Problem set 1

(1) Let \(\{f_\alpha\} \) be a normal family of holomorphic functions on a region \(U \). Show that \(\{f_\alpha'\} \) is a normal family.

(2) Let \(\beta \in D_1 \) and \(f(z) = \frac{z-\beta}{1-\beta z} \). Prove that the sequence \(\{f_n\} \) defined by \(f_1 = f \), \(f_{n+1} = f \circ f_n \) converges normally, and find the limit function. [Hint: use (1); OK to do for a subsequence.]

(3) Let \(\Omega \subset \mathbb{C} \) be as in the Riemann mapping theorem, with the additional assumption that \(\Omega \) be symmetric with respect to the real axis. Let \(f : \Omega \to \mathbb{C} \) be a conformal isomorphism sending \(p \in \Omega \) to 0, with \(p \in \mathbb{R} \) and \(f'(p) \in \mathbb{R}_+ \). Prove that \(\overline{f(z)} = f(z) \). [Hint: use the uniqueness part of the RMT]

(4) Let \(U \subset \mathbb{C} \) be a bounded region, \(\{f_j\} \subset \text{Hol}(U) \) a sequence with \(\int_U |f_j(z)|^2 dx \, dy < C < \infty \) (where \(C \) is independent of \(j \)). Prove that \(\{f_j\} \) is a normal family. [Hint: for \(z_0 \in D(z_0, \epsilon) \subset U \), use the Cauchy integral formula to bound \(|f_j(z_0)|^2 \) by \(C/\pi \epsilon^2 \); then show the \(\{f_j\} \) are locally uniformly bounded and use Lecture 1.]

(5) Let \(U \) be a region and \(\mathfrak{F} = \{f_\alpha\} \subset \text{Hol}(U) \) a family with \(\text{Re}(f_\alpha) > 0 \) on \(U \). Prove that \(\mathfrak{F} \) s normal in the classical sense: any sequence \(\{f_n\} \subset \mathfrak{F} \) contains a subsequence converging uniformly on compact sets OR tending uniformly to \(\infty \) on compact sets. [Hint: consider \(e^{-f} \), and use Hurwitz.]