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Introduction to
ptography

simple substitution ciphers

Caesar surveys the unfolding battle from his hilltop outpost, an
and disheveled courier bursts into his presence and hands him a
archment containing gibberish:

‘quqnslgfhpgwjfpymwtzlmnrrnsjsyqzhnzx

oments, Julius sends an order for a reserve unit of charioteers to
und the left flank and exploit a momentary gap in the opponent’s

id this string of seemingly random letters convey such important
n? The trick is easy, once it is explained. Simply take each letter in
age and shift it five letters up the alphabet. Thus j in the ciphertezt
in the plaintext,’ because e is followed in the alphabet by f,g,h,i,j.
g this procedure to the entire ciphertext yields

kfqqnslgfhpgwjfpymwtzlmnrrnsjsyqgzhnzx
yfallingbackbreakthroughimminentlucius

nd line is the decrypted plaintext, and breaking it into words and
o the appropriate punctuation, Julius reads the message

Enemy falling back. Breakthrough imminent. Lucius.

remains one minor quirk that must be addressed. What happens when
nds a letter such as d? There is no letter appearing five letters before d

laintext is the original message in readable form and the ciphertezt is the en-
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in the alphabet. The answer is that he must wrap around to the end of the
alphabet. Thus d is replaced by y, since y is followed by z,a,b,c,d.

This wrap-around effect may be conveniently visualized by placing the al-
phabet abcd. . .xyz around a circle, rather than in a line. If a second alphabet
circle is then placed within the first circle and the inner circle is rotated five
letters, as illustrated in Figure 1.1, the resulting arrangement, can be used
to easily encrypt and decrypt Caesar’s messages. To decrypt a letter, simply
find it on the inner wheel and read the corresponding plaintext letter from
the outer wheel. To encrypt, reverse this process: find the plaintext letter on
the outer wheel and read off the ciphertext letter from the inner wheel. And
note that if you build a cipherwheel whose inner wheel spins, then you are no
longer restricted to always shifting by exactly five letters. Cipher wheels of
this sort have been used for centuries.?

Although the details of the preceding scene are entirely fictional, and in
any case it is unlikely that a‘message to a Romah general would have been
written in modern English(!); there is evidence that Caesar employed this
early method of cryptography, which is sometimes called the Caesar cipher
in his honor. It is also sometimes referred to as a shift cipher, since each
letter in the alphabet is shifted up or down. Cryptography, the methodology of
concealing the content of messages, comes from the Greek root words kryptos,
meaning hidden,? and graphikos, meaning writing. The modern scientific study
of cryptography is sometimes referred to as cryptology.

In the Caesar cipher, each letter is replaced by one specific substitute
letter. However, if Bob encrypts a message for Alice? using a Caesar cipher
and allows the encrypted message to fall into Eve’s hands, it will take Eve
very little time to decrypt it. All she needs to do is try each of the 26 possible
shifts. .

Bob can make his message harder to attack by using a more complicated
replacement scheme. For example, he could replace every occurrence of ‘a
by z and every occurrence of z by a, every occurrence of b by y and every
occurrence of y by b, and so on, exchanging each pair of letters ¢ « x,...,
m s 1. .

This is an example of a simple substitution cipher, that is, a cipher in which
each letter is replaced by another letter (or some other type of symbol). The
Caesar cipher is an example of a simple substitution cipher, but there are
many simple substitution eiphers other than the Caesar cipher. In fact, a

2A cipher wheel with mixed up alphabets and with encryption performed using different
offsets for different parts of the message is featured in a 15t century monograph by Leon
Batista Alberti [58]. ‘

3The word cryptic, meaning hidden or occult, appears in 1638, while crypto- as a prefix
for concealed or secret makes its appearance in 1760. The term cryptogram appears much
later, first occurring in 1880.

4In cryptography, it is traditional for Bob and Alice to exchange confidential messages
and for their adversary Eve, the eavesdropper, to intercept and attempt to read their mes-
sages. This makes the field of cryptography much more personal than other areas of math-
ematics and computer science, whose denizens are often X and Y!
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Figure 1.1: A cipher wheel with an offset of five letters

simple substitution cipher may be viewed as a rule or function
{a,b,c,d,e,...,x,y,z2} — {A,B,C,D,E,...,X,Y,Z}

assigning each plaintext letter in the domain a different ciphertext letter in the
range. (To make it easier to distinguish the plaintext from the ciphertext, we
write the plaintext using lowercase letters and the ciphertext using uppercase
letters.) Note that in order for decryption to work, the encryption function
must have the property that no two plaintext letters go to the same ciphertext
letter. A function with this property is said to be one-to-one or injective.

A convenient way to describe the encryption function is to create a table

by writing the plaintext alphabet in the top row and putting each ciphertext
letter below the corresponding plaintext letter.
Ezample 1.1. A simple substitution encryption table is given in Table 1.1. The
ciphertext alphabet (the uppercase letters in the bottom row) is a randomly
chosen permutation of the 26 letters in the alphabet. In order to encrypt the
plaintext message

Four score and seven years ago,

we run the words together, look up each plaintext letter in the encryption
table, and write the corresponding ciphertext letter below.

fourscoreandsevenyearsago
NURBIKSUBVCGQEKVEVGZVCBE KCFU
It is then customary to write the ciphertext in five-letter blocks:

NURBK SUBVC GQKVE VGZVC BKCFU
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abcdefg,hijklmnopqrstuvwxyz
CISQVNFOWAXMTGUHPBKLREYDZJ

Table 1.1: Simple substitution encryption table

jraxvgnpbzstlthducmoeikwy
AB~CDEFGHIJKLMNDPQRSTUVWXYZ

Table 1.2: Simple substitution decryption table

Decryption is a similar process. Suppose that we receive the message

5

GVVQG VYKCM CQGBV KKWGF SCVKV B

and that we know that it was encrypted using Table 1.1. We can reverse
the encryption process by finding each ciphertext letter in the second . row
of Table 1.1 and writing down the corresponding letter from the top row.
However, since the letters in the second row of Table 1.1 are all mixed up,
this is a somewhat inefficient process. It is better to make a decryption table
in which the ciphertext letters in the lower row are listed in alphabetical order
and the corresponding plaintext letters in the upper row are mixed up. We
have done this in Table 1.2. Using this table, we easily decrypt the message.

GVVQGVYKCMCQQBVKKWGFSCVKVB
neednewsaladdressingcaeser

Putting in the appropriate word breaks and some punctuation reveals an
urgent request!

Need new salad dressing. -Caesar

'L.1.1 Cryptanalysis of simple substitution ciphers

How many different simple substitution ciphers exist? We can count them by
enumerating the possible ciphertext values for each plaintext letter. First we
assign the plaintext letter a to one of the 26 possible ciphertext letters A-Z. So
there are 26 possibilities for a. Next, since we are not allowed to assign b to the
same letter as a, we may assign b to any one of the remaining 25 ciphertext
letters. So there are 26 - 25 = 650 possible ways to assign a and b. We have
now used up two of the ciphertext letters, so we may assign ¢ to any one of
the remaining 24 ciphertext letters. And so on. ... Thus the total number of
~ ways to assign the 26 plaintext letters to the 26 ciphertext letters, using each
ciphertext letter only once, is
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26-25-24---4-3-2-1 = 26! = 403291461126605635584000000.

here are thus more than 10?6 different simple substitution ciphers. Each
ociated encryption table is known as a key.

Suppose that Eve intercepts one of Bob’s messages and that she attempts
decrypt it by trying every possible simple substitution cipher. The process
decrypting a message without knowing the underlying key is called crypt-
alysis. If Eve (or her computer) is able to check one million cipher alphabets
- second, it would still take her rhore than 1013 years to try them all.> But
 age of the universe is estimated to be on the order of 101 years. Thus Eve
s almost no chance of decrypting Bob’s message, which means that Bob'’s
ssage is secure and he has nothing to worry about!® Or does he?

It is time for an important lesson in the practical side of the science of
ptography:

Your opponent always uses her best strategy to defeat you,
not the strategy that you want her to use. Thus the secu-
rity of an encryption system depends on the best known
method to break it. As new and improved methods are
developed, the level of security can only get worse, never
better.

Despite the large number of possible simple substitution ciphers, they are
ually quite easy to break, and indeed many newspapers and magazines
ure them as a companion to the daily crossword puzzle. The reason that
can easily cryptanalyze a simple substitution cipher is that the letters
he English language (or any other human language) are not random. To
ike an extreme example, the letter q in English is virtually always followed
y the letter u. More useful is the fact that certain letters such as e and t
ppear far more frequently than other letters such as £ and c. Table 1.3 lists
e letters with their typical frequencies in English text. As you can see, the
ost frequent letter is e, followed by t, a, o, and n.
_ Thus if Eve counts the letters in Bob’s encrypted message and makes a
equency table, it is likely that the most frequent letter will represent e, and
at t, &, o, and n will appear among the next most frequent letters. In this
ay, Eve can try various possibilities and, after a certain amount of trial and
ror, decrypt Bob’s message.
_In the remainder of this section we illustrate how to cryptanalyze a simple
bstitution cipher by decrypting the message given in Table 1.4. Of course the
d result of defeating a simple substitution cipher is not our main goal here.
Our key point is to introduce the idea of statistical analysis, which will prove to

5Do you see how we got 1013 years? There are 60 - 60 - 24 - 365 seconds in a year, and 26!
ided by 10° - 60 - 60 - 24 - 365 is approximately 1013-107,

. 8The assertion that a large number of possible keys, in and of itself, makes a cryptosys-
tem secure, has appeared many times in history and has equally often been shown to be
fallacious.
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By decreasing frequency ] In alphabetical order
E 13.11% | M 2.54% A 8.15% | N 7.10%
T 1047% | U 2.46% B 144% | O 8.00%
A 815% | G 1.99% C 276% | P 1.98%
O 8.00% | Y 1.98% D 3.79% | Q 0.12%
N 710% | P 1.98% E 13.11% | R 6.83%
R 6.83% | W 1.54% F 292% | S 6.10%
I 6.35% | B 1.44% G 1.99% | T 10.47%
S 6.10% | V 0.92% H 526% | U 2.46%
H 526% | K 0.42% I 6.35% | V 0.92%
D 3.79% | X 0.17% J 0.13% | W 1.54%
L 3.39% | J 0.13% K .042% | X 0.17%
F 292% | Q 0.12% L 339% | Y 1,98%
C 2.76% | Z 0.08% M 2.54% | Z 0.08%

Table 1.3: Frequency of letters in English text -

LOJUM YLIME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEQ SKDVC
GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL 0SCI0 LGOYG
ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ
CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD
LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EQ0JO DQDMM
YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EIM

Table 1.4: A simple substitution cipher to cryptanalyze

have many applications throughout cryptography. Although for completeness
we provide full details, the reader may wish to skim this material.

There are 298 letters in the ciphertext. The first step is to make a frequency
table listing how often each ciphertext letter appears.

1

JIL|[DiGiY[S|O|{N]M[P|E]Y QIC|TIW|U|K|I[X|Z|B|A[F|R[H
Freq ||32128]27|24|23122]19]18[17|15]12]12|8(8[7]5 6(5{4|3|1}1j0|0]0]0
% 11j9)9/818|7/6|6|6|5]|4]4(3I3[2]2/2(3[1/1 0{0]0{0}0}0

Table 1.5: Frequency table for Table 1.4~Ciphertext length: 298

The ciphertext letter J appears most frequently, so we make the provisional
guess that it corresponds to the plaintext letter e. The next most frequent
ciphertext letters are L (28 times) and D (27 times), so we might guess from
Table 1.3 that they represent t and a. However, the letter frequencies in a
short message are unlikely to exactly match the percentages in Table 1.3. All
that we can say is that among the ciphertext letters L, D, G, Y, and S are likely
" to appear several of the plaintext letters t, a, o, n, and r.

th | he |an|re|er|in|onfatind{st|es|en|of|te]ed
168132192191 /88|86(71|68 6153|5251 |49146(46

(a) Most common English bigrams (frequency per 1000 words)

LOJoJ[GY[ pN [vD|YL[DL|DM|sSN|KD|LY[NG]OY[JID|SK[EP[JG]sv]M[IQ
917 | 6 each 5 each 4 each

i

{(b) Most common bigrams appearing in the‘ ciphertext in Table 1.4

i3

Table 1.6: Bigram frequencies

There are several ways to proceed. One method is to look at bigrams, which
are pairs of consecutive letters. Table 1.6(a) lists the bigrams thz?,t most fre-
quently appear in English, and Table 1.6(b) lists the cipher‘text bigrams that
appear most frequently in our message. The ciphertext bigrams L0 z?nd 0J
appear frequently. We have already guessed that J = e, and based on its fre-
quency we suspect that L is likely to represent one of the letters t, a, o, n,
or r. Since the two most frequent English bigrams are th and he, we make

the tentative identifications

L0 =1th and 0J = he.

We substitute the guesses J = e, L = t, and 0 =h, into the ciphertext,
writing the putative plaintext letter below the corresponding ciphertext letter.

LOJUM YLJME PDYVJ QXTDV SVJINL DMTJZ WMJGG YSNDL UYLEQ SKDVC
the-- -te-- --—-— e —==== -—g-{ ---g- ~-g-- ----f --t-h
GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL 0SCIO LGOYG
~=—@= m==w= ~mgee —-gmg fm—~f hemm— mme—— o -tt h---h t-h--

ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ
-t e

~--e-e -~
CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD
mmm== —=—f= —f~-= ———=— -h-—— @---f --—-@ --t-{ he--- --t--
LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUQOY E00JO DQDMM
te-th -t--t --the --e~- -e-th e---- e--e- ---h- -hheh -----
YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM
--e-- tthe- the-- --ht- e---- ---- e ~h--- ---g~ —=--~ -g-

At this point, we can look at the fragments of plaintext and attempt to
guess some common English words. For example, in the second line we see the

three blocks

VSGLL 0SCIO LGOYG,
---tt h---h t-h--.
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Looking at the fragment th---ht, we might guess that this is the word
thought, which gives three more equivalences,

S=o, C=u, I=g.
This yields

LOJUM YLJME PDYVJ QXTDV SVJINL DMTJZ WMJGG YSNDL UYLEQ SKDVC
the-- -te-- -—-- @ —==—- o-e-t ~---g- --g~- -p--t --t~h o---u
GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL 0SCIO LGOYG
~~-e0 -~g-- ——eo~ ~--e-e to--t ho--- ----~ -o-tt hough t-h--
ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ
TOm== YemQm —=@m@ —mo—s ———ee @r== Qu=== ==Q=0 ==t-0 -—0-g ¢
CEPYQ GSGLD MLPYN IUSCP QOYGM 'JGCPL GDWWJ DMLSL OJCNY NYLYD
y-==- -0~f{~ -t--- g-ou- -hr-- e-u-t ----e¢ --tot heu-- --t--
LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY EO0JO DQDMM
te-th -tu-t --the --e-- -e-th e--o- e--e~ =--h- ~hheh -~-—-
YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM
-~e-- tthe- the-- -ght- e---0 ----e -h~-- ---g- ~o=-=-=- -e-

Now look at the three letters ght in the last line. They must be preceded
by a vowel, and the only vowels left are a and i, so we guess that Y = i. Then
we find the letters itio in the third line, and we guess that they are followed
by an n, which gives N = n. (There is no reason that a letter cannot represent

. itself, although this is often forbidden in the puzzle ciphers that appear in
newspapers.) We now have

LOJUM YLJME PDYVJ QXTDV SVJINL DMTJZ WMJGG YSNDL- UYLEQ SKDVC
the-- ite-- --i-e ----- o-ent ---e~ --e-—- jon-t -it-h o---u
GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL 0SCI0 LGOYG
~--e0 --g-- n-eo~ -ne-e to--t ho--- -n-in -o~tt hough t-hi-
ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ
-on-- u-ion --e-e -=-in~ ---i- ~g--- o--n~ --0~0 -itio n-o-e
CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD
u--i- ~0-t- -t-in g-ou- ~-hi-- e-u-t ----e --tot heuni niti-
LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY E00JO DQDMM
te-th -tunt i-the --e-- ne-th e--o0- e--e~ ---hi -hheh ----—-
YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-e-- tthe- the-- ight- e---o n-i-e -hi-- --ne~ -o--n -e-

So far, we have reconstructed the following plaintext/ciphertext pairs:

LIplec[Y[sTo[N[M[P|E]V]a|C[T[w][U[K|T|X[Z[B]A]F|R[E
t|-{-{ilolnln|~-|--=1=lu|~I-[-]-lg[~I-I-I=-|-1-]-].
Freq |[32]28]27]24|23]22[19]18]17[15|12[12(8([8[7|6]6]5/4[3]1|1|0|0[0]0

Recall that the most common letters in English (Table 1.3) are, in order of
- decreasing frequency,
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e, t,a, o,n, r, i, s, h.

We have already assigned ciphertext values to e, t, o, n, i, h, so we guess
that D and G represent two of the three letters a, r, s. In the third line we
notice that GYLYSN gives —ition, so clearly G must be s. Similarly, on the
fifth line we have LJQLO DLCNL equal to te-th ~tunt, so D must be a, not r.
Substituting these new pairs G = s and D = a gives

LOJUM YLJME PDYVJ QXTDV SVJNL DMTJZ WMJGG YSNDL UYLEO SKDVC
the-- ite~- -ai-e -——a- o-ent a--e- --ess ionat -it-h o-a-u
GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL 0SCIO LGOYG
s--e0 ~ag-a n-eo- ane-e to-at ho-a- ansin -ostt hough tshis
ESNEP CGYSN GUJMJ DGYNK DPPYX PJDGG SVDNT WMSWS GYLYS NGSKJ
~-on—- usion s-e-e asin- a--i- -eass o-an- -~-o0-o0 sitioc nso-e
CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD
u~--i- sosta -t-in g-ou- -his- esu-t sa--e a-tot heuni nitia
LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY E00JO DQDMM
te-th atunt i-the --ea- ne-th e--o- esses ---hi -hheh a-a--
YBJQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-e-a tthe- the-- ight- e---o nsi-e ~hi-a sane-~ -o~an -e-

It is now easy to fill in additional pairs by inspection. For example, the

_ missing letter in the fragment atunt i-the on the fifth line must be 1, which

gives P = 1, and the missing letter in the fragment ~osition on the third
- line must be p, which gives W = p. Substituting these in, we find the fragment
e-p-ession on the first line, which gives Z = x and M = r, and the fragment

_ -on-lusion on the third line, which gives E = c. Then consi-er on the last

line gives § = d and the initial words the-riterclai-e~ must be the phrase
“the writer claimed,” yielding U= w and V = m. This gives

LOJUM YLJME PDYVJ QXTDV SVJINL DMTJZ WMJGG YSNDL UYLEQ SKDVC
thewr iterc laime d--am oment ar-ex press ionat witch o-amu
GEPJS MDIPD NEJSK DNJTJ LSKDL OSVDV DNGYN VSGLL 0SCIO LGOYG
scleo ragla nceo- ane-e to-at homam ansin mostt hough tshis
ESNEP CGYSN GUJMJ DGYNK DPPYX PJIDGG SVDNT WMSWS GYLYS NGSKJ
concl usion swere asin- alli- leass oman- propo sitio nso-e
CEPYQ GSGLD MLPYN IUSCP QOYGM JGCPL GDWWJ DMLSL OJCNY NYLYD
uclid sosta rtlin gwoul dhisr esult sappe artot heuni nitia
LJQLO DLCNL YPLOJ TPJDM NJQLO JWMSE JGGJG XTUOY E00JO DQDMM
tedth atunt ilthe -lear nedth eproc esses ~-whi chheh adarr
YBJIQD LLOJV LOJTV YIOLU JPPES NGYQJ MOYVD GDNJE MSVDN EJM

i-eda tthem the-m ightw ellco nside rhima sanec roman cer

It is now a simple matter to fill in the few remaining letters and put in
_ the appropriate word breaks, capitalization, and punctuation to recover the
plaintext:

The writer claimed by a momentary expression, a twitch of a mus-
cle or a glance of an eye, to fathom a man’s inmost thoughts. His
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conclusions were as infallible as so many propositions of Euclid.
So startling would his results appear to the uninitiated that until
they learned the processes by which he had arrived at them they
might well consider him as a necromancer.”

1.2 Divisibility and greatest common divisors

Much of modern cryptography is built on the foundations of algebra and
number theory. So before we explore the subject of cryptography, we need
to develop some important tools. In the next four sections we begin this de-
velopment by describing and proving fundamental results from algebra and
number theory. If you have already studied number theory in another course,
a brief review of this material will suffice. But if this material is new to you,
then it is vital to study it closely and to work out the exercises provided at
the end of the chapter.

At the most basic level, Number Theory is the study of the natural numbers

1,2,3,4,5,6,...,
or slightly more generally, the study of the integers
ceey—5,-4,-3,-2,-1,0,1,2,3,4,5,....

The set of integers is denoted by the symbol Z. Integers can be added, sub-
tracted, and multiplied in the usual way, and they satisfy all the usual rules
of arithmetic (commutative law, associative law, distributive law, etc.). The
set of integers with their addition and multiplication rules are an example of
a ring. See Section 2.10.1 for more about the theory of rings.

If a and b are integers, then we can add them a + b, subtract them ¢ — b,
and multiply them a-b. In each case, we get an integer as the result. This
property of staying inside,of our original set after applying operations to a
pair of elements is characteristic of a ring. '

But if we want to stay within the integers, then we are not always able
to divide one integer by another. For example, we cannot divide 3 by 2, since
there is no integer that is equal to % This leads to the fundamental concept
of divisibility.

Definition. Let a and b be integers with b # 0. We say that b divides a, or
that a is divisible by b, if there is an integer ¢ such that

a = be.

We write b | a to indicate that b divides a. If b does not divide a, then we
write b1 a.

7 A Study in Scarlet (Chapter 2), Sir Arthur Conan Doyle.
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Remark 1.33. If p is large, then the finite field IF » has quite a few primitive
roots. The precise formula says that F, has exactly ¢(p — 1) primitive roots,
where ¢ is Euler’s phi function (see page 22). For example, you can check that
the following is a complete list of the primitive roots for Fag:

{2,3,8,10,11, 14,15, 18,19, 21, 26, 27}.

This agrees with the value ¢(28) = 12. More generally, if k divides p— 1, then
there are exactly ¢(k) elements of F}; having order k.

1.6 Cryptography before the computer age

We pause for a short foray into the history of precomputer cryptography.
Our hope is that these brief notes will whet your appetite for further reading
on this fascinating subject, in which political intrigue, daring adventure, and
romantic episodes play an equal role with technical achievements.

"The origins of cryptography are lost in the mists of time, but presumably
secret writing arose shortly after people started using some form of written
communication, since one imagines that the notion of confidential information
must date back to the dawn of civilization. There are early recorded descrip-
tions of ciphers being used in Roman times, including Julius Caesar’s shift

cipher from Section 1.1, and certainly from that time onward, many civiliza-

tions have used both substitution ciphers, in which each letter is replaced by
another letter or symbol, and transposition ciphers, in which the order of the
letters is rearranged. e i :

The invention of cryptanalysis, that is, the art of decrypting messages
without previous knowledge of the key, is more recent. The oldest surviving
texts, which include references to earlier lost volumes, are by Arab scholars
from the 14th and 15th centuries. These books describe not only simple sub-
stitution and transposition ciphers, but also the first recorded instance of a
homophonic substitution cipher, which is a cipher in which a single plaintext
letter may be represented by any one of several possible ciphertext letters.
More importantly, they contain the first description of serious methods of
cryptanalysis, including the use of letter frequency counts and the likelihood
that certain pairs of letters will appear adjacent to one another. Unfortunately,
most of this knowledge seems to have disappeared by the 17th century.

Meanwhile, as Europe emerged from the Middle Ages, political states in
Italy and elsewhere required secure communicﬁtions, and both cryptograplfy
and cryptanalysis began to develop. The earliest known European homophonic

substitution cipher dates from 1401. The use of such a cipher suggests con-

temporary knowledge of cryptanalysis via frequency analysis, since the only

reason to use a homophonic system is to make such cryptanalysis more diffi-

cult.

In the 15th and 16th centuries there arose a variety of what are known as |
. polyalphabetic ciphers. (We will see an example of a Wﬁtig&;gb_@r, :
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called the Vigenere cipher, in Section 4.2.) The basic idea is that each letter
_of the plaintext is enciphered using a different simple substitution cipher. The
name “polyalphabetic” refers to the use of many different cipher alphabets,
which were used according to some sort of key. If the key is reasonably long,
_ then it takes a long time for the any given cipher alphabet to be used a second
 time. It wasn’t until the 19th century that statistical methods were developed
_ toreliably solve such systems, although there are earlier recorded instances of
~ cryptanalysis via special tricks or lucky guesses of part of the message or the
key. J umping forward several centuries, we note that the machine ciphers that
_played a large role in World War II were, in essence, extremely complicated
_ polyalphabetic ciphers.

Ciphers and codes®3 for both political and military purposes become in-
reasingly widespread during the 18th, 19th, and early 20th centuries, as did
cryptanalytic methods, although the level of sophistication varied widely from
eneration to generation and from country to country. For example, as the
United States prepared to enter World War I in 1917, the U.S. Army was
sing ciphers, inferior to those invented in Italy in the 1600s, that any trained
ryptanalyst of the time would have been able to break in a few hours!

The invention and widespread deployment of long-range communication
methods, especially the telegraph, opened the need for political, military, and
ommercial ciphers, and there are many fascinating stories of intercepted and
ecrypted telegraph messages playing a role in historical events. One exam-
le, the infamous Zimmerman telegram, will suffice. With the United States
aintaining neutrality in 1917 as Germany battled France and Britain on ,
he Western Front, the Germans decided that their best hope for victory was
0 tighten their blockade of Britain by commencing unrestricted submarine
arfare in the Atlantic. This policy, which meant sinking ships from neutral
ountries, was likely to bring the United States into the war, so Germany de- -
ded to offer an alliance to Mexico. In return for Mexico invading the United
ates, and thus distracting it from the ground war in Europe, Germany pro-
osed giving Mexico, at the conclusion of the war, much of present-day Texas,
ew Mexico, and Arizona. The British secret service intercepted this commu-
tion, and despite the fact that it was encrypted using one of Germany’s
t secure cryptosystems, they were able to decipher the cable and pass its
ents on to the United States, thereby helping to propel the United States
to World War 1.

_ The invention and development of radio communications around 1900
ed an even more striking change in the cryptographic landscape, es-
ally in urgent military and political situations. A general could now

n classical terminology, a code is a system in which each word of the plaintext is re-
d with a code word. This requires sender and receiver to share a large dictionary in
1 plaintext words are paired with their ciphertext equi,valents. Ciphers operate on the
idual letters of the plaintext, either by substitution, transposition, or some combina-
This distinction between the words “code” and “cipher” seems to have been largely
doned in today’s literature.
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instantaneously communicate with all of his troops, but unfortunately the
enemy could listen in on all of his broadcasts. The need for secure and effi-
cient ciphers became paramount and led to the invention of machine ciphers,
such as Germany’s Enigma machine. This was a device containing a number
of rotors, each of which had any wires running through its center. Before a
letter was encrypted, the rotors would spin in a predetermined way, thereby
altering the paths of the wires and the resultant output. This created an
immensely complicated polyalphabetic cipher in which the number of cipher
alphabets was enormous. Further, the rotors could be removed and replaced
in a vast number of different starting configurations, so breaking the system
involved knowing both the circuits through the rotors and figuring out that
day’s initial rotor configuration. ‘

Despite these difficulties, during World War II the British managed to
decipher a large number of messages encrypted on Enigma machines. They
were aided in this endeavor by Polish cryptographers who, just before hos-
tilities commenced, shared with Britain and France the methods that they
had developed for attacking Enigma. But determining daily rotor configura-
tions and analyzing rotor replacements was still an immensely difficult task,
especially after Germany introduced an improved Enigama machine having
an extra rotor. The existence of Britain’s ULTRA project to decrypt Enigma
remained secret until 1974, but there are now several popular accounts. Mil-
itary intelligence derived from ULTRA was of vital importance in the Allied
war effort.

Another WWII cryptanalytic success was obtained by United States cryp-
tographers against a Japanese cipher machine that they code-named Purple.
This machine used switches, rather than rotors, but again the effect was to
create an incredibly complicated polyalphabetic cipher. A team of cryptogra-
phers, led by William Friedman, managed to reconstruct the design of the Pur-
ple machine purely by analyzing intercepted encrypted messages. They then
built their own machine and proceeded to decrypt many important diplomatic
messages. )

In this section we have barely touched the surface of the history of cryptog-
raphy from antiquity through the middle of the 20th century. Good starting
points for further reading include Simon Singh’s light introduction [128] and

David Kahn’s massive and comprehensive, but fascinating and quite readable,
‘book The Codebreakers [58].

1.7 Symmetric and asymmetric ciphers

We have now seen several different examples of ciphers, all of which have a

number of features in common. Bob wants to send a secret message to Alice.
He uses a secret key k to scramble his plaintext message m and turn it into a
ciphertext c. Alice, upon receiving c, uses the secret key k to unscramble ¢ and
reconstitute m. If this procedure is to work properly, then both Alice and Bob

Lt
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must possess copies of the secret key &, and if the system is to provide security,
then their adversary Eve must not know k, must not be able to guess &, and
must not be able to recover m from ¢ without knowing k.

In this section we formulate the notion of a cryptosystem in abstract math-
ematical terms. There are many reasons why this is desirable. In particular,
it -allows us to highlight similarities and differences between different systems,
_ while also providing a framework within which we can rigorously analyze the
_ security of a cryptosystem against various types of attacks.

L.7.1 Symmetric ciphers

_ Returning to Bob and Alice, we observe that they must share knowledge of
the secret key k. Using that secret key, they can both encrypt and decrypt
_ messages, so Bob and Alice have equal (or symmetric) knowledge and abil-
ties. For this reason, ciphers of this sort are known as symmetric ciphers.
Mathematically, a symmetric cipher uses a key k chosen from a space (i.e.,
_a set) of possible keys K to encrypt a plaintext message m chosen from a
 space of possible messages M, and the result of the encryption process is a
iphertext ¢ belonging to a space of possible ciphertexts C.

Thus encryption may be viewed as a function

e:Kx M-

hose domain K x M is the set of pairs (k,m) consisting of a key k and a plain-

ext m and whose range is the space of ciphertexts C. Similarly, decryption is
function ’

d: KxC— M.

f course, we want the decrygtion function to “undo” the results of the en-
ryption function. Mathematically, this is expressed by the formula
d(k,e(k,m)) =m  forallk e K and all m € M.

It is sometimes convenient to write the dependence on k as a subscript.
hen for each key &, we get a pair of functions

ex: M —C and di : C — M
ktisfying the decryption property
di.(ex(m)) =m for all m € M.

In other words, for every key k, the function di. is the inverse function of
e function ey. In particular, this means that er must be one-to-one, since if
(m) = ex(m’), then 4

m = di(ex(m)) = di (ex(m’)) = m".
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It is safest for Alice and Bob to assume that Eve knows the encryption
method that is being employed. In mathematical terms, this means that Eve
knows the functions e and d. What Eve does not know is the particular key k
that Alice and Bob are using. For example, if Alice and Bob use a simple
substitution cipher, they should assume that Eve is aware of this fact. This
illustrates a basic premise of modern cryptography called Kerckhoff’s princi-
ple, which says that the security of a cryptosystem should depend only on the
secrecy of the key, and not on the secrecy of the encryption algorithm itself.

If (K, M,C,e,d) is to be a successful cipher, it must have the following

properties:

1. For any key k € K and plaintext m € M, it must be easy to compute

the ciphertext ex(m).

For any key k£ € K and ciphertext ¢ € C, it must be easy to compute the
plaintext dy(c).

. Given one or more ciphertexts ¢i,c¢s,...,¢, € C encrypted using the
key k € K, it must be very difficult to compute any of the corresponding
v plaintexts di(cy), ..., dx(cn) without knowledge of k.

There is a fourth property that is desirable, although it is moré&aifﬁcult
to achieve.

v
;‘ 4. Given one or more pairs of plaintexts and their corresponding cipher-

texts, (my,c1), (Ma, ), .., (My, ¢q), it must be difficult to decrypt any
ciphertext ¢ that is not in the given list without knowing k. This is
kS known as security against a chosen plaintext attack.

N—«M ,

Ezample 1.34. The simple substitution cipher does not have Property 4, since
even a single plaintext/ciphertext pair (m,¢) reveals most of the encryption

table. Thus simple substitution ciphers are vulnerable to chosen plaintext
attacks. See Exercise 1.41 for a further example.

- -In our list of four desirable properties for a cryptosystem, we have left
open the question of what exactly is meant by the words “easy” and “hard.”
We defer a formal discussion of this profound question to Section 4.7 (see also
Sections 2.1 and 2.6). For now, we informally take “easy” to mean computable
in less than a second on a typical desktop computer and “hard” to mean that
all of the computing power in the world would require several years (at least)
to perform the computation.

1.7.2 Encoding schemes

It is convenient to view keys, plaintexts, and ciphertexts as numbers and to

write those numbers in binary form. For example, we could take strings of

ﬂ)CLI &3 FAS (\U\ﬂ‘tz\’vl’»\ ;f‘k]\ (Q/)%“C,_\‘) .gpi\&wb)
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35 T 00166000 A | 65 [ 01000001 a | 97 |01100001
¢ | 40 | 00101000 B | 66 | 01000010 b | 98 | 01100010
y | 41 | 00101001 ¢ | 67 | 01000011 c | 99 |01100011
1| 44 | ooi01100 D | 68 | 01000100 d | 100 | 01100100
46 | 00101110 : : : : :
X | 88 101011000 x | 120 | 01111000
Y | 89 | 01011001 y | 121 | 01111001
Z 90_ 01011010 z | 122 101111010
Table 1.10: The ASCII encoding scheme

eight bits,? which give numbers from 0 to 255, and use them to represent the
_ letters of the alphabet via

a = 00000000, b = 00000001, c = 00000010, .. .,z =100011001.

_ To distinguish lowercase from uppercase, we could let 4 = 00011011, B =
~ 00011100, and so on. This encoding method allows up to 256 distinet symbols
_ to be translated into binary form.

Your computer may use a method of this type, called the ASCII code,!® to
_ store data, although for historical reasons the alphabetic characters are not as-
 signed the lowest binary values. Part of the ASQII code is listed in Table 1.10.
’ For example, the phrase “Bed bug.” (including spacing and punctuation) is
_encoded in ASCII as

B
66

01000010

d
100

01100100

b
98

011060010

e
101

01100101

u
117

01110101

g
103

01100111

32

00100000

46
0101110

 Thus where you see the phrase “Bed bug.”, your computer sees the list of
- bits

0100001001100101011001000010000001100010011101010110011100101110.

efinition. An encoding scheme is a method of converting one sort of data
nto another sort of data, for example, converting text into numbers. The
distinction between an encoding scheme and an encryption scheme is one of
ntent. An encoding scheme is assumed to be entirely public knowledge and
sed by everyone for the same purposes. An encryption scheme is designed to
ide information from anyone who does not possess the secret key. Thus an
encoding scheme, like an encryption scheme, consists of an encoding function
‘and its inverse decoding function, but for an encoding scheme, both functions
are public knowledge and should be fast and easy to compute.

1A bit is a 0 or a 1. The word “bit” is an abbreviation for binary digit.
15 ASCII is an acronym for American Standard Code for Information Interchange.
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With the use of an encoding scheme, a plaintext or ciphertext may be
viewed as a sequence of binary blocks, where each block consists of eight bits,
i.e., of a sequence of eight ones and zeros. A block of eight bits is called a byte.
For human comprehension, a byte is often written as a decimal number be-
tween 0 and 255, or as a two-digit hexadecimal (base 16) number between 00
and FF. Computers often operate on more than one byte at a time. For ex-
ample, a 64-bit processor operates on eight bytes at a time.

1.7.3 Symmetric encryption of encoded blocks

In using an encoding scheme as described in Section 1.7.2, it is convenient to
view the elements of the plaintext space M as consisting of bit strings of a
fixed length B, i.e., st‘rings of exactly B ones and zeros. We call B the blocksize
of the cipher. A general plaintext message then consists of a list of message
blocks chosen from M, and the encryption function transforms the message
blocks into a list of ciphertext blocks in C, where each block is a sequence
of B bits. If the plaintext ends with a block of fewer than B bits, we pad the
end of the block with zeros. Keep in mind that this encoding process, which
converts the original plaintext message into a sequence of blocks of bits in M,
is public knowledge.

Encryption and decryption are done one block at a time, so it suffices to
study the process for a single plaintext block, i.e., for a single m € M. This,
of course, is why it is convenient to break a message up into blocks. A message
can be of arbitrary length, so it’s nice to be able to focus the cryptographic
process on a single piece of fixed length. The plaintext block m is a string
of B bits, which for concreteness we identify with the corresponding number
in binary form. In other words, we identify M with the set of integers m
satisfying 0 < m < 28 via ‘

list of B bits of m

e

- 2
7713_1m3_2~-m2m1mg<———>mB_1'23 1+~-~+m2-2 +my-2+mg.

integer between 0 and 28 1
"

Here mg, Mmy,...,mp—1 are each 0 or 1.

Similarly, we identify the key space K and the ciphertext space C with sets
of integers corresponding to bit strings of a certain blocksize. For notational
convenience, we denote the blocksizes for keys, plaintexts, and ciphertexts
by B, Bm, and B.. They need not be the same. Thus we have identified KC, M,

and C with sets of positive integers
K={keZ :0<k<25}
M={meZ:0<m<2B},
C={ceZ :0<c< 25}

An important question immediately arises: how large should Alice and Bob
make the set K, or equivalently, how large should they choose the key block-
size By? If By, is too small, then Eve can check every number from 0 to 2Bk 1
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until she finds Alice and Bob’s key. More precisely, since Eve is assumed to
know the decryption algorithm d (Kerckhoff’s principle), she takes each k € K
and uses it to compute di (c). Assuming that Eve is able to distinguish between
+valid and invalid plaintexts, eventually she will recover the message.

This attack is known as an ezhaustive search attack (also sometimes re-

ferred to as a brute-force attack), since Eve exhaustively searches through the
key space. With current technology, an exhaustive search is considered to be
infeasible if the space has at least 280 elements. Thus Bob and Alice should
definitely choose B;, > 80.
For many cryptosystems, especially the public key cryptosystems that form
the core of this book, there are refinements on the exhaustive search attack
that effectively replace the size of the space with its square root. These meth-
ods are based on the principle that it is easier to find matching objects (colli-
sions) in a set than it is to find a particular object in the set. We describe some
of these meet-in-the-middle or collision attacks in Sections 2.7, 4.4, 4.5, 6.2,
_and 6.10. If meet-in-the-middle attacks are available, then Alice and Bob
should choose By, > 160.

1.7.4 Examples of symmetric ciphers

efore descending further into a morass of theory and notation, we pause to
ive a mathematical description of some elementary symmetric ciphers.
 Let p be a large prime,8 say 21%9 < p < 2160 Alice and Bob take their
ey space K, plaintext space M, and ciphertext space C to be the same set,

,p—1}.

n fancier terminology, K = M = C = F;, are all taken to be equal to the
oup of units in the finite field F,.

.Alice and Bob randomly select a key k € K, i.e., they select an integer k
tisfying 1 < k < p, and they decide to use the encryption function ey defined

K=M=C={1,2,3,...

ex(m)=k-m (mod p). (1.9)

ere we mean that ex(m) is set equal to the unique positive integer between 1
nd p that is congruent to k- m modulo p. The corresponding decryption
nection dg is

de(c) =k ¢

here k' is the inverse of k modulo p. It is important to note that although p
very large, the extended Euclidean algorithm (Remark 1.15) allows us to
lculate &' in fewer than 2log, p + 2 steps. Thus finding k' from k counts as
asy” in the world of cryptography.

(mod p),

There are in fact many primes in the interval 2159 < p < 2150, The prime number
rem implies that almost 1% of the numbers in this interval are prime. Of course, there
also the question of identifying a number as prime or composite. There are efficient tests
t-do this, even for very large numbers. See Section 3.4.



s bod ‘Q.LM{/L, Dol plntes (LR 1)
ra

7

42 1. An Introduction to Cryptography L1.7. Symmetric and asymmetric ciphers 43

It is clear that Eve has a hard time guessing k, since there are approxi- ex(m)=m+k (mod

: - p) and di(c) =c —
mately 2160 possibilities from which to choose. Is it also difficult for Eve to k() =c—k (modp),
recover k if she knows the ciphertext ¢? The answer is yes, it is still difficult.
Notice that the encryption function

e : M —C

which is nothing other than the shift or Caesar cipher that we studied in
Se‘ction 1.1. Another variant, called an affine cipher, is a combination of the
shift cipher and the multiplication cipher. The key for an affine cipher consists
of two integers k = (ky, k2) and encryption and decryption are defined by

is surjective (onto) for any choice of key k. This means that for every ¢ € C
and any k € K there exists an m € M such that ex(m) = c. Further, any
given ciphertext may represent any plaintext, provided that the plaintext is
encrypted by an appropriate key. Mathematically, this may be rephrased by
saying that given any ciphertext ¢ € C and any plaintext m € M, there exists
a key k such that ex(m) = c. Specifically this is true for the key

k=m~' ¢ (mod p). (1.10)

ex(m) =k -m+ky (mod p),

de(c) =k} - (c— k) (mod p), (1.11)

where ki is the inverse of k; modulo p.

‘The affine cipher has a further generalization called the Hill cipher, in
ich the plaintext m, the ciphertext ¢, and the second part of the key k ’are
eplaced by column vectors consisting of n numbers modulo p. The first pa?rt of
he key ki is taken to be an n-by-n matrix with mod p integer entries. Encryp-
ion and decryption are again given by (1.11), but now multiplication k; - m
: the product of a matrix and a vector, and k} is the inverse matrix of k
Ipo.dulo p. Both the affine cipher and the Hill cipher are vulnerable to choser11
laintext attacks (see Exercises 1.41. and 1.42).

This shows that Alice and Bob’s cipher has Properties 1, 2, and 3 as listed on
page 38, since anyone who knows the key k can easily encrypt and decrypt, but
it is hard to decrypt if you do not know the value of k. However, this cipher
does not have Property 4, since even a single plaintext/ciphertext pair {m,c)
allows Eve to recover the private key k using the formula (1.10).

It is also interesting to observe that if Alice and Bob define their encryption
function to be simply multiplication of integers ex(m) = k-m with no reduc-
tion modulo p, then their cipher still has Properties 1 and 2, but Property 3
fails. If Eve tries to decrypt a single ciphertext ¢ = k- m, she still faces the
(moderately) difficult task of factoring a large number. However, if she man-

Ezample 1.35. As noted earlier, addition is generally faster than multiplica-
ion, .but there is another basic computer operation that is even faster than
ddition. It is called ezclusive or and is denoted by XOR or @. At the lowest
evel, XOR takes two individual bits 8 € {0,1} and A’ € {0,1} and yields

f@p = {O if # and ' are the same,

ages to acquire several ciphertexts ci,co,...,Cn, then there is a good chance . . .
tﬁat 4 P D ° 1 if S and B are different. (1.12)
ou think of i ; .
gcd(cry oy -y cn) = ged(k - my, k- ma, . k) yition dezloale&jf a num}iler that is 0 or 1, thfan XQR is the same as
— k- ged(my,m ) ' . e generally, the XOR, of two bit strings is the result of
= R gC 1, Moy .., My forming XOR on each corresponding pair of bits. For example

equals k itself or a small multiple of k. Note that it is an easy task to compute
the greatest common divisor. ' ' ‘

This observation provides our first indication of how reduction modulo p
has a wonderful “mixing” effect that destroys properties such as divisibilit
However, reduction is not by itself the ultimate solution. Consider the vulne
ability of the cipher (1.9) to a chosen plaintext attack. As noted above, if Eve
can get her hands on both a ciphertext ¢ and its corresponding plaintext m,
then she easily recovers the key by computing

10110911010 = [1 @ 1] [0 @ 1] [1 & 0] [1 © 1] [0 & 0] = 01100.

ng t';his new operation, Alice and Bob have at their disposal yet another
ic cipher defined by

eg(m)=kdm and de(c)=kdec.

e K, M, and C are the sets of all binar i g i

set of all numbers between 0 and 28 }r—sgljlngs ot length B or eduivalently,
This Fipher has the advantage of being highly efficient and completely
metric in the sense that e, and dj are the same function. If k is chosen
domly and is used only once, then this cipher is known as Vernam’s one-

k=m~'-c (modp).

Thus even a single plaintext/ciphertext pair suffices to reveal the key, so th
encryption function ey given by (1.9) does not have Property 4 on page 38.

There are many variants of this “multiplication-modulo-p” cipher. Fo
example, since addition is more efficient than multiplication, there is al
“5ddition-modulo-p” cipher given by

00 cumbersome for m ractical applications. And if k is used to encrypt

¢ than one plaintext, then Eve may be able to exploit the fact that

i £



L.7. Symmetric and asymmetric ciphers 45

44 1. An Introduction to Cryptography

fascinating subject in Sections 2.1 and 8.2. For now, we content ourselves with
‘a few brief remarks. ‘

Although no one has yet conclusively proven that pseudorandom number
generators exist, many candidates have been suggested, and some of these
proposals have withstood the test of time. There are two basic approaches

cod=(kem)dkeom)=memn’

to extract information about m or m’. It’s not obvious how Eve would proceed
to find k, m, or m’, but simply the fact that the key k can be removed so
easily, revealing the potentially less random quantity m @ m/, shoulc.l ma%ce a
cryptographer nervous. Further, this method is vulnerable in some situations
to a chosen plaintext attack; see BExercise 1.46.

The first approach is to repeatedly apply an ad hoc collection of mixing
operations that are well suited to efficient computation and that appear to

andom bit sequences and symmetric ciphers

ave arrived, at long last, at the fundamental question regarding the
creation of secure and efficient symmetric ciphers. Is it possible to use a single
relatively short key k (say consisting of 160 random bits) to securely ?,nd
efficiently send arbitrarily long messages? Here is one possible construction.
Suppose that we could construct a function

practical symmetric ciphers, including the Data Encryption Standard (DES)
and the Advanced Encryption Standard (AES]), which=

‘most widely used today. See Section 8.TUT6Y a brief ciescription of these mod-
ern symmetric ciphers.

The second approach is to construct R using a function whose efficient
nversion is a well-known mathematical problem that is believed to be difficult.
This approach provides a far more satisfactory theoretical underpinning for a
ymmetric cipher, but unfortunately, all known constructions of this sort are
ar less efficient than the ad hoc constructions, and hence are less attractive
or real-world applications.

R:KxZ— {01}

with the following properties:
1. For all k € K and all j € Z, it is easy to compute R(k, 7).

2. Given an arbitrarily long sequence of integers ji, 2, . . . , j» and given all ’

of the values R(k, j1), R(k, j2), ..., R(k, Jn), it is hard to determine . 7.6 Asymmetric ciphers make a first appearance

3. Given any list of integers j1, j2, - .., jn and given all of the values

R(k,j1), R(k,j2), ..., R(k,5n), . ; unity to meet in secret or if they are able to communicate once over a secure

it is hard to guess the value of R(k,j) with better than a 50% chanc

of success for any value of j not already in the list.
Most people’s first reaction is that it is not possible, since Eve sees every

ece of information that Alice and Bob exchange. It was the brilliant insight
Diffie and Hellman!? that under certain hypotheses, it is possible. The
arch for efficient (and provable) solutions to this problem, which is called
iblic key (or asymmetric) cryptography, forms one of the most interesting
rts of mathematical cryptography and is the principal focus of this book.

We start by describing a nonmathematical way to visualize public key

If we could find a function R with these three properties, then we could
use it to turn an initial key k& into a sequence of bits

N

R(k,1), R(k,2), R(k,3), R(k, 4), ..., (1.13)

and then we could use this sequence of bits as the key for a one-time pad as
described in Example 1.35.

The fundamental problem with this approach is that the sequence of
bits (1.13) is not truly random, since it is generated by the function R. In-
stead, we say that the sequence of bits (1.13) is a pseudorandom sequence and
we call R a pseudorandom number generator. , ‘

Do pseudorandom number generators exist? If so, they would provide ex-
amples of the one-way functions defined by Diffie and Hellman in their ground-
breaking paper [36}, but despite more than a quarter century of work, no one
has yet proven the existence of even a single such function. We return to this

d see that it is securely made. Bob writes his message to Alice on a piece of
paper and slips it through the slot in the top of the safe. Now only a person
with the key to the safe, which presumably means only Alice, can retrieve
d read Bob’s message. In this scenario, Alice’s public key is the safe, the

"The history is actually somewhat more complicated than this; see our brief discussion
1 Section 2.1 and the references listed there for further reading.
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encryption algorithm is the process of putting the message in the slot, and
the decryption algorithm is the process of opening the safe with the key. Note
that this setup is not far-fetched; it is used in the real world. For example,
the night deposit slot at a bank has this form, although in practice the “slot”
must be well protected to prevent someone from inserting a long thin pair of
tongs and extracting other people’s deposits!

A useful feature of our “safe-with-a-slot” cryptosystem, which it shares
with actual public key cryptosystems, is that Alice needs to put only one safe
in a public location, and then everyone in the world can use it repeatedly
to send encrypted messages to Alice. There is no need for Alice to provide
a separate safe for each of her correspondents. And there is also no need for
Alice to open the safe and remove Bob’s message before someone else such as

Carl or Dave uses it to send Alice a message.
We are now ready to give a mathematical formulation of an asymmetric

cipher. As usual, there are spaces of keys K, plaintexts M, and ciphertexts C.
However, an element k of the key space is really a pair of keys, !

k= (kpriv, kpub)a

called the private key and the public key, respectively. For each public key kpup
there is a corresponding encryption function

Chpp - M — C,
and for each private key kpy, there is a corresponding decryption function
Ay 1 C — M.
These have the property that if the pair (kpry, kpub) is in the key space K, then
By (€ (M) =m  for all m € M.

If an asymmetric cipher is to be secure, it must be difficult for Eve to com-
pute the decryption function dg,,(c), even if she knows the public key Kpub.

Notice that under this assumption, Alice can send kpup to Bob using an inse- -

cure communication channel, and Bob can send back the ciphertext e, (m),
without worrying that Eve will be able to decrypt the message. To easily de-

crypt, it is necessary to know the private key kpiv, and presumably Alice is

the only person with that information. The private key is sometimes called
Alice’s trapdoor information, because it provides a trapdoor (i.e., a short-
cut) for computing the inverse function of eg,,,. The fact that the encryption
and decryption keys kpup and ki, are different makes the cipher asymmetric,
whence its moniker.

It is quite intriguing that Diffie and Hellman created this concept without
finding a candidate for an actual pair of functions, although they did propose a
similar method by which Alice and Bob can securely exchange a random piece
of data whose value is not known initially to either one. We describe Diffie
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ajbjcidie|f{g|hliljlk[2Tmlnlo Plgjrisjtlu|viwix|ylz
S{ClJ{AX|U|F[BlQlK|TIPIRIWIE|Z|H VILII/IG|Y|D|{N|M|D

Table 1.11: Simple substitution encryption table for exercise 1.3

.and Hellman’s key exchange method in Section 2.3 and then go on to discuss
2 number of asymmetric ciphers, including ElGamal (Section 2.4), RSA (Sec-
tion 3.2), ECC (Section 5.4), and NTRU (Section 6.10), whose security relies
on the presumed difficulty of a variety of different mathematical problems.

Exercises

Section 1.1. Simple substitution ciphers

1.1. Build a cipher wheel as illustrated in Figure 1.1, but with an inner wheel that

fotate's, and use it to complete the following tasks. (For your convenience, there

Is a cipher wheel that you can print and cut out at www.math.brown.edu} ~jhs/

MathCrypto/CipherWheel. pds.)

) Encrypt the following plaintext usi‘ng a rotation of 11 clockwise.

: “A page of history is worth a volume of logic.”

(b) ‘szacrypt the following message, which was encrypted with a rotation of 7 clock-
ise.

: ACLYLHYLUVZLJYLAZILAALYAQHUAOLZLJ YLALZAOHALCLYFIVKFNBLZZLZ

(¢) Decrypt the following message, which was encrypted by rotating 1 clockwise

for the first letter, then 2 clockwise for the second letter, etc.

XJHRFTNZHMZGAHIUETXZJNBWNUTRHEPDMDNBJMAUGORFAOIZDCC

:2. Decrypt each of the followi i i i i
hlfts ) o e reada%\;;néix(tl'aesar encryptions by trying the various possible
a) LWKLQNWKDWLVKDDOQHYHUV}H{DELDOERDUGDRYHDBDVDWU}H{

b) UXENRBWXCUXENF QRLQJUCNABFQNWRCJUCNAJCRXWORWMB

(c) BGUTBMBGZTFHNLXMKTI PBMAVAXXLXTEPTRLEXTOXKHHF YHKMAXFHNLX

3. For this exercise, use the simple substitution table given in Table 1.11.
a} Encrypt the plaintext message

The gold is hidden in the garden.

b) M'flke a decryption table, that is, make a table in which the ciphertext alphabet
is in order from 4 to Z and the plaintext alphabet is mixed up.

c) Use your decryption table from (b) to decrypt the following message.

IBXLX JVXIZ SLLDE VAQLL DEVAU QLB

4. Each of the following messages has been encrypted using a simple substitution
pher. Decrypt them. For your convenience, we have given you a frequency table
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(if) at least one letter fixed?

(iii) exactly one letter fixed?

k (iv) at least two letters fixed?

{Part (b) is quite challenging! You might try doing the problem first with an alphabet
of four or five letters to get an idea of what is going on.)

and a list of the most common bigrams that appear in the ciphertext. (If you do not
want to recopy the ciphertexts by hand, they can be downloaded or printed from
the web site listed in the preface.)
(a) “A Piratical Treasure”
JNRZR BNIGI BJRGZ IZLQR OTDNJ GRIHT USDKR ZZWLG OIBTM NRGJIN
IJTZJ LZISJ NRSBL QVRSI ORIQT QDEKJ JNRQW GLOFN IJTZX QLFQL
"WBIMJ ITQXT HHTBL KUHQL JZKMM LZRNT OBIMI EURLW BLQZJ GKBJT
QDIGS LWJINR OLGRI EZJGK ZRBGS MJLDG IMNZT OIHRK MOSOT QHIJL
QBRJN IJINT ZFIZL WIZTO MURZM RBTRZ ZKBNN LFRVR GIZFL KUHIM
MRIGJ LJNRB GKHRT QJRUU RBJLW JNRZI TULGI EZLUK JRUST QZLUK
EURFT JNLKJ JNRXR S
The ciphertext contains 316 letters. Here is a frequency table:
RIJJIJL|Z|T|N|Q|B|G|[K|UIM|O|SIHWFIEIDX|V
Freq ||33|30]27(25|24{20119(16|15]15{13]12]12{10/9{8|7|6|5(5(3|2
The most frequent bigrams are: JN (11 times), NR (8 times), TqQ (6 times), and
LW, BB, RZ, and JL (5 times each). !
(b) “A Botanical Code”
KZRNK GJKIP ZBOOB XLCRG BXFAU GJBNG RIXRU XAFGJ BXRME MNKNG
BURIX KJRXR SBUER ISATB UIBNN RTBUM NBIGK EBIGR OCUBR GLUBN
JBGRL SJGLN GJBOR ISLRS BAFF0O AZBUN RFAUS AGGBI NGLXM IAZRX
RMNVL GEANG CJRUE KISRM BOOAZ GLOKW FAUKI NGRIC BEBRI NJAWB
OBNNO ATBZJ KOBRC JKIRR NGBUE BRINK XKBAF (BROA LNMRG MALUF
BBG
The ciphertext contains 253 letters. Here is a frequency table:
BIRIG|NJAIIJU|KIO]J|L]|X|[MF|S|E|Z|IC|T|W|P|V|(Q
Freq ||32]28]22(|20]16]16]1413112]11{10/1018(8]776|5]|3|2{1{1]1
The most frequent bigrams are: NG and RI (7 times each), BU (6 times), and BR
(5 times). .
{c) In order to make this one a bit more challenging, we have removed all occur-
rences of the word “the” from the plaintext.

“A Brilliant Detective”
GSZES GNUBE SZGUG SNKGX CSUUE Q(NZ0Q EOVJN VXKNG XGAHS AWSZZ

BOVUE SIXCQ NQESX NGEUG AHZQA QHNSP CIPQA OIDLV JXGAK CGJCG
SASUB FVQAV CIAWN VWOVP SNSXV JGPCV NODIX GJQAE VOOXC SXXCG
O0GOVA XGNVU BAVKX QzZVQD LVJXQ EXCQO VKCQG AMVAX VWXCG OOBOX
VZCSO SPPSN VAXUB DVVAX QJQAJ VSUXC SXXCV OVJCS NSJXV NOJQA
MVBSZ VOOSH VSAWX QHGMV GWVSX CSXXC VBSNV ZVNVN SAWQZ ORVXJ
CVOQE JCGUW NVA

.

The ciphertext contains 313 letters. Here is a frequency table:
VISIX|GIA|O01Q|C|N|J|U|Z|E|WBIP|I|HIK|DIMILIRIF
Freq |{39]29(29|22{21]21{20]20]119|13111|11]10|8{8|6{5{5|514|3|2|1]1
The most frequent bigrams are: XC (10 times), NV (7 times), and CS, OV, QA, and

SX (6 times each).

1.5. Suppose that you have an alphabet of 26 letters.

(a) How many possible simple substitution ciphers are there?

(b) A letter in the alphabet is said to be fized if the encryption of the letter is the
letter itself. How many simple substitution ciphers are there that leave:
(i) no letters fixed?



Chapter 2

Discrete Logarithms and
Diffie-Hellman

.1 The birth of public key cryptography -

1976, Whitfield Diffie and Martin Hellman published their now famous
paper [36] entitled “New Directions in Cryptography.” In this paper they
formulated the concept of a public key encryption system and made several
groundbreaking contributions to this new field. A short time earlier, ‘Ralph

vented a public key construction for an undergraduate project in a computer
science class at Berkeley, but this was little understood at the time. Merkle’s
work “Secure communication over insecure channels” appeared in 1982 [74].

However, it turns out that the concept of public key encryption was orig-
nally discovered by James Ellis while working at the British Government
Communications Headquarters (GCHQ). Ellis’s discoveries in 1969 were clas-
ified as secret material by the British government and were not declassi-
ed and released until 1997, after his death. It is now known that two other
esearchers at GCHQ, Malcolm Williamson and Clifford Cocks, discovered
he Diffie-Hellman key exchange algorithm and the RSA public key encryp-
ion system, respectively, before their rediscovery and public dissemination by
iffie, Hellman, Rivest, Shamir, and Adleman. To learn more abpup the fas-
inating history of public key cryptography, see for example [35@ 58, 128].
The Diffie~-Hellman publication was an extremely important event—it set

bNe stand today on the brink of a revolution in cryptographﬂ
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An original or breakthrough scientific idea is often called revolutionary, but
in this instance, as the authors were fully aware, the term revolutionary was

relevant in another sense. Prior to the publication of “New Directions...,” !

encryption research in the United States was the domain of the National Se D . easy to compute

curity Agency, and all information in this area was classified. Indeed, until the omain i1 Range
B et Y

mid-1990s, the United States government treated cryptographic algorithms as
munitions, which meant that their export was prosecutable as a treasonable
offense. Eventually, the government realized the futility of trying to preven
free and open discussion about abstract cryptographic algorithms and th
dubious legality of restricting domestic use of strong cryptographic methods
However, in order to maintain some control, the government continued to re-
strict export of high security cryptographic algorithms if they were “machine
readable.” Their object, to prevent widespread global dissemination of so-
phisticated cryptography programs to potential enemies of the United States
was laudable,! but there were two difficulties that rendered the government’s
policy unworkable.

First, the existence of optical scanners creates a very blurry line between
“machine readable” and “human text.” To protest the government’s policy,
people wrote a three line version of the RSA algorithm in a programming
language called perl and printed it on tee shirts and soda cans, thereby making
these products into munitions. In principle, wearing an “RSA enabled” tee
shirt on a flight from New York to Europe subjected the wearer to a large
fine and a ten year jail term. Even more amusing (or frightening, depending
on your viewpoint), tattoos of the RSA perl code made people’s bodies into
non-exportable munitions! ;

Second, although these and other more serious protests and legal chal-
lenges had some effect, the government’s policy was ultimately rendered moot
by a simple reality. Public key algorithms are quite simple, and although it
requires a certain expertise to implement them in a secure fashion, the world is
full of excellent mathematicians and computer scientists and engineers. Thus
government restrictions on the export of “strong crypto” simply encourage
the creation of cryptographic industries in other parts of the world. The go
ernment was able to slow the adoption of strong crypto for a few years, b
it is now possible for anyone to purchase for a nominal sum cryptograph
software that allows completely secure communications.?

The first important contribution of Diffie and Hellman in [36] was the de
inition of a Public Key Cryptosystem (PKC) and its associated components

hard to compute

f71 with trapdoor information

easy to compute

Figure 2.1: Illustration of a one-way trapdoor function

le-way functions and trapdoor information. A one-way. function is an in-
rtible function that is easy to compute, but whose inverse is difficult to
mpute. What does it mean to be “difficult to compute”? Intuitively, a func-
n is difficult to compute if any algorithm that attempts to compute the
verse in a “reasonable” amount of time, e.g., less than the age of the uni-
rse, will almost certainly fail, where the phrase “almost certainly” must be

ﬁned probabilistically. (For a more rigorous definition of “hardness,” see
ction 2.6.)

:;:Secure% PKCs are built using one-way functions that have a trapdoor. The
"pdoor Is a piece of auxiliary information that allows the inverse to be easily
mputed. This idea is illustrated in Figure 2.1, although it must be stressed

:ction and the actual construction of such a function.

:As described in Section 1.7.6, the key for a public key (or Aasymmetric)
ptosystem consists of two pieces, a private key k,;, and a public key kp:;,
ere in practice kpyp is computed by applying some key-creation algorithm
koriv- For each public/private key pair (Kpriv, kpub) there is an encryption
orithm e, and a corresponding decryption algorithm dj, «- Lhe encryp-
1 algorithm €k, COrresponding to kpup is public knowleci’ge and easy to
npute. Similarly, the decryption algorithm d,,, must be easily computable
someone who knows the private key koriv, but it should be very difficult to
1pute for someone who knows only the public key kyyp.

One says that the private key kyiy is trapdoor information for the func-
€k, Decause without the trapdoor information it is very hard to compute
inverse function to €kous DUL With the trapdoor information it is easy to
pute the inverse. Notice that in particular, the function that is used to
te kpub from ki, must be difficult to invert, since kpyp is public knowledge
koriy allows efficient decryption.

t may come as a surprise to learn that despite years of research, it is

not known whether one-way functions exist. In fact, a proof of the exis-
¢ of one-way functions would simultaneously solve the famous P = AP

11t is surely laudable to keep potential weapons out of the hands of one's enermies
but many have argued, with considerable justification, that the government also had thi
less benign objective of preventing other governments from using communication method
secure from United States prying.

20f course, one never knows what cryptanalytic breakthroughs have been made by th
scientists at the National Security Agency, since virtually all of their research is classified
The NSA is reputed to be the world’s largest single employer of Ph.D.s in mathematics
However, in contrast to the situation before the 1970s, there are now far more cryptographe
employed in academia and in the business world than there are in government agencies.

at there is a vast chasm separating the abstract idea of a one-way trapdoor
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probem in complexity theory.® Various candidates for one-way functions have
been proposed, and some of them are used by modern public key encryption
algorithms. But it must be stressed that the security of these cryptosystems
rests on the assumption that inverting the underlying function (or finding the
private key from the public one) is a hard problem.

The situation is somewhat analogous to theories in physics that gain credi-
bility over time, as they fail to be disproved and continue to explain or generate
interesting phenomena. Diffie and Hellman made several suggestions in [36] for
one-way functions, including knapsack problems and exponentiation mod g,
but they did not produce an example of a PKC, mainly for lack of finding the
right trapdoor information. They did, however, describe a public key method
by which certain material could be securely shared over an insecure chan-
nel. Their method, which is now called Diffie-Hellman key exchangé, is based
on the assumptlon that the discrete logarithm problem (DLP) is difficult t
solve. We discuss the DLP in Section 2.2, and then describe Diffie-Hellman
key exchange in Section 2.3. In their paper, Diffie and He\llman also define
a variety of cryptanalytic attacks and introduced the important concepts o
digital signatures and one-way authentication, which we discuss in Chapter
and Section 8.5.

With the publication of [36] in 1976, the race was on to invent a practica
public key cryptosystem. Within two years, two major papers describing pub:
lic key cryptosystems were published: the RSA scheme of Rivest, Shamir, an
Adleman [100] and the knapsack scheme of Merkle and Hellman [75]. Of thes
two, only RSA has withstood the test of time, in the sense that its underly:
ing hard problem of integer factorization is still sufficiently computationall
difficult to allow RSA to operate efficiently. By way of contrast, the knap-

sack system of Merkle and Hellman was shown to be insecure at practical
computational levels [114]. However, the cryptanalysis of knapsack systerms
introduces important links to hard computational problems in the theory of
integer lattices that we explore in Chapter 6.

2.2 The discrete logarithm problem

The discrete logarithm problem is a mathematical problem that arises in ma
settings, including the mod p version described in this section and the ellip
curve version that will be studied later, in Chapter 5. The first published pu
lic key construction, due to Diffie and Hellman [36], is based on the discre
logarithm problem in a finite field F,, where recall that F p is a field wi
a prime number of elements. (See Section 1.4.) For convenience, we int
changeably use the notations F, and Z/pZ for this field, and we use equali

notation for elements of F;, and congruence notation for elements of Z/pZ (
Remark 1.24).

3The P = NP problem is one of the so-called Millennium Prizes, each of which has
81,000,000 prize attached. See Section 4.7 for more on P versus N P.



