Problem set 8

Let \(\omega_1, \omega_2 \) be two complex numbers, linearly independent over \(\mathbb{R} \), and \(\Lambda = \mathbb{Z} \langle \omega_1, \omega_2 \rangle \subset \mathbb{C} \) be the lattice they generate.

1. Show that the series \(\frac{1}{z^2} + \sum_{\omega \in \Lambda} \left(\frac{1}{(z-\omega)^2} - \frac{1}{\omega^2} \right) \) defining \(\varphi(z) \) is absolutely and uniformly convergent on any compact subset of \(\mathbb{C} \) which does not contain any of the points of \(\Lambda \). Try to do this without the Lemma on p. 1 of Lecture 15 (perform a direct estimate).

2. There are three perspectives on the addition theorem for \(\wp \): analytic, geometric, and algebraic. I’ll do the latter two in class and you’ll provide the analytic approach here, by following the steps below. Consult Ahlfors pp. 276-7 for hints.

 (a) \(\varphi(z) - \varphi(u) = -\frac{\sigma(z-u)\sigma(z+u)}{\sigma(z)^2\sigma(u)^2} \)

 (b) \(\frac{\varphi'(z)}{\varphi(z)-\varphi(u)} = \zeta(z-u) + \zeta(z+u) - 2\zeta(z) \)

 (c) \(\zeta(z+u) = \zeta(z) + \zeta(u) + \frac{1}{2} \frac{\varphi'(z)-\varphi'(u)}{\varphi(z)-\varphi(u)} \)

 (d) \(\varphi(z+u) = -\varphi(z) - \varphi(u) + \frac{1}{4} \left(\frac{\varphi'(z)-\varphi'(u)}{\varphi(z)-\varphi(u)} \right)^2 \) [addition formula]

 (e) \(\varphi(2z) = \frac{1}{4} \left(\frac{\varphi'(z)}{\varphi(z)} \right)^2 - 2\varphi(z) \)

3. For this problem, assume that \(\Lambda \) such that \(g_2 = -4 \) and \(g_3 = 0 \).
 (That is, \(\mathbb{C}/\Lambda \) is isomorphic to the curve \(y^2 = 4x^3 + 4x \); such a \(\Lambda \) exists simply by taking it to be the set of all periods of \(dx/y \) on this curve.)

 (a) Express the RHS of formula 2(e) as a rational function of \(\varphi(z) \).

 (b) Let \(u \) be such that \(\varphi(u) = 1 \) (and \(\varphi'(u) = 2\sqrt{2} \)). Show that \(u \) is 4-torsion, i.e. \(4u \in \Lambda \).

 (c) Let \(u \) be such that \(\varphi(u) = \frac{p}{2^aq} \), where the fraction is written in lowest terms, \(a \) is an odd natural number and \(p \) and \(q \) are odd integers. Show that \(u \) is “of infinite order”, i.e. no integer multiple of it lies in \(\Lambda \). [Hint: put \(u_0 := u \). Show that \(\varphi(u_1) \), where \(u_1 = 2u_0 \), is of the same form, with bigger \(a \), and iterate. Then suppose \(u_0 \) was \(N \)-torsion and produce a contradiction via the pigeonhole principle.]
(4) This exercise concerns the Theta function, defined in Lecture 14. (a) Check that $\theta(z+1) = \theta(z)$. (b) Check that $\theta(z) = Ce^{h(z)}\sigma(z + \frac{\tau + 1}{2})$, where $h(z) = -\frac{\eta_1}{2}z^2 - (\frac{\eta_1 \tau}{2} + \frac{\eta_1}{2} + \pi i)z$. [See p. 2 of Lecture 15]