essentially24 because taking † conjugates
the i to −i. So Spectral Theorem II applies and gives us a unitary B
such that [R]B and [U]B are both diagonal. But then

[R]B + i[U]B =
1
2
[T + T†]B +

i
2i
[T − T†]B = [T]B

is also diagonal; case closed.

(⇐): Assume [T]B is diagonal and B is unitary. Then

[T†T]B = [T†]B [T]B = [T]∗B [T]B

while
[T T†]B = [T]B [T†]B = [T]B [T]∗B.

24In greater detail:

〈!v, U!w〉 =
!
!v,

1
2i
(T − T†)!w

"
=

1
2i

#
〈!v, T!w〉 −

$
!v, T†!w

%&

=
1
2i

#$
T†!v, !w

%
−

$
(T†)†!v, !w

%&
=

1
2i

$
(T† − T)!v, !w

%
=

!
1
2i
(T − T†)!v, !w

"

where in the last step we used the fact that the left-hand entry is conjugate-linear
(so 1

2i became −1
2i ).
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Now diagonal matrices commute and so [T]B [T]∗B = [T]∗B [T]B, which
yields [T†T]B = [T T†]B. But then T†T and T T† must be the same
transformation, and so T is normal. □

VII.D.16. REMARK. (i) An immediate consequence of the proof is
the following characterization of normal operators: they are exactly
the transformations which can be written as R + iU, with R and U
commuting self-adjoint operators.

(ii) A version of Spectral Theorem II also applies to commuting
normal operators: they simultaneously diagonalize to (not necessar-
ily real) diagonal matrices.

Exercises
(1) (a) Let A ∈ Mn(R) be real symmetric, with σ ∕= λ two distinct

eigenvalues. If !v, !w are eigenvectors corresponding to σ, λ re-
spectively, show that !v ⊥ !w “automatically”! [Hint: evaluate the
expression t!vA!w in two different ways.]
(b) Let A ∈ Mn(C) be Hermitian, A = t Ā. Show directly that
any eigenvalue λ must be real, and that eigenvectors with dis-
tinct eigenvectors are orthogonal. [Hint: for the first part, use the
fact that λ has a (complex) eigenvector !v, and evaluate t!vA!v in
two different ways.]

(2) Orthogonally diagonalize

A =

/

0000001

1
1

1
1

1

2

3333334

(3) Find the two points closest to the origin on

−x2
1 + x2

2 − x2
3 + 10x1x3 = 1,
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by writing the left-hand side in matrix form t!xA!x (with A sym-
metric), and orthogonally diagonalizing A to get a change in co-
ordinates. (In terms of these coordinates, the left-hand side will
simplify a bit.) What kind of surface is this?

(4) (a) Prove that every real symmetric matrix A has a real cube root:
a [real symmetric] matrix M such that M3 = A.
(b) Does your proof work for square roots (in general)? What if
A = tBB for some B ∈ Mn(R)?

(5) Let V = PN(C) with inner product

〈 f , g〉 :=
"

f (z)g(z) dz
2πiz ,

where the line integral is counterclockwise over S1 = {|z| =

1} ⊆ C. Show that T = z d
dz is self-adjoint, S : f (z) 4→ f (eiθz)

is unitary (hence normal), and that ST = TS. What is the unitary
basis of V over which both diagonalize?

(6) Let T be a normal operator on an inner product space V.
(a) Show that T† = f (T) for some polynomial f ∈ C[x].
(b) How would you use Spectral Theorem III to define f (T) for
an arbitrary function f : C → C (e.g. exp)?
(c) Application to matrices: for any A ∈ Mn(C) with A∗ = −A,
show eA is unitary. [Hint: apply (b) to Cn with the standard inner

product.] Calculate eA for A =

<
0 1

−1 0

=
.

(7) Show that an operator T : V → V on a complex inner-product
space is self-adjoint if and only if 〈!v, T!v〉 ∈ R ∀!v ∈ V. [Hint:
first establish T is self-adjoint iff the form h(!x,!y) := 〈!x, T!y〉 is
Hermitian.]

(8) The next two exercises are for the reader who wants a taste of
the infinite dimensional spectral theory treated in mathematical
physics and functional analysis. Let V be the space of real-valued
smooth functions on [0, ∞) for which

! ∞
0 ( f (r))2r2dr < ∞, with

inner product 〈 f , g〉 =
! ∞

0 f (r)g(r)r2dr.
(a) Show that the operator T = α

r2
d
dr r2 d

dr +
β
r (α, β ∈ R) on V is

self-adjoint.
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(b) Deduce that solutions f ∈ V to the differential equations

(VII.D.17) α f ′′(r) +
2α

r
f ′(r) +

<
β

r
− λ

=
f (r) = 0

with different (real) values of λ are orthogonal in 〈·, ·〉.
(9) (a) By making the substitution f (r) = e−ρ/2g(ρ), ρ = 2r

>
λ
α

(we assume α, β, λ are negative), convert (VII.D.17) into the form

(VII.D.18) ρg′′(ρ) + (2 − ρ)g′(ρ) +
<

β

2
√

αλ
− 1

=
g(ρ) = 0.

(b) Show that if β

2
√

αλ
is a positive integer n, the Laguerre polyno-

mial Ln(ρ) := ∑n−1
k=0 (

n
k+1)

(−1)k

k! ρk solves (VII.D.18).
(c) Deduce that the operator T has the infinite sequence of eigen-

functions fn(r) = e−
βr

2nαLn(
βr
nα ). What are the eigenvalues?25

(d) The Schrödinger equation governing the wavefunction of the
electrom in a hydrogen atom is

5
−h̄2

2µ
∇2 − e2

0
ker

6
ψ = Eψ,

where E is energy, µ and e0 the electron mass and charge, and h̄
and ke the Planck and Coulomb constants. You can think of the 2
terms in the Hamiltonian operator in parentheses as correspond-
ing to kinetic and potential energy. Now assume ψ(r, θ, φ) =

f (r) is spherically symmetric. Then the equation collapses to

(VII.D.17) with α = − h̄2

2µ , β = − e2
0

ke
, and λ = E. Moreover,

the condition defining V amounts to square integrability of ψ,!!!
ψ2dV < ∞ (why?). Compute the possible energy levels of

the spherically symmetric wavefunctions. (You should get nega-
tive real numbers limiting to zero.)

25It turns out that if β

2
√

αλ
is not a positive integer, then the solution g(ρ) to

(VII.D.18) grows like (a polynomial times) eρ. The corresponding f (r) then does
not belong to V. So we have found all of the eigenfunctions and eigenvalues.


