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VII.F. Fourier series

In this final section, I outline how some of these ideas extend to
an infinite-dimensional inner product space.35 Let

V := square-integrable functions on the unit circle,

by which we mean real-valued, measurable functions f on R with
f (x + 2π) = f (x) and

! 2π
0 f (x)2dx < ∞. (Think of x as “angle” on

the circle.) We equip V with the L2 inner product

〈 f , g〉 =
! 2π

0
f (x)g(x)dx.

VII.F.1. FACT. The collection

B :=
!

1√
π

cos kx
"

k∈N
∪
!

1√
π

sin kx
"

k∈N
∪
!

1√
2π

"

is an orthonormal basis for V.

We won’t prove that B “spans” V — that’s a topic for a course
in functional analysis — but here is how to do orthonormality (and
thus independence): use the trigonometric identities

cos(α + β) = cos α cos β − sin α sin β

sin(α + β) = sin α cos β + cos α sin β

to build “product formulas”, e.g.

cos mx cos nx =
1
2
{cos[(m − n)x] + cos[(m + n)x]} .

Then integrate to obtain (m, n ≥ 0)
! 2π

0
cos(mx) cos(nx)dx = πδmn =

! 2π

0
sin(mx) sin(nx)dx,

! 2π

0
cos(mx) sin(nx)dx = 0.

35Technically, one should also ask for the space to be complete with respect to the
metric given by the inner product — that is, for it to be a Hilbert space. (This is true
for V.)
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Recall that for a finite-dimensional inner product space V with
orthonormal basis B = {v̂1, . . . , v̂n}, the “Fourier expansion for-
mula” for !x ∈ V reads

!x =
n

∑
i=1

〈v̂i, !x〉 v̂i.

Similarly, for f ∈ P, we might expect36

f (x) =
∞

∑
k=1

!"
1√
π

! 2π

0
f (x) cos(kx)dx

#
1√
π

cos kx

+

"
1√
π

! 2π

0
f (x) sin(kx)dx

#
1√
π

sin kx
$
+

"
1√
2π

! 2π

0
f (x)dx

#
1√
2π

=
∞

∑
k=1

(ak cos kx + bk sin kx) + c

where

ak =
1
π

! 2π

0
f (x) cos(kx)dx, bk =

1
π

! 2π

0
f (x) sin(kx)dx,

c =
1

2π

! 2π

0
f (x)dx

are called Fourier coefficients.

VII.F.2. EXAMPLE. Consider the “binary oscillation” function

For this f , we have immediately c = 1
2 , and ak = 0 by symmetry

(since f is odd). Moreover

bk =
1
π

! 2π

0
f (x) sin(kx)dx =

1
π

! π

0
sin(kx)dx

= − 1
πk

cos(kx)
###

π

0
=

$
0, k even
2

πk , k odd
,

36See the remarks at the end of the section.
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and so
f (x) =

1
2
+

2
π ∑

k>0
odd

1
k

sin(kx).

VII.F.3. EXAMPLE. f (x) = (x − π)2 on [0, 2π] (repeated periodi-
cally):

2

This time we have by symmetry bk = 0, and

c =
1

2π

! 2π

0
(x − π)2dx =

π2

3
.

Using even symmetry of cos(kx) about π, then integration by parts
twice, we have

ak =
1
π

! 2π

0
(x − π)2 cos(kx)dx =

2
π

! π

0
(x − π)2 cos(kx)dx

=
2
π

%
(x − π)2

k
sin(kx)

###
π

0
& '( )

− 2
k

! π

0
(x − π) sin(kx)dx

*

0

= − 4
πk

! π

0
(x − π) sin(kx)dx

=
4

πk

+

, (x − π)

k
cos(kx)

###
π

0
− 1

k

! π

0
cos(kx)dx

& '( )

-

.

0
=

4
k2 .

Therefore

f (x) =
π2

3
+

∞

∑
k=1

4
k2 cos(kx).

Notice that by evaluating at 0 we have immediately

π2 = f (0) =
π2

3
+

∞

∑
k=1

4
k2 −→ 2π2

3
=

∞

∑
k=1

4
k2
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which yields Euler’s famous formula

π2

6
=

∞

∑
k=1

1
k2 .

Heat equation on a circle. Interpreting the function of Example
VII.F.2 as the heat distribution on a circular piece of iron that has
been held halfway into the fire, we ask: how does this distribution
behave over time once the iron is removed from the fire? Somewhat
unrealistically, we will assume no outside influence after this point:
the iron is a closed 1-dimensional system.

To answer this question, we shall find (in terms of Fourier series)
the solution f (x, t) to the heat equation

(VII.F.4)
∂ f
∂t

(x, t) = α2 ∂2 f
∂x

(x, t) [ + h(x, t) ]
↑

heat source

with initial condition f (x, 0) = f (x) ∈ V. In particular, f is periodic
in x with period 2π. The “closed system” assumption means that
h ≡ 0 (at least for t ≥ 0, where we are solving the equation).

We first indicate how to “derive” (VII.F.4). Start by writing an
equation that says

rate of change of total heat
stored in [x, x + ∆x]

=
rate of heat flux thru x and

x + ∆x , into [x, x + ∆x]

(since we assume there is no external heat source). Now it should
make sense that the heat flux into [x, x + ∆x] at x + ∆x is propor-
tional to the slope ∂ f

∂x (x + ∆x, t). Writing α2 for a proportionality con-
stant,37 our equation is

(VII.F.5) α−2 d
dt

! x+∆x

x
f (x, t) dx

‖

α−2
! x+∆x

x

∂ f
∂t

(x, t) dx

=
∂ f
∂x

(x + ∆x, t)− ∂ f
∂x

(x, t).

37I write α2 so you don’t forget it’s positive.
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According to the Mean-Value Theorem, for g(x) continuously differ-
entiable on [x, x + ∆x], there exists ξ ∈ (x, x + ∆x) such that

g(x + ∆x)− g(x) = g′(ξ)∆x.

Applying this to ∂ f
∂x (x, t) =: gt(x) for each fixed38 t gives

(VII.F.6)
∂ f
∂x

(x + ∆x, t)− ∂ f
∂x

(x, t) =
∂2 f
∂x2 (ξ, t)∆x,

and combining (VII.F.6) with (VII.F.5) yields

(VII.F.7) α−2
! x+∆x

x

∂ f
∂t

(x, t) dx =
∂2 f
∂x2 (ξ, t)∆x.

Dividing both sides of (VII.F.7) by ∆x and taking the limit as ∆x → 0
( =⇒ ξ → x), we recover the heat equation (VII.F.4) (with h = 0).

Now remember how, in the finite-dimensional setting, we solved
continuous dynamical systems of the form

d!X
dt

= A!X

when A ∈ Mn(R) is diagonalizable over R. If !X(0) ∈ Rn is an eigen-
vector with eigenvalue λ the solution is just eλt!X(0). More generally,
if {!v1, . . . ,!vn} ⊂ Rn is an A-eigenbasis (with eigenvalues λ1, . . . , λn),
we can always write !X(0) = ∑i ci!vi and then the solution is

!X(t) = ∑
i

eλit ci!vi.

Replacing vectors by functions and A by T = α2 d2

dx2 , notice that

T
/

1√
π

cos kx
0

=
α2
√

π

d2

dx2 cos kx = −α2k2
/

1√
π

cos kx
0

;

in fact, the eigenfunctions of T are just the elements of our basis
B =

!
1√
2π

, 1√
π

cos kx, 1√
π

sin kx
"

k∈N
, with respective eigenvalues

0, −α2k2, −α2k2. Therefore if

f (x, 0) =
∞

∑
k=1

(ak cos kx + bk sin kx) + C

38Note in particular that g′t(ξ) is just ∂2 f
∂x2 (ξ, t).
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we have for
∂ f
∂t

= T f

the solution

f (x, t) =
∞

∑
k=1

e−α2k2t (ak cos kx + bk sin kx) + C.

Finally, for f (x, 0) = the function of Example VII.F.2,

f (x, t) =
1
2
+

2
π ∑

k>0
odd

e−α2k2t

k
sin kx.

Notice that the highest frequencies (large k) are suppressed the most
quickly, so that the sharp corners disappear. As a consequence the
function gets “smoothed” over time by heat conduction, eventually
approaching the average heat value 1

2 .

Remarks on convergence. The convergence of Fourier series may
be considered in several different senses, including (L2-)norm con-
vergence, pointwise convergence, and uniform convergence. The
first of these means that ‖ f − SN‖ → 0 as N → ∞, where SN are
the Nth partial sums of the series. This is true quite generally for
square-integrable functions, and is the sense in which B spans V.

More relevant to our purposes above, however, is pointwise con-
vergence SN(x0) → f (x0). Continuity is not the right condition here
— it only ensures pointwise convergence almost everywhere — and
excludes the rectangular wavefunction of Example VII.F.2. Let’s call
a function piecewise continuous if it has only finitely many disconti-
nuities, and moreover possesses (finite) left and right limits at each
discontinuity. (Such a function is necessarily bounded.) Then if f and
its first derivative are piecewise continuous, the Fourier series con-
verges pointwise to the function f̃ , which is given by f away from
f ’s discontinuities, and by the average of left and right limits at f ’s
discontinuities. This is a bit more than needed, but is clearly suitable
for both of the examples above.
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The idea that a discontinuous function like that in Example VII.F.2
should be representable by a trigonometric series caused controversy
and led to the rejection of Fourier’s 1807 paper. Eventually he be-
came president of the professional society responsible for this rejec-
tion and had it published in their prestigious journal. With this small
reminder of the value of persistence, I congratulate the reader for
persevering to the end. Now try some exercises:

Exercises
(1) Find a series formula for π

4 by evaluating the result of Example
VII.F.2 at x = π

2 .
(2) Can you cook up an example to compute ∑∞

k=1
1
k4 ?

(3) Let P∞ ⊆ P denote the subspace of smooth (infinitely differen-
tiable) functions. Show that i d

dx is self-adjoint in the inner prod-
uct defined above. What are its eigenvectors and eigenvalues?

(4) Let V denote the vector space of smooth complex-valued func-
tions on R with “rapid (exponential) decay at ±∞”. (We won’t
need to make this precise.) The inner product is

〈 f , g〉 :=
! ∞

−∞
f (x)g(x)dx.

(a) Compute the adjoint of A := 1√
2

1
x − d

dx

2
, AA† and A† A.

Conclude that H := 1
2

1
− d2

dx2 + x2
2

is self-adjoint; it turns out
that this is the Schrödinger Hamiltonian of the “quantum harmonic
oscillator”.
(b) Define ψ0 := e−x2/2 and (for n ∈ N) ψn := Anψ0. Show that
ψn(x) = e−x2/2hn(x) for some polynomials hn: these are the Her-
mite polynomials; compute them explicitly for a few values of n.
(c) Prove that the ψn are eigenfunctions for the Hamiltonian, and
determine the eigenvalues. (These correspond to quantum states
of the system, with energies proportional to the eigenvalues.)
[Hint: first show (e.g. using induction) that A† An+1 − An+1A† =

nA, then check that A† kills ψ0, and finally use the relation be-
tween A† A and H from part (a).]


