Problem set 6

(1) Use Hensel’s Lemma to solve $x^3 + x + 57 \equiv 0 \pmod{5^3}$.

(2) Use Corollary 4 from §II.F to solve $2x^3 + 5x^2 + 6x + 1 \equiv 0 \pmod{7}$.

(3) Show that $3^8 \equiv -1 \pmod{17}$, and explain why this implies that 3 is a primitive root mod 17.

(4) Without finding them, how many solutions (if any) does $x^{20} \equiv 13 \pmod{17}$ have?

(5) Note that $2^3 \equiv 8 \pmod{23}$. By finding an inverse of 3 in $\mathbb{Z}/22\mathbb{Z}$, find an integer x such that $8^x \equiv 2 \pmod{23}$.

(6) Compute the following discrete logarithms: (a) $\log_{23} 13$ in $\mathbb{Z}/23\mathbb{Z}$, and (b) $\log_{10} 22$ in $\mathbb{Z}/47\mathbb{Z}$.

(7) Agnes and Bert use Diffie-Hellman key exchange to produce a shared secret key. They agree on $p = 101$ and an element $g = 15$ of order $p - 1$, both of which have been made public. Agnes chooses α and sends $g^\alpha = 42 \pmod{101}$ to Bert, while Bert has chosen β and sent $g^\beta = 24$ to Agnes. As Ivan the interceptor, you overhear all this. By checking the first few powers of g mod 101, try to produce α or β and hence their secret key s.

(8) Convert the decimal numbers 8734 and 5177 into binary numbers, combine them using XOR, then convert back to decimal. (You could think of 8734 as a message to be encrypted and 5177 as the key.)

(9) [for fun] Decrypt one of the messages in Hoffstein-Pipher-Silverman problem 1.4 (p. 48, a, b, or c – your choice).