
VII.E. THE SINGULAR VALUE DECOMPOSITION 267

VII.E. The singular value decomposition (SVD)

In this section we describe a generalization of the Spectral Theo-
rem to non-normal operators, and even to transformations between
different vector spaces. This is a computationally useful generaliza-
tion, with applications to data fitting and data compression in par-
ticular. It is used in many branches of science, in statistics, and even
machine learning. As we develop the underlying mathematics, we
will encounter two closely associated constructions: the polar de-
composition and pseudoinverse, in each case presenting the version
for operators followed by that for matrices.

To begin, let (V, 〈·, ·〉) be an n-dimensional inner-product space,
T : V → V an operator. By Spectral Theorem III, if T is normal then
it has a unitary eigenbasis B, with complex eigenvalues σ1, . . . , σs. In
particular, T is unitary iff these |σi| = 1 (since preserving lengths of a
unitary eigenbasis is equivalent to preserving lengths of all vectors),
and self-adjoint iff the σi are real (Exercise (1)).

So (for instance) a normal operator T is both unitary and self-
adjoint iff T has only +1 and −1 as eigenvalues — which is to say, T
is an orthogonal reflection, acting on V = W ⊕W⊥ by IdW on W and
−IdW⊥ on W⊥. But the broader point here is that we should have in
mind the following “table of analogies”:

operators numbers

normal C

unitary S1

self-adjoint R

?? R≥0

where S1 ⊂ C is the unit circle.
So, how do we complete the table?
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VII.E.1. DEFINITION. T is positive (resp. strictly positive) if it is
normal, with all eigenvalues in R≥0 (resp. R>0).

Since they are unitarily diagonalizable with real eigenvalues, pos-
itive operators are self-adjoint. Given a self-adjoint (or normal) op-
erator T, any !v ∈ V is a sum of orthogonal eigenvectors !wj with
eigenvalues σj; so

〈!v, T!v〉 = ∑i,j〈!wi, T!wj〉 = ∑i.j σj〈!wi, !wj〉 = ∑j σj‖!wj‖2

is in R≥0 for all !v if and only if T is positive. If V is complex, the
condition that 〈!v, T!v〉 ≥ 0 (∀!v) on its own gives self-adjointness (Ex-
ercise VII.D.7), hence positivity, of T. (If V is real, this condition
alone isn’t enough.)

VII.E.2. EXAMPLE. Orthogonal projections are positive, since they
are self-adjoint with eigenvalues 0 and 1.

Polar decomposition. A nonzero complex number can be writ-
ten (in “polar form”) as a product reiθ, for unique r ∈ R>0 and
eiθ ∈ S1. If T is a normal operator, then it has a unitary eigen-
basis B = {v̂1, . . . , v̂n}, with [T]B = diag{r1eiθ1 , . . . , rneiθn} (ri ∈
R≥0); and defining |T|, U by [|T|]B = diag{r1, . . . , rn} and [U]B =

diag{eiθ1 , . . . , eiθn}, we have T = U|T| with U unitary and |T| pos-
itive, and U|T| = |T|U. One might expect such “polar decompo-
sitions” of operators to stop there. But there exists an analogue for
arbitrary transformations, one that will lead on to the SVD as well!

To formulate this general polar decomposition, let T : V → V
be an arbitrary linear transformation. Notice that T†T is self-adjoint
(since (T†T)† = T†T†† = T†T) and, in fact, positive:

〈!v, T†T!v〉 = 〈T!v, T!v〉 ≥ 0,

since 〈·, ·〉 is an inner product. So we have a unitary B with [T†T]B =

diag{λ1, . . . , λn}, and all λi ∈ R≥0. (Henceforth we impose the con-
vention that λ1 ≥ λ2 ≥ . . . ≥ λn.) Taking nonnegative square
roots µi =

√
λi ∈ R≥0, we define a new operator |T| by [|T|]B =

diag{µ1, . . . , µn}; clearly |T|2 = T†T, and |T| is positive.
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VII.E.3. THEOREM. There exists a unitary operator U such that

T = U|T|.

This “polar decomposition” is unique exactly when T is invertible. More-
over, U and |T| commute exactly when T is normal.

PROOF. We have ‖T!v‖2 = 〈T!v, T!v〉 = 〈!v, T†T!v〉 = 〈!v, |T|2!v〉 =

〈|T|!v, |T|!v〉 = ‖|T|!v‖2 since |T| is self-adjoint. Consequently T and
|T| have the same kernel, hence (by Rank + Nullity) the same rank;
so while their images (as subspaces of V) may differ, they have the
same dimension. Moreover, mapping |T|!w ,→ T!w gives a well-
defined linear transformation from im|T| to imT.

By Spectral Theorem I, V = im|T|
⊥
⊕ ker|T|. So dim(ker|T|) =

dim((imT)⊥), and we fix an invertible transformation U′ : ker|T| →
(imT)⊥ sending some choice of unitary basis to another unitary ba-
sis. Writing !v = |T|!w +!v′ (with |T|!v′ =!0), we now define

U : im|T|
⊥
⊕ ker|T|! "# $
V

→ imT
⊥
⊕ (imT)⊥! "# $

V

by U!v := T!w + U′!v′. Since ‖T!w + U′!v′‖2 = ‖T!w‖2 + ‖U′!v′‖2 =

‖|T|!w‖2 + ‖!v′‖2 = ‖!v‖2, U is unitary; and taking !v = |T|!w gives
U|T|!w = T!w (∀!w ∈ V).

Now if T is invertible, then so is |T| (all µi > 0) =⇒ U = T|T|−1.
If it isn’t, then ker|T| ∕= {0} and non-uniqueness enters in the choice
of U′.

Finally, if U and |T| commute, then they simultaneously unitarily
diagonalize, and therefore so does T, making T normal. If T is nor-
mal, we have constructed U and |T| above, and they commute. □

VII.E.4. EXAMPLE. Consider V = R4 with the dot product, and

A = [T]ê =

%

&&&'

2 0 0 0
0 1 0 0
0 1 1 0
0 0 0 0

(

)))*
.
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Since A has a Jordan block, we know it is not diagonalizable; and so
T is not normal. However,

[T†T]ê = t AA =

%

&&&'

4 0 0 0
0 2 1 0
0 1 1 0
0 0 0 0

(

)))*
= PBDP−1

B

with B := {ê1, ê2 + ϕ− ê3, ê2 − ϕ+ ê3, ê4} and D := diag{4, η+, η−, 0}
(where ϕ± := ±1+

√
5

2 and η± := 3±
√

5
2 = ϕ2

±). Taking the positive
square root D

1
2 := diag{2, ϕ+, ϕ−, 0}, we get

[|T|]ê = |A| := PBD
1
2 P−1

B =

%

&&&&'

2 0 0 0
0 3√

5
1√
5

0

0 1√
5

2√
5

0

0 0 0 0

(

))))*
.

On W := span{ê1, ê2, ê3} = imT = im|T|, we must have U|W =

T|W(|T| |W)−1; while on span{ê4} = W⊥, U can be taken to act by
any scalar of norm 1. Therefore

[U]ê = Q :=

%

&&&&'

1 0 0 0
0 2√

5
−1√

5
0

0 1√
5

2√
5

0

0 0 0 eiθ

(

))))*
,

and A = Q|A|. Geometrically, |A| dilates the B-coordinates of a
vector, then Q performs a rotation.

SVD for endomorphisms.26 Now let |T| be the (unique) posi-
tive square root of T†T as above, and B = {v̂1, . . . , v̂n} the unitary
basis of V under which [|T|]B = diag{µ1, . . . , µn}.

VII.E.5. DEFINITION. These {µi} are called the singular values
of T.

26The reader may of course replace “unitary” and C by “orthonor-
mal”/”orthogonal” and R in what follows.
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Writing T = U|T| and ŵi := Uv̂i, U†U = IdV =⇒ 〈ŵi, ŵj〉 =

〈U†Uv̂i, v̂j〉 = 〈v̂i, v̂j〉 = δij =⇒ C := {ŵ1, . . . , ŵn} = U(B) is
unitary. For !v ∈ V, we have

T!v = U|T|
n

∑
i=1

〈v̂i,!v〉v̂i =
n

∑
i=1

〈v̂i,!v〉U|T|v̂i

= ∑n
i=1 µi〈v̂i,!v〉Uv̂i = ∑n

i=1 µi〈v̂i,!v〉ŵi.

(VII.E.6)

Viewing 〈v̂i, ·〉 =: ℓv̂i : V → C as a linear functional, and ŵi : C → V
as a map (sending α ∈ C to αŵi), (VII.E.6) becomes

(VII.E.7) T =
n

∑
i=1

µiŵi ◦ ℓv̂i .

How does this look in matrix terms? Let A be an arbitrary27 uni-
tary basis of V, and set A := [T]A. Using {1} as a basis of C, (VII.E.7)
yields

(VII.E.8) A =
n

∑
i=1

µi A[ŵi]{1} {1}[ℓv̂i ]A =
n

∑
i=1

µi[ŵi]A[v̂i]
∗
A.

Here [ŵi]A[v̂i]
∗
A is a (n× 1) · (1× n) matrix product, yielding an n× n

matrix of rank one. So (VII.E.7) (resp. (VII.E.8)) decompose T (resp.
A) into a sum of rank-one endomorphisms (resp. matrices) weighted
by the singular values. This is a first version of the singular value
decomposition.

VII.E.9. REMARK. If T is positive, we can take U = IdV , so that
ŵi ◦ ℓv̂i = v̂i ◦ ℓv̂i =: Prv̂i is the orthogonal projection onto span{v̂i}.
Thus (VII.E.7) merely restates Spectral Theorem I in this case. In
fact, if T is normal, then T, T†T, and |T| simultaneously diagonal-
ize. If µ̃1, . . . , µ̃n are the eigenvalues of T, then we evidently have
µi = |µ̃i|; U may then be defined by [U]B = diag{µ̃i/µi} (with 0/0
interpreted as 1). Thus (VII.E.7) reads T = ∑n

i=1 µ̃iPrv̂i , which re-
states Spectral Theorem III. So in this sense, the SVD generalizes the
results in §VII.D.

27What you should actually have in mind here is, in the case where V = Cn with
dot product, the standard basis ê.
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Now since U sends B to C, we have

C [T]B = C [U]B! "# $
In

[|T|]B = diag{µ1, . . . , µn} =: D

and thus

(VII.E.10) A = [T]A = A[I]C C [T]B B [I]A =: S1DS2,

with S1 and S2 unitary matrices (as they change between unitary
bases). Roughly speaking, (VII.E.10) presents A as a composition of
the form “rotation,28 dilation, rotation”.

VII.E.11. THEOREM. Any A ∈ Mn(C) can be presented as a product
S1DS2, where D is a diagonal matrix with entries in R≥0, and SiS∗

i = In.
The diagonal entries of D, called the singular values of A, are unique. If
they are distinct, nonzero, and in decreasing order, then (S1, S2) are unique
modulo rescaling ⇝ (S1∆, ∆−1S2) by a unitary diagonal matrix ∆.29

PROOF. Existence was deduced above. We have D∗ = D hence

A∗A = S∗
2 D∗S∗

1S1DS2 = S∗
2 D2S2,

which is (with respect to the dot product) a unitary diagonalization
of the Hermitian matrix A∗A. So D2, hence D, is unique; and if
the diagonal entries are distinct, then the unitary eigenbasis ( =⇒
columns of S∗

2) is determined up to eiθ scaling factors. If no singular
values are 0, D is invertible and S1 = AS∗

2 D−1. □

VII.E.12. EXAMPLE. Let’s look at the operator

T = d
dt : P2(R) → P2(R)

with 〈 f , g〉 :=
! 1
−1 f (t)g(t)dt. This is a non-diagonalizable (hence

non-normal) nilpotent transformation. We compute its singular val-
ues — which are not all zero, even though 0 is the only eigenvalue of
T — and the bases B and C.
28More precisely, “rotation” here can mean a complicated sequence of rotations
and reflections.
29If A ∈ Mn(R), then the above construction shows that S1 and S2 can be taken to
be real (orthogonal); and such Si are unique modulo rescaling by ∆ real diagonal
unitary, i.e. with diagonal entries ±1.
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To compute T† we will need an o.n. basis A: Gram-Schmidt on

{1, t, t2} yields A := { 1√
2
,
+

3
2 t, 3

2

+
5
2(t

2 − 1
3)} and

[T]A =

%

&'
0

√
3 0

0 0
√

15
0 0 0

(

)* =⇒ [T†]A = [T]∗A =

%

&'
0 0 0√
3 0 0

0
√

15 0

(

)*

=⇒ [T†T]A =

%

&'
0 0 0
0 3 0
0 0 15

(

)* =⇒ [|T|]A =

%

&'
0 0 0
0

√
3 0

0 0
√

15

(

)*

=⇒ singular values (in decreasing order) are
√

15,
√

3, 0, and

B =

,
3
2

+
5
2(t

2 − 1
3),

+
3
2 t, 1√

2

-
=: {v̂1, v̂2, v̂3}.

Now im(|T|) = span{v̂1, v̂2}, ker(|T|) = span{v̂3} = ker(T), im(T) =
span{v̂2, v̂3}, and im(T)⊥ = span{v̂1}. So we define

U : span{v̂1, v̂2}
⊥
⊕ span{v̂3} −→ span{v̂2, v̂3}

⊥
⊕ span{v̂1}

by sending v̂1 = |T|( 1√
15

v̂1) ,→ T( 1√
15

v̂1) = v̂2, v̂2 = |T|( 1√
3
v̂2) ,→

T( 1√
3
v̂2) = v̂3, and v̂3 ,→ v̂1. We then have

[U]A =

%

&'
0 1 0
0 0 1
1 0 0

(

)* ,

and C = U(B) = {v̂2, v̂3, v̂1}. The30 SVD of A = [T]A thus reads
(noting that A = {v̂3, v̂2, v̂1})

A = S1DS2 =

%

&'
0 1 0
1 0 0
0 0 1

(

)*

%

&'

√
15 0 0
0

√
3 0

0 0 0

(

)*

%

&'
0 0 1
0 1 0
1 0 0

(

)* .

VII.E.13. CAUTION. Even if T is diagonalizable, it may not be uni-
tarily diagonalizable (i.e. normal), and only in the latter case are T’s
singular values the absolute values of T’s eigenvalues (Rem. VII.E.9).

30Of course, even over R it isn’t quite unique: one can play with the signs in S1
and S2.



274 VII. INNER PRODUCTS AND SPECTRAL THEORY

SVD for transformations. We now turn to the more general form
of the SVD. Let T : V → W be a linear transformation between finite-
dimensional inner-product spaces, and fix unitary bases A resp. A′

of V resp. W. Write n = dim V, m = dim W.

VII.E.14. LEMMA. The transformation T† : W → V defined by

A[T†]A′ = (A′ [T]A)
∗

is the unique operator satisfying

(VII.E.15) 〈T†!w,!v〉 = 〈!w, T!v〉

for all !v ∈ V, !w ∈ W. We call it the adjoint of T.

PROOF. Since A,A′ are unitary, (VII.E.15) is equivalent to

[T†!w]∗A[!v]A = [!w]∗A′ [T!v]A′

and thus to [!w]∗A′
.
A[T†]A′

/∗
[!v]A = [!w]∗A′A′ [T]A[!v]A. □

VII.E.16. LEMMA. We have V = ker(T)
⊥
⊕ im(T†) and W = im(T)

⊥
⊕

ker(T†), with T (resp. T†) restricting to an isomorphism from im(T†) →
im(T) (resp. im(T) → im(T†)).

PROOF. By Lemma VII.E.14, T and T† have the same rank r, so
Rank + Nullity =⇒

0
dim(kerT) + dim(imT†) = (n − r) + r = n = dim V
dim(imT) + dim(kerT†) = r + (m − r) = m = dim W.

For !v ∈ ker(T), 〈!v, T†!w〉 = 〈T!v, !w〉 = 〈!0, !w〉 = 0 =⇒ ker(T) ⊥
im(T†) =⇒ ker(T) ∩ im(T†) = {0} =⇒ T|im(T†) is injective. This
proves the assertions about V and T; those for W and T† follow by
symmetry. □

The compositions T†T : V → V and TT† : W → W are clearly

positive (argue as above), and preserve the
⊥
⊕’s in Lemma VII.E.16.

So T†T (resp. TT†) is an automorphism of im(T†) (resp. im(T)) “
⊥
⊕”

the zero map on ker(T) (resp. ker(T†)). The same remarks apply to
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the positive operator
√

T†T (resp.
√

TT†), and there exists a unitary
basis B = {v̂1, . . . , v̂n} of V with

1√
T†T

2

B
= diag{µ1, . . . , µr, 0, . . . , 0}

and µ1 ≥ µ2 ≥ . . . ≥ µr > 0.

VII.E.17. DEFINITION. These {µi} are called the (nonzero) singu-
lar values of T.

In particular, {v̂1, . . . , v̂r} ⊂ im(T†) and {v̂r+1, . . . , v̂n} ⊂ ker(T);
and we define {ŵ1, . . . , ŵr} ⊂ im(T) by ŵi := 1

µi
Tv̂i. Since

〈ŵi, ŵj〉 = 1
µiµj

〈Tv̂i, Tv̂j〉 = 1
µiµj

〈T†Tv̂i, v̂j〉 =
µ2

i
µiµj

〈v̂i, v̂j〉 = µi
µj

δij = δij,

this gives a unitary basis of im(T), which we complete to a unitary
basis C ⊂ W by choosing {ŵr+1, . . . , ŵm} ⊂ ker(T†). This proves

VII.E.18. THEOREM (Abstract SVD). There exist unitary bases B ⊂
V, C ⊂ W such that31

(VII.E.19) C [T]B = diagm×n{µ1, . . . , µr, 0, . . . , 0}

with µ1 ≥ . . . ≥ µr > 0, and r = rank(T).

VII.E.20. REMARK. (i) C is an eigenbasis for
√

TT†, and its nonzero
eigenvalues are also the {µi}r

i=1: TT†ŵi =
1
µi

TT†Tv̂i =
1
µi

T(µ2
i v̂i) =

µ2
i ŵi.

(ii) Suppose that B′ ⊂ V, C ′ ⊂ W are unitary bases such that

C ′ [T]B′ = diagm×n{µ′
1, . . . , µ′

s, 0 . . . , 0} (with µ′
1 ≥ · · · ≥ µ′

r > 0): then
s = r and µ′

i = µi (∀i). This is because B′ [T†T]B′ = B′ [T†]C ′ C ′ [T]B′ =

(C ′ [T]B′)∗ C ′ [T]B′ = diagm×n{(µ′
1)

2, . . . , (µ′
r)

2, 0 . . . , 0}, so that {µ′
i}

are the eigenvalues of
√

T†T. So the (nonzero) singular values are
the unique positive numbers that can appear in (VII.E.19).

(iii) Moreover, if the µi are distinct and T is injective (resp. surjec-
tive), the elements of B′ (resp. C ′) are eiθ-multiples of the elements of
B (resp. C).

VII.E.21. DEFINITION. The pseudoinverse of T is the transforma-
tion T∼ : W → V given by 0 on ker(T†) and inverting T on im(T).
31The notation means an m × n matrix, whose entries are zero except for (j, j)th

entries for 1 ≤ j ≤ r(≤ m, n).
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VII.E.22. COROLLARY. B [T∼]C = diagn×m{µ−1
1 , . . . , µ−1

r , 0, . . . , 0}.

Note that if T is invertible, then T∼ = T−1.

VII.E.23. COROLLARY. T∼T : V → V is the orthogonal projection
Prim(T†) and TT∼ : W → W is Prim(T).

SVD for m× n matrices. The matrix version of Theorem VII.E.18
has been called the fundamental theorem of matrix algebra. Its effi-
cient computer implementation for large matrices has been the sub-
ject of countless articles in numerical analysis. While we won’t say
anything about these algorithms, they are more efficient (and accu-
rate) than the orthogonal diagonalization of A∗A, which remains our
algorithm of choice here.

VII.E.24. THEOREM (Matrix SVD). Let A be an arbitrary m × n ma-
trix of rank r, with complex entries. Then there exist unitary matrices
P ∈ Mm(C), Q ∈ Mn(C) and real numbers µ1 ≥ . . . ≥ µr > 0, such
that32

(VII.E.25)
A = P∆Q∗ = ( p̂1 · · · p̂m)diagm×n{µ1, . . . , µr, 0, . . . , 0} (q̂1 · · · q̂n)

∗

(and A∗ = Q t∆P∗). The map from Cn → Cm given by !x ,→ A!x breaks
into two components under the orthogonal direct sum decompositions

Cn = Vcol(A∗)

‖
span{q̂1, . . . , q̂r}

⊥
⊕ Nul(A) −→ Vcol(A)

‖
span{ p̂1, . . . , p̂r}

⊥
⊕ Nul(A∗) = Cm.

Namely, it is given by q̂j
A,−→ µj p̂j (j = 1, . . . , r) on the first summands

and by zero on the second. (The reverse map given by A∗ sends p̂j ,→ µjq̂j.)
The nonzero singular values µj are the positive square roots of the nonzero
eigenvalues of A∗A (resp. AA∗), for which the columns of Q (resp. P) give
unitary eigenbases.

32Here p̂1, . . . , p̂m and q̂1, . . . , q̂n are the column vectors of P and Q. They are uni-
tary bases for Cm and Cn under the dot product. The orthogonal direct sum de-
compositions further below are also with respect to the dot product.
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PROOF. Apply Theorem VII.E.18 to the setting: V = Cn with
〈·, ·〉 = dot product and A = ê; W = Cm with 〈·, ·〉 = dot product
and A′ = ê; T : V → W such that A = A′ [T]A. Then

A′ [T]A = A′ [IdW ]C C [T]B B [IdV ]A

is A = PC∆P∗
B (and we put P := PC , Q := PB). The remaining details

are immediate from the “abstract” analysis. □

VII.E.26. DEFINITION. The pseudoinverse of A is the n × m ma-
trix

A∼ := A[T∼]A′ = Q∆∼P∗,

where ∆∼ = diagn×m{µ−1
1 , . . . , µ−1

r , 0, . . . , 0}.

VII.E.27. COROLLARY. A∼A = [PrVcol(A∗)]ê and AA∼ = [PrVcol(A)]ê
are matrices of orthogonal projections (under the dot product).

VII.E.28. REMARK. In all of this, if A is real then A∗ = t A =⇒
Vcol(A∗) = Vrow(A). In this case, we can take P, Q orthogonal, and
A = P∆tQ with the {q̂i} appearing as the rows of tQ. Some matrix
algebra texts call Vrow(A), Vcol(A), Nul(A), and Nul(t A) the “four
fundamental subspaces” in the context of the SVD.

VII.E.29. EXAMPLE. Consider the rank 1 matrix

A =

%

&'
1 −1
1 −1
2 −2

(

)* .

We have
t AA =

3
6 −6
−6 6

4
= Q diag{µ2

1, 0} tQ

with µ1 =
√

12 and Q = 1√
2

5
1 1

−1 1

6
. Now

p̂1 = 1
µ1

Aq̂1 = 1√
6

3
1

1

2

4
,
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while p̂2, p̂3 have to be an o.n. basis of Nul(t A). So

A =

%

&&'

1√
6

1√
2

1√
3

1√
6

−1√
2

1√
3

2√
6

0 −1√
3

(

))*

%

&'

√
12 0
0 0
0 0

(

)*

3 1√
2

−1√
2

1√
2

1√
2

4

is a SVD, and

A∼ =

3 1√
2

1√
2

−1√
2

1√
2

43
1√
12

0 0

0 0 0

4
%

&&'

1√
6

1√
6

2√
6

1√
2

−1√
2

0
1√
3

1√
3

−1√
3

(

))*

= 1
12

3
1 1 2
−1 −1 −2

4

the pseudoinverse. So for instance A∼A = 1
2

5
1 −1

−1 1

6
does indeed

orthogonally project onto Vrow(A) = span
,5

1

−1

6-
.

Applications to least squares and linear regression. Let T : V →
W be an arbitrary linear transformation, with V = Cn and W = Cm

equipped with the dot product, and A := ê[T]ê. Write !v ∈ V, !w ∈ W
and [!v]ê = !x, [!w]ê = !y.

VII.E.30. DEFINITION. For any fixed !w ∈ W, a least-squares so-
lution (LSS) to T!v = !w (or equivalently A!x = !y) is any 7v ∈ V
minimizing ‖T7v − !w‖. The minimal LSS 7vmin is the (unique) LSS
minimizing ‖7v‖.

The minimum distance from !w to im(T) is, of course, the distance
from !w to the orthogonal projection 7w := Prim(T)!w,

im(T)

Tv

w

~
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and so ṽ is just any solution to

(VII.E.31) T7v = 7w ( ⇐⇒ A7x = 7y).

VII.E.32. THEOREM. (i) The least-squares solutions of T!v = !w are the
solutions of the normal equations

(VII.E.33) T†T7v = T†!w ( ⇐⇒ A∗A7x = A∗!y).

(ii) The minimal LSS of T!v = !w is

(VII.E.34) 7vmin = T∼!w.

PROOF. (i) Since im(T)⊥ = ker(T†), 7v satisfies (VII.E.33) ⇐⇒
!w − T7v ∈ im(T)⊥ ⇐⇒ 7v satisfies (VII.E.31).

(ii) By Corollary VII.E.23, 7w = TT∼!w. So 7v satisfies (VII.E.31)
⇐⇒ !κ := 7v − T∼!w ∈ ker(T). But im(T∼) = im(T†) is ⊥ to ker(T)
=⇒ ‖7v‖2 = ‖T∼!w‖2 + ‖!κ‖2. Clearly then ‖ṽ‖ is minimized by
!κ =!0. □

Now T†T is invertible iff T is 1-to-1 (cf. Exercise (2)), in which
case 7v (= 7vmin) is unique and the normal equations become

(VII.E.35) 7v = (T†T)−1T† 7w ( ⇐⇒ 7x = (A∗A)−1A∗!y).

If ker(T) ∕= {0}, then (VII.E.33) is less convenient and (VII.E.34)
seems the better result. But it turns out that if A is large, computa-
tionally (VII.E.34) is more useful than the normal equations regard-
less of invertibility of A∗A. This is because the SVD gives

(VII.E.36) 7xmin = A∼!y = Q∆∼P∗!y,

and ∆∼ involves inverting the {µi} whereas (A∗A)−1 involves in-
verting the {µ2

i }. If some nonzero µi’s differ by orders of magnitude,
the computation of (A∗A)−1 will therefore introduce significantly
more error than (VII.E.36). That said, the normal equations are typi-
cally simpler for small examples, as we’ll now see.
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VII.E.37. EXAMPLE. We find the LSS for the linear system A!x = !y,
where

A =

%

&&&'

1 −1
1 0
1 1
1 2

(

)))*
, !y =

%

&&&'

2
0
−2
1

(

)))*
.

Compute

t AA =

3
4 2
2 6

4
, (t AA)−1 = 1

10

3
3 −1
−1 2

4

=⇒ 7x = (t AA)−1 t A!y = 1
2

3
1
−1

4
.

Writing µ2
± = 5 ±

√
5, the SVD is

A =

%

&&'

3−
√

5
2
√

10
3+

√
5

2
√

10
− 1

2
1

2
√

5
1−

√
5

2
√

10
1+

√
5

2
√

10
1
2

−3
2
√

5
−1−

√
5

2
√

10
−1+

√
5

2
√

10
1
2

3
2
√

5
−3−

√
5

2
√

10
−3+

√
5

2
√

10
− 1

2
−1

2
√

5

(

))*

%

&'
µ+ 0

0 µ−

0 0

0 0

(

)*
5

1−
√

5√
2µ−

−
√

2
µ−

1+
√

5√
2µ+

−
√

2
µ+

6

and replacing the middle factor by ∆∼ = diag4×2{µ−1
+ , µ−1

− } gives

A∼ = 1
10

3
4 3 2 1
−3 −1 1 3

4
.

But using A∼ = (t AA)−1 t A (see Exercise (2) below) is much easier!

This example can be seen as a data fitting (linear regression) prob-
lem: the line Y = x1 + x2X minimizing the sum of squares of vertical
errors in

X

Y

is Y = 1
2 −

1
2 X.
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VII.E.38. EXAMPLE. Having entered the sports business, a certain
crop-sciences company in St. Louis is engaged in trying to grow a
better baseball player. They’ve tracked a few little-leaguers and got
the data

(X ,Y )=(0,1)

(X ,Y )=(1,3)

(X ,Y )=(2,3)

(X ,Y )=(3,2)

1 1

2 2

3 3

4 4

X = tens of miles from Arch

Y= # of home runs / season

ε

ε ε

ε

1

2 3

4

which suggests a parabola33

Y = f (X) = b0 + b1X + b2X2.

So write

Y1 = b0 + b1X1 + b2X2
1 + ε1

Y2 = b0 + b1X2 + b2X2
2 + ε2

Y3 = b0 + b1X3 + b2X2
3 + ε3

Y4 = b0 + b1X4 + b2X2
4 + ε4

which translates to !Y = A!b +!ε, where

A =

%

&&&'

1 X1 X2
1

1 X2 X2
2

1 X3 X2
3

1 X4 X2
4

(

)))*
=

%

&&&'

1 0 0
1 1 1
1 2 4
1 3 9

(

)))*
.

Minimizing ‖!ε‖ = ‖A!b − !Y‖ just means solving A7b = 7Y, or equiva-
lently

t AA7b = t A!Y

33More seriously, rather than looking at the shape of the data set, one should try
to base the form of f on physical principle (see for instance Exercise (2) below).
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which is
%

&'
4 6 14
6 14 36

14 36 98

(

)*

%

&'
b̃0

b̃1

b̃2

(

)* =

%

&'
9

15
33

(

)* =⇒
RREF

7β =

%

&'
1.05
2.55

−0.75

(

)* .

So using f (X) = 1.05 + 2.55X − 0.75X2 =⇒ 0 = f ′(X) = 2.55 −
1.5X is maximized at X = 1.7. Therefore the ideal distance from the
Arch for raising baseball stars must be 17 miles. Because our data
wasn’t questionable at all and our sample size was YUGE.

Applications to data compression. One of the many other com-
putational applications of the SVD is called principal component
analysis. Suppose in a country of N = 1 million internet users, you
want to target ads (or fake news) based on online behavior, where the
number M of possible clicks or purchases is also very large. Assume
however that only k (cultural, demographic, etc.) attributes of a per-
son generally determine this behavior: that is, there exists an N × k
“attribute matrix” and a k × M “behavior matrix” whose product is
roughly A, the N × M matrix of raw user data. In other words, we
expect A to be well-approximated by a rank k matrix, with k much
smaller than M and N.

The SVD in the first form we encountered (cf. (VII.E.8)) extends
to non-square matrices: in view of (VII.E.25),

(VII.E.39) A =
r

∑
ℓ=1

µℓ · p̂ℓ
N×1

· q̂∗ℓ
1×M

where r = rank(A). It turns out that

(VII.E.40) Ak :=
k

∑
ℓ=1

µℓ · p̂ℓ · q̂∗ℓ

is the “best” rank k approximation to A (in the sense of minimiz-
ing the operator norm34 ‖A − Ak‖ among all rank k M × N matri-
ces). In the situation just described, we’d expect Ak to be very close

34‖M‖ := max
!!v!=1

‖M!v‖; in fact, ‖A − Ak‖ = µk+1. In addition, (VII.E.40) minimizes

the “stupid” matrix norm ‖M‖ := (∑i,j Mij)
1
2 for A − Ak.
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to A, while requiring us to record only k(1 + M + N) numbers (the
µℓ and entries of p̂ℓ, q̂ℓ for ℓ = 1, . . . , k), a significant data compres-
sion vs. the MN entries of A. The formulas (VII.E.39)-(VII.E.40) are
close in spirit to (discrete) Fourier analysis, which breaks a func-
tion down into its constituent frequency components — viz., Aij =

∑ℓ,ℓ′ αℓ,ℓ′e2π
√
−1 iℓ

M e2π
√
−1 jℓ′

N . But the SVD allows for many fewer terms
in (VII.E.40), since the p̂ℓ, q̂ℓ are not fixed trigonometric functions,
but rather “adapted to” the matrix A. On the other hand, the dis-
crete Fourier transform doesn’t require recording p̂ℓ and q̂ℓ, so has
that advantage. Fortunately for computational applications, MAT-
LAB has efficient algorithms for both!

Exercises
(1) (a) Show that if a normal operator T : V → V has real eigenval-

ues, then it is self-adjoint.
(b) More generally, for a normal operator T with eigenvalues
{λi}, what are the eigenvalues of T†?

(2) (a) Show that T is 1-to-1 iff T†T is invertible.
(b) Show that if T is 1-to-1, then T∼ = (T†T)−1T†. (So in this
case, (VII.E.34) and (VII.E.35) are “the same”. However, the two
formulas (A∗A)−1A∗ and Q∆∼P∗ for A∼ really do have different
strengths.)

(3) As luck would have it, at time t = 0 bullies stuffed your backpack
full of radioactive material from the Bridgeton landfill. Your le-
gal team thinks there are two substances in there, with half-lives
of one and five days respectively, but all they can do is measure
the overall masses M1, M2, . . . , Mn of the backpack at the end of
days 1, 2 . . . , n. (The bullies also superglued it shut, you see.)
Measurements have error, so you need to formulate a linear re-
gression model in order to determine the original masses A, B of
the two substances at time t = 0. This should involve an n × 2
matrix.
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(4) Find a polar decomposition for

A =

%

&'
20 4 0
0 0 1
4 20 0

(

)* .

(5) Calculate the matrix SVD for

A =

%

&'
1 1 1 1
1 0 −2 1
1 −1 1 1

(

)* .

(6) Calculate the minimal least-squares solution of the system

x1 + x2 = 1
x1 + x2 = 2
−x1 − x2 = 0.


