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Part 1

Introduction and Motivation





CHAPTER 1

Two theorems on conics in the plane

The primary subject of this course is algebraic curves, the simplest
example of which is the solution set of a two-variable polynomial equa-
tion in the plane. What plane? R2, C2, F2

p, Q2. . .? For the purposes of
this course, mainly C2, with excursions into the others.

Remark 1.0.1. A perennial point of confusion is whether to call C
the complex plane.

? 1

i

This is henceforth forbidden! It is the complex (affine) line, and a real
(affine) plane via C ∼= R2. (A “complex plane” will mean something
2-dimensional over C, so C2 will be the complex affine plane, P2 the
complex projective plane, and so forth. We’ll worry about affine vs.
projective in the next chapter.) Note that H := {x+ iy |x, y ∈ R, y >
0} ⊂ C will denote the “upper-half plane” in C; that terminology is
unavoidable.

The objects which shall concern us, then, will be 1-dimensional over
C (“complex algebraic curves”), hence 2-dimensional over R (“Riemann
surfaces”). Our approach will be quite intuitive and visual for the first
few chapters, to get an idea of what algebraic geometry is before settling
into a more measured approach. My feeling has always been that you
need motivation for introducing formalism, in this case for layering lots
of algebra onto geometry. In this chapter that motivation might consist
of the subtle gaps that open as we try to prove some famous results on
conics from (mostly) linear algebra.
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8 1. TWO THEOREMS ON CONICS IN THE PLANE

Example 1.0.2. (a) Consider the set of rational points on the Fer-
mat quartic (degree 4) curve:

(1.0.1) {(x, y) ∈ Q2 |x4 + y4 = 1} ⊂ Q2.

By a case of Fermat’s last theorem, (1.0.1) is the empty set, since(
a
b

)4
+
(
c
d

)4
= 1 means (ad)4 + (bc)4 = (bd)4 with ad, bc, bd ∈ Z and

bd 6= 0.
(b) Next we look at the Fermat cubic (degree 3) curve

(1.0.2) {(x, y) ∈ C2 |x3 + y3 = 1} ⊂ C2.

We will see that (1.0.2) has the structure of a complex 1-torus, shown
on the left-hand side in

0 1

τ 1+τ

The right-hand side represents the quotient C/Λ of the complex line
by the lattice Λ := Z 〈1, τ〉 (for some τ ∈ H). What is the isomor-
phism? It holds topologically (convince yourself of this visually) for
any τ ∈ H, but complex analytically only for the values τ = aτ0+b

cτ0+d

where

(
a b

c d

)
∈ SL2(Z) and τ0 := 1+

√
−3

2
. We call (1.0.2) an elliptic

curve: it isn’t an ellipse in any sense, but originally arose in connection
with the arc-length of one.

(c) Finally, take the real degree 2 (a.k.a. “quadric” or “conic”) curve

(1.0.3) {(x, y) ∈ R2 |x2 + y2 = 1} ⊂ R2,

which is of course a circle:

First we shall pursue conics to get a preliminary feel for the interplay
between algebra and geometry. These aren’t too hard to visualize: you
know what the real solution sets look like (ellipses, hyperbolas, pairs
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of lines, etc.) and the complex solutions are all spheres once we add
“points at infinity”.

1.1. Algebraic curves in R2

Let Pn2 denote the real polynomials of degree ≤ n in x and y. (If
there is no possibility for confusion, I’ll just write Pn.) In an exercise
below, you are asked to prove that Pn2 is a real vector space of dimension(
n+2

2

)
.

Example 1.1.1. (a) A basis for P2 is given by {1, x, y, xy, x2, y2},
so dim(P2) = 6.

(b) For P3, the basis is {1, x, y, xy, x2, y2, x3, x2y, xy2, y3} (and the
dimension is 10).

For a configuration of distinct points

S = {p1, . . . , pm} ⊂ R2,

define a linear “evaluation” map

evnS : Pn −→ Rm

via

f 7−→

 f(p1)
...

f(pm)

 .

Recall from linear algebra the Rank + Nullity theorem:

(1.1.1)
dim(image(evS))︸ ︷︷ ︸ + dim(ker(evS))︸ ︷︷ ︸ = dim(Pn).

rank nullity

Definition 1.1.2. The configuration of points S is called n-general1

⇐⇒ evnS is surjective (onto).

Now if evnS is surjective, its rank is m; while its kernel is just the
space of polynomials vanishing on S. By (1.1.1) we have:

Proposition 1.1.3. The space of degree ≤ n polynomials vanishing
on a general configuration of m points has dimension

(
n+2

2

)
−m.

1or just “general” or “generic” if the context is understood
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What does all this have to do with algebraic curves? Well, given a
polynomial in Pn, I can look at its solution set in R2. More precisely,
we have the assignment2

Pn\Pn−1  {degree n real affine algebraic curves}

given by
f 7−→ Cf := {(x, y) ∈ R2 | f(x, y) = 0}.

Notice that

(1.1.2) f ∈ ker(evS) ⇐⇒ Cf ⊃ S.

Proposition 1.1.4. Through five (2-)general points A,B,C,D,E
in the real plane, there exists a unique conic Q.

Proof. 6− 5 = 1. �

OK, OK, so what the proof means is: by Prop. 1.5, the space
of degree ≤ 2 polynomials vanishing on a general configuration of 5

points has dimension
(

2+2
2

)
− 5=1. So given two degree-2 polynomials

f, g ∈ P2 vanishing at all 5 points in S, we must have g = a · f (for
some a ∈ R). But f = 0 and a · f = 0 define the same curve Q; and
by (1.1.2) Q contains A,B,C,D,E.

There are two issues with this. First, in order for f to define a conic,
we need to know that the 1-dimensional space of solutions doesn’t lie in
P1 (inside P2). But if a linear (degree 1) polynomial h vanishes at all 5

points, so does h2; and then since h, h2 ∈ P2 are not linearly dependent,
ev2
S doesn’t have maximal rank, contradicting the genericity condition

on S. (At this point, Proposition 1.6 is completely proved as stated.)
The second problem is more interesting: what exactly does it mean

for A,B,C,D,E to be 2-generic? If you think about our little proof, the
existence of Q has nothing to do with this genericity, but the unique-
ness has everything to do with it. Moreover, the statement that “Q is
unique if S is generic” is somewhat circular without knowing (beyond
Definition 5) what the genericity condition is: namely, that no 4 of
the points are collinear. It’s best to wait until we’re doing projective
geometry to prove that, and so we will.

2notation: A\B denotes set-theoretic exclusion, sometimes also written A − B.
“Affine” just means that the curves are in R2.
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Remark 1.1.5. More generally, the abstract ethos surrounding the
word “general” in algebraic geometry is that you are working in the
complement of finitely many algebraic conditions. The “algebraic con-
dition” we are avoiding in this section is the vanishing of all m × m

minors in a matrix representing evnS .

1.2. Blaise Pascal and the mystic hexagon

Similarly, given eight points

A, B, C, D, E, P1, P2, P3

in (3-)general position, the vector space of cubic polynomials vanishing
at all of them has dimension(

3 + 2

2

)
− 8 = 2.

Call this vector space V , and write (xAyA), . . . , (xP3,yP3) for the coor-
dinates of given points. V lies in P3, which consists of elements of the
form

a1 + a2x+ a3y + · · ·+ a9xy
2 + a10y

3 = fa(x, y).

Asking a polynomial of this form to vanish at our 8 points yields the 8

equations
0 = a1 + a2xA + a3yA + · · ·+ a9xAy

2
A + a10y

3
A

...
0 = a1 + a2xP3 + a3yP3 + · · ·+ a9xP3y

2
P3

+ a10y
3
P3

,

i.e. 8 linear constraints on the 10 variables {aj} expressing what it
means for fa to lie in V .

Now letA,B,C,D,E be (2-)general andQ the unique conic through
them:

B

C

D

E

A

Q

In fact, we shall make the stronger assumption that no three ofA,B,C,D,E
are collinear, so that Q is smooth (an ellipse or hyperbola, not a pair of
lines). We would like to construct (arbitrarily many) points on Q using
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only a straightedge. Start by drawing secant lines connecting adjacent
points:

B

C

D

E

AB

DE

CD

BC

A

Q

P1

where we have labelled AB∩DE =: P1.3 Next, draw any line ` through
A that does not pass through B,C,D, or E, and set ` ∩ CD =: P2.

P
1

P
2

B

C

D

E

AB

DE

CD

BC

A

Q

l

(Note that our choice of ` will determine the point q ∈ Q we end up
constructing.) Next, draw P1P2, and label P1P2 ∩BC =: P3.

3Of course, the lines may be parallel. There are two ways to fix this: either make
A,B,C,D,E “more” general so that none of the lines we intersect are parallel; or
work projectively. Since this chapter is entirely motivational we won’t worry about
that level of detail..
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P
1

P
2

P
2

P
1

B

C

D

E

AB

DE

CD

BC

A

P
3

Q

l

Finally, we draw EP3 and set q := EP3 ∩ `.
B

C

D

E

AB

DE

CD

BC

A

EP3

P
3P

2
P
1

q

Q

l

Proposition 1.2.1. q ∈ Q.

To prove this, we shall require:

Lemma 1.2.2. A,B,C,D,E, P1, P2, P3 is in (3-)general position,
when A,B,C,D,E are general in the strong sense assumed above.

We won’t prove the lemma here. (It is a special case of something
called the Cayley-Bacharach Theorem, which will be easy to prove once
we know a little about residues in algebraic geometry.)

Proof. [of Prop. 1.8] We write fAB(x, y) = 0 for the (linear)
equation of the line AB, fQ(x, y) = 0 for the conic Q, and so forth.
Consider the three cubic polynomials

f1(x, y) := fQ(x, y) · fP1P2(x, y),

f2(x, y) := fAB(x, y) · fCD(x, y) · fEP3(x, y),

f3(x, y) := f`(x, y) · fBC(x, y) · fDE(x, y).
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Their vanishing sets are

C1 := Q ∪ P1P2,

C2 := AB ∪ CD ∪ EP3,

C3 := ` ∪BC ∪DE,

each of which contains the set

S := {A,B,C,D,E, P1, P2, P3}.

So by (1.1.2), f1, f2, f3 belong to V := ker(ev3
S). Since the dimen-

sion of V is 2, f1, f2, f3 cannot be linearly independent and we have a
nontrivial4 relation

(1.2.1) αf1 + βf2 + γf3 = 0

with real coefficients.
Suppose α = 0 in (1.2.1). Then βf2 = −γf3, so that f2 and f3 are

proportional hence cut out the same curve:

AB ∪ CD ∪ EP3 = ` ∪BC ∪DE.

But this means ` = AB, CD or EP3, which implies ` containsA,B,C,D,
or E — a contradiction to our choice of `!

So α 6= 0, and we may rewrite (1.2.1) as

(1.2.2) f1 = −β
α
f2 −

γ

α
f3.

Now since ` and EP3 both contain q, f2 and f3 both vanish at q. By
(1.2.2), f1 also is zero at q, so one of its factors has to be. Therefore q
is contained in Q or P1P2.

Suppose q ∈ P1P2. Then the lines P1P2, EP3, and ` “collapse” to
the same line (look at the last diagram) and so in particular E ∈ `,
again in contradiction to our choise of `.

We conclude that q ∈ Q. �

In the construction described pictorially above, q was — in light of
Proposition 1.9 — ultimately just the point where ` meets Q. Since
our choice of ` was essentially free, A,B,C,D,E, and q can be thought
of as 6 distinct but otherwise arbitrary points of Q. Consequently, we
have proved the beautiful statement:

4not all of α, β, γ are zero
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Theorem 1.2.3. [B. Pascal, 1639] Intercepts of opposite edges
of a hexagon inscribed in a conic, lie on a line.

When we get to the notion of duality in projective geometry, The-
orem 1.10 will “dualize” for free to:

Corollary 1.2.4. The (three) lines joining opposite vertices of a
hexagon circumscribed about a conic, meet in a single point.

1.3. Poncelet’s Porism

According to my dictionary, a porism is a “proposition that uncovers
the possibility of finding such conditions as to make a specific problem
capable of innumerable solutions”.5 The result of Poncelet I’ll describe
here just had a whole book devoted to it,6 and in the late 1970’s P.
Griffiths (my Ph.D. advisor) and J. Harris devoted two nice articles to
it. If your local pub had an ellipse-shaped pool table it would even
have practical applications.

So let C and D be two conics in R2. They are the vanishing sets
of some fC , fD ∈ P2. For simplicity, assume they are ellipses, with D
contained in the interior of C.

Problem: Does there exist a closed polygon (self-intersections are
OK) inscribed in C and circumscribed about D?

Solution: Sometimes. But existence of one such polygon implies
that there are infinitely many.

This is clearly a “porism”. We shall call such polygons as in the
“Problem” circuminscribed when a specific pair C,D is understood.
The precise statement is:

Theorem 1.3.1. [Poncelet, 1822] If the pair C,D has an n-sided
circuminscribed polygon, then for any point on C there is a circumin-
scribed n-sided polygon with one vertex on C.

Another way of putting this is that circuminscribed polygons can
be rotated continuously: there are beautiful pictures of this at http://

5rather than a complication of the swine flu
6L. Flatto, “Poncelet’s Theorem”, AMS, 2009. It’s on reserve in the library and
aimed at advanced undergraduates, i.e. you. Highly recommended.



16 1. TWO THEOREMS ON CONICS IN THE PLANE

enriques.mathematik.uni-mainz.de/intgeo/poncelet.html. While this
picture

x

x

x

L

L

1

0

1

2

0

C

D

START

Poncelet

Construction

etc.

is to those ones as the math building (at virtually any university) is
to Durham cathedral, it allows us to characterize Theorem 1.12 in one
more way:

(1.3.1) If xn = x0 for any x0, then xn = x0 for every x0.

We will skirt around projective geometry in explaining the idea
here, but can’t avoid C. Henceforth, C and D shall denote all complex
solutions to fC = 0 and fD = 0 — that is, C,D ⊂ C2. Topologi-
cally these are “real surfaces” (in fact, spheres with one or two missing
points), and are complex-analytically isomorphic to C or C∗, but it
won’t hurt to draw them schematically as real curves on a sheet of
paper. You can think of this as the real solutions standing in for the
complex ones. In general, when we want to see the topology of a com-
plex algebraic curve, we’ll draw a “surface”; when we want to see how
different curves intersect or how they lie in space, we’ll draw a “curve”.

Consider the set of pairs

E := {(x, L) ∈ C ×D∗ |x ∈ L},

where D∗ is the set of lines tangent to D. An involution is a map
which, applied twice, gives the identity. Here are two involutions on E :
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x

L

x’

ι
1

ι

1
(ι )

1
(x,L):=(x’,L)

=id.
2

and

ι
2

x

L

x’ L’

ι(
2
)
2

ι
2
(x’,L):=(x’,L’)

=id.

The composition
 := ι2 ◦ ι1

takes
(x, L)

ι17−→ (x′, L)
ι27−→ (x′, L′) =: (x1, L1)

(ι1, ι2 and  are all maps from E to E). More generally,

(xi, Li) =: (xi+1, Li+1)

defines the ith iteration of the Poncelet construction. The construction
starting from some (x, L) closes if and only if

(1.3.2) n(x, L) = (x, L) for some n.

Thinking of complex points, and assuming C and D aren’t tangent
anywhere and don’t meet “at infinity” — that is, C andD are in general
position in some sense — they meet in exactly four points. This is a
first taste of Bezout’s theorem, which we will prove carefully later. Now
let x ∈ C: if x /∈ C ∩D, there are exactly two lines containing x and
tangent to D; if x ∈ C ∩ D, there is only one. So we find that the
projection

π : E −→ C

(x, L) 7−→ x

is a two-sheeted branched covering with four branch points:
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π

C

π

π

x

(x,L)

(x,L’)
ι2

This turns out to mean that E is an elliptic curve, hence isomorphic to
C/lattice. One deduces that  : E → E is a translation

C/Λ→ C/Λ

u 7−→ u+ ξ,

and our starting point (x, L) is some point u0. Whether or not n(u0) ≡
u0 has everything to do with whether nξ ∈ Λ, and nothing to do with
the choice of u0, and so (1.3.1) follows.

We will see a more in-depth treatment of this after studying elliptic
curves, including an algebraic criterion for deciding when n = id. for
a given C,D, and an analysis of elliptical billiards. For now, here are
some examples of “Poncelet in action”:

Example 1.3.2. (a) C = {x2 + y2 = 1}, D = {x2

a2 + y2

1−a2 = 1},
n = 4.

x =x

xx

x
40

3

1

2

L

L

L

L

0

1

2

3

=(a, 1−a  )2

C

D

(b) C = {x2 + y2 = 1}, D = { 4x2

(1+T )2 + 4y2

(1−T )2 = 1}, n = 3.
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1−T

1+T

2

2

C

D

Exercises
(1) Pn2 is a vector space of dimension

(
n+2

2

)
. [For a more challenging

problem, try it with polynomials in m variables instead of two —
obviously with a different answer.]

(2) Consider the two conics C = {x2 + y2 = 1} and D = {x2 + y2 =

r2}. The corresponding “Poncelet elliptic curve” E is singular (see
Definition 2.9), which means that the problem “degenerates” and is
solvable by hand using secondary school maths. For which r (say,
between 0 and 1) does the nth iterate of the Poncelet construction
(starting at an arbitrary point on C) return to the starting point?
(Hint: for each n, there are finitely many; just find how many, and
the equation they must satisfy.)





CHAPTER 2

Riemann surfaces and algebraic curves

In this chapter we will define (complex) algebraic curves (repre-
sented by “C”),1 complex 1-manifolds (represented by “M ”), and Rie-
mann surfaces, and start to consider under what additional hypotheses
they are equivalent concepts.

2.1. Algebraic curves

Definition 2.1.1. Let Sm2 denote homogeneous polynomials of de-
gree m in x, y (the “2” stands for “2 variables”).2 These are polynomials
of the form

fm(x, y) =
∑
j,k≥0
j+k=m

cjkx
jyk,

that is, each term has total degree m. Clearly Sm2 is a subset of Pm2 .
More generally, Smk is the space of degree-m homogeneous polyno-

mials in k variables — that is, linear combinations∑
i1,...,ik≥0
i1+···+ik=m

ci1,...,ikx
i1
1 · · · x

ik
k

of monomials with total degree m. Elements f ∈ Smk have the prop-
erty that fm(αx1, αx2, . . . , αxk) = αmfm(x1, x2, . . . , xk). (See exercise
3 below.)

Given a real affine algebraic curve of degree d

C := {0 = f(x, y) = fd(x, y) + fd−1(x, y) + · · ·+ f0} ⊂ R2

1in the affine resp. projective plane. Later we will define algebraic curves in higher
dimensional projective spaces and products thereof, but the “most intrinsic” defini-
tion of an algebraic curve as a 1-dimensional reduced scheme (some authors require
this to be irreducible and over an algebraically closed field as well) is probably
something to learn only once you have a first course in algebraic geometry under
your belt.
2the field of definition, from which the cjk are taken, will depend on context; Sm2
is a vector space over that field.

21
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with fd not identically zero, we would like to count its intersections
with a real line given parametrically by

L : t 7−→ (αt, βt)

(where α, β are real constants). These are just the solutions of

(2.1.1) 0 = fd(α, β)td + fd−1(α, β)td−1 + · · · f0.

Naively, we would like to get d points:

(2.1.2) #{C ∩ L} = d ??

Some issues arise . . .

Problem Solution

(a) R is not algebraically closed! pass to C2

(b) solutions “at infinity”! add a “line at infinity” to C2

(c) multiple roots! count intersections with multiplicity
(d) C might contain L! Uh-oh

Each “Problem” is an obstruction to (2.1.2), and the object of each
“Solution” is to remove the obstruction.

In a little more depth, (a) says that in spite of the fact that the
fi(α, β) ∈ R, roots of (2.1.1) can be non-real. So we had better consider
C and L as complex algebraic curves — take x, y ∈ C in the definition
of C and t ∈ C in the definition of L. Their dimensions over R then,
of course, double, and C ∩L now contains the points corresponding to
non-real roots of (2.1.1).

Next, if we plug t = s−1 into (2.1.1) and multiply by sd, then it
becomes

(2.1.3) 0 = f0s
d + f1(α, β)sd−1 + · · ·+ fd(α, β).

A “solution at∞” to (2.1.1) is a solution at 0 to (2.1.3), which exists if
and only if fd(α, β) = 0. For this to be counted in C∩L, we must add a
line L∞ to C2 to get P2,3 the complex projective plane (which we shall
discuss in a moment). This adds a point to L “at ∞” corresponding to
s = 0, yielding a P1 (projective line), and adds points at infinity to C
(yielding a compact “projective” curve).

3called CP2 or P2
C in some books
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We know that to get d solutions out of a degree d polynomial equa-
tion you have to count a twice repeated root as two solutions. So to
get d intersection points you will certainly have to count intersections
of C with L however many times the corresponding root of (2.1.1) is
repeated. The curious case is an m-times repeated root at infinity: via
(2.1.3), this corresponds to fd(α, β) = · · · = fd−m+1(α, β) = 0. In that
case, (2.1.1) is only in fact of degree d −m. One does have to worry
about these degenerate cases, but they will look completely natural in
projective coordinates.

Finally, if all f`(α, β) = 0, then C ⊃ L and we are in trouble
— there is no way around (d). We shall have to demand that plane
curves intersect “properly” (in points only), disallowing this possibility,
in order to make any statement about the number of intersection points.

Example 2.1.2. Given a quintic curve C as in the following picture

L

8

C
2

8

(5,5)

L

C

(1,1)

(i,i)

the number of intersection points in R2 is only 2. But the number of
complex intersection points, counting multiplicities and intersections
at infinity, is 5.

So . . . how does one go about adding a line (resp. point) at
infinity to C2 (resp. L)? First, visualize L as C
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i

1
0

and think of all arrows as going off to the same point. Adding this point
gives the “1-point” compactification C ∪ {∞}, resulting in a sphere

circleunit

8

1

0

i

This is an informal way of thinking of P1 in the following:

Definition 2.1.3. Projective space Pn is the set of complex lines
through the origin 0 ∈ Cn+1.4 More precisely,

Pn :=
(Cn+1\{0})〈

(z0,z1,...,zn)∼(αz0,αz1,...,αzn)
∀α∈C∗

〉
consists of nonzero vectors in Cn+1, modulo the equivalence relation
equating all vectors lying on a complex line. Elements are written
[z0 : z1 : · · · : zn].

For n = 1 this yields the projective line P1, which has the isomor-
phism

P1
∼=−→ C ∪ {∞}

[z0 : z1] 7−→ z1
z0

=: z

4as will be proved in Chapter 5, one should really think of Pn as a complex manifold
(but we haven’t defined these yet). 0 denotes (0, 0, . . . , 0).
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given by taking slope (of the line represented by [z0 : z1]). This map
is well-defined as [αz0 : αz1] 7→ αz1

αz0
= z1

z0
. The “honest topological

picture” of P1 is

circleunit

8

1

0

i

i−

−1

while the “schematic real picture” is

0

8

z ==

[1:0]
[0:1]

Next, setting n = 2 we have the projective plane P2, and the iso-
morphism

(2.1.4)

P2
∼=−→ (C× C) ∪ P1

[z0 : z1 : z2]
if z0 6=07−→

(
z1
z0
, z2
z0

)
∈ C2

if z0=07−→ [z1 : z2] ∈ P1

expresses how P2 adds a line at infinity (the P1) to C2. For P2, the
(rather bad, but standard) “schematic picture” is

[0:1:0]

[0:0:1]

[1:0:0]

all 3

P ’s
1

z =0

z =0
z =0

1

2

0

L  , i.e.8

While I’m not going to try to represent 4 real dimensions on paper,
here is a mostly honest topological depiction of the 3 P1’s:
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z =0

z =0

z =0
1

2

0

Remark 2.1.4. Equation (2.1.4) relates affine coordinates (on C2)
and projective coordinates (on P2). Instead of the {zi}, I will frequently
use [Z : X : Y ] for a point in P2 and (asuming Z 6= 0)

(
X
Z
, Y
Z

)
=: (x, y)

for the corresponding point in C2.
Also, a warning is in order: [0 : 0 : 0] is not a point in P2. With

homogeneous coordinates, some entry must be nonzero.

Returning to our degree d (and now complex) algebraic curve C =

{f(x, y) = 0} ∈ C2, what happens to it as we compactify C2 to P2 as
described above? To treat this, we first need to introduce the main
object of study of this course.

Since [Z : X : Y ] = [αZ : αX : αY ], in order for a polynomial
equation F (Z,X, Y ) = 0 to make sense projectively (i.e. in P2), we
must have

(2.1.5) F (Z,X, Y ) = 0 =⇒ F (αZ, αX, αY ) = 0 (∀α ∈ C∗).

This condition is guaranteed by homogeneity of F (cf. the property
in Definition 2.1). (In fact, as we shall see later it is equivalent to
homogeneity of F .)

Definition 2.1.5. A projective algebraic curve C ⊂ P2 of degree
d, is the zero set of a homogeneous polynomial F ∈ Sd3 .

Here, then, is a general procedure for going between affine and
projective curves:

(2.1.6) f(x, y) = 0 7−→ Zdf

(
X

Z
,
Y

Z

)
= 0

corresponds to taking the projective closure C̄ ⊂ P2 of a given affine
curve C ⊂ C2. Conversely, if the given C is already projective (defined
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by F = 0), then

(2.1.7) F (Z,X, Y ) = 0 7−→ F (1, x, y) = 0

“restricts” C to the affine curve C ∩ C2. Given an affine curve, taking
closure then restricting gets you back to where you started.

Example 2.1.6. Starting from the homogeneous cubic polynomial
F (Z,X, Y ) = ZXY+3Z2Y+4Y 3, the affinization is f(x, y) = F (1, x, y) =

xy+ 3y+ 4y3. Conversely, if we start from f(x, y) = x3y− y2 + 2x, the
projectivization is F (Z,X, Y ) = Z4f(X

Z
, Y
Z

) = X3Y − Y 2Z2 + 2XZ3.

Take F,C to be as in Definition 2.5. If F =
∏
Fi (so that degF =∑

degFi), then writing Ci for the zero set of Fi, we have C = ∪Ci.

Definition 2.1.7. We say that C is irreducible if and only if F has
no proper (deg ≥ 1) homogeneous factors.

Now let’s consider our intersection problem (2.1.2) once more, in the
complex projective setting. Referring to the discussion up to Example
2.2, if C and L have an m-fold intersection at infinity, then the degree
of the polynomial in (2.1.1) is d − m. The Fundamental Theorem of
Algebra then says that (2.1.1) has d −m complex roots counted with
multiplicity, and we define these to be the intersection multiplicities for
C and L in C2 as indicated in our discussion. We have proved a baby
version of Bezout’s theorem:

Proposition 2.1.8. Let L ⊂ P2 be a (projective) line in P2, i.e. an
algebraic curve of degree one. A projective algebraic curve of degree d
in P2 not containing L, meets L in d points counted with multiplicity.

In proving this result we did a tiny bit of complex analysis on L, so
were implicitly using its structure as a complex 1-manifold. In general it
is quite useful to be able to do analytic computations on curves, but not
all irreducible algebraic curves are complex manifolds (at least, without
doing something to them called “normalization”). The obstructions are
called singularities and will be explored in greater depth later. For
now, we will just give a definition and a few examples.

Definition 2.1.9. A singularity or singular point of an affine al-
gebraic (plane) curve f(x, y) = 0 is a point in C2 where f, ∂f

∂x
, and
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∂f
∂y

are all zero — that is, a point on the curve where ∂f
∂x

and ∂f
∂y

van-
ish. A singularity of a projective algebraic curve F (Z,X, Y ) = 0 is a
point where F , ∂F

∂X
, ∂F
∂Y

, and ∂F
∂Z

are all zero. A curve with one or more
singular points is called singular ; a curve with none is called smooth.

Example 2.1.10. Here are some local real (schematic) pictures of
plane curve singularities:

cusp ordinary ordinary 
triple pointdouble point

An example of a cusp is the point [1 : 0 : 0] on X3−Y 2Z = 0 (or (0, 0)

on x3 = y2); the curve XY = 0 has an ODP (ordinary double point,
or “normal crossing”) at [1 : 0 : 0]:

X=0

Y=0

Now, this is just two P1’s (namely, X = 0 and Y = 0) touching at one
point. A more (though not completely) “topologcially honest” picture
of this is:

X=0

Y=0

which makes it apparent that an ODP is actually a “bi-conical singu-
larity”.



2.2. COMPLEX 1-MANIFOLDS 29

Before we pass to the “analytic” side of our story, there are 2 more
facts about homogeneous polynomials worth a quick mention. First,
the map Sd3 → Pd2 given by F (Z,X, Y ) 7→ F (1, x, y) is an isomorphism,
so dim(Sd3) = dim(Pd2 ) in particular. Second is the Euler formula

(2.1.8)
N∑
i=0

Zi
∂F

∂Zi
= d · F for F ∈ SdN+1

which will be used in later chapters (cf. Chapter 6 for a proof).

2.2. Complex 1-manifolds

Recall from basic point-set topology that a topological space is a set
X together with a collection {UI}I∈Ω of “open sets” containing X, the
empty set, and all unions and all finite intersections of its members.
(Here Ω is some typically huge index set. A base for the topology of
X is a sub-collection of the {UI}I∈Ω which generates it under taking
unions, and X is said to be second countable if it has a countable base.)
X is called Hausdorff if points can be separated: i.e. given p and q,
there exist disjoint open sets U and V containing p and q respectively.

In topology, a homeomorphism is a continuous, 1-to-1, open5 map.
Given a point p ∈ X, we like open sets U 3 p that are homeomorphic
to Rn (or equivalently, an open ball in Rn) — these are called open
neighborhoods of p. If these always exist, we say X is locally homeo-
morphic to Rn. A second countable, Hausdorff topological space that
is locally homeomorphic to Rn, is called a real n-manifold.

In the case n = 2, we are going to layer “complex analyticity” onto
this construction:

Definition 2.2.1. A complex 1-manifold consists of
(i) a connected Hausdorff topological space M ;
(ii) an open cover {Uα} of M (this is a finite set of open sets taken

from amongst the {UI}, such that ∪αUα = M); and

5a map f is open (resp. continuous) if the image (resp. preimage) of any open set
is open



30 2. RIEMANN SURFACES AND ALGEBRAIC CURVES

(iii) mappings zα : Uα → C that are homeomorphisms onto their
image, such that the transition functions6

Φβα := zβ ◦ z−1
α : zα(Uαβ)→ zβ(Uαβ)

are biholomorphic (i.e., analytic isomorphisms).

U

U

Φ
βα

U
αβ

z

βz

α

α

β

The zα are called local coordinates, and the Φβα transition (or patch-
ing) functions ; the entire collection {zα}, {Φαβ} is called an analytic
atlas. The functions Φβα are key: M is an complex analytic manifold
because they are complex analytic. If in (iii) we replace C by Rn and
require the transition functions to be smooth (i.e., have continuous par-
tial derivatives of all orders), then M would have been a smooth (or
“differentiable”) real n-manifold instead.

If we think of the (complex analytic) transition functions in Defini-
tion 2.11 as maps from R2 to R2, then

Φ( x︸︷︷︸ , y︸︷︷︸ ) = ( u(x, y)︸ ︷︷ ︸ , v(x, y)︸ ︷︷ ︸ )

real
part

imag.
part

real
part

imag.
part

is smooth and u, v satisfy the Cauchy-Riemann equations. These may
be expressed in terms of the Jacobian matrix(

ux uy

vx vy

)
=

(
ux −vx
vx ux

)
,

6if Uα and Uβ are distinct open sets in our open cover, we write Uαβ := Uα ∩ Uβ .
Leter we will write Vα for zα(Uα) and V βα for zα(Uαβ), so that Φβα goes from V βα
to V αβ .
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which consequently has positive determinant: u2
x + v2

x (obviously ≥ 0)
cannot equal zero since Φ is biholomorphic. Therefore Φ preserves
orientation, so M is orientable as a real 2-manifold.7

Example 2.2.2. C, C∗, H, P1, and C/Λ are (the simplest) examples
of complex 1-manifolds. For the first three, producing an analytic atlas
is trivial (since you only need one Uα), and we will do this below for
the latter two.

Now assume M is compact, that is, every open cover has a fi-
nite subcover. (In fact, since a complex 1-manifold always admits
a metric, compactness is equivalent to every sequence of points hav-
ing a convergent subsequence. Clearly an = n has no limit in C but
an = [1 : n] = [ 1

n
: 1] does limit to [0 : 1] in P1, which is compact.)

Then viewed over R, M is an orientable, compact, connected, smooth
2-manifold. By a theorem in topology, this means that M is homeo-
morphic to a sphere with g handles, and we say M has genus g:

g=0 g=1 g=2

etc.

It is a fact that all g ≥ 0 occur for complex manifolds; we’ll show this
in a moment for g = 0, 1. To do complex analysis on M , you can use
the local coordinates, but for some purposes it is also convenient to cut
M into a simply connected region, e.g.

7in fact, a matrix of the form
(
A −B
B A

)
is a rotation times a dilation, hence

preserves angles – that is to say, under the assumption of the CR-equations, Φ is
conformal. So a complex 1-manifold is essentially a differentiable real 2-manifold
with conformal transition functions.
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α

β

α

β

α

β

g=1

δ

α

β

α

β

γ

δ

γ

α
β

γδ

g=2

Extrapolating from this, one sees that if you begin with a sphere with
g handles, the cut-open version is a polygon with 4g edges identified
in pairs. (The black points on the right-hand side are all identified.)
Using this8 we can do a quick computation of the Euler characteristic
of M :

(2.2.1) χM := faces− edges + vertices = 1− 2g + 1 = 2− 2g.

Example 2.2.3. (g = 0) Let M := P1 with homogeneous coordi-
nates [X : Y ]. Consider the open cover {U0, U1} of M given by:

U01

U
1

U
0

[0:1]="   "8

[1:0}="0"

M

That is, U0 = M\{[0 : 1]} and U1 = M\{[1 : 0]}. For local coordinates,
8traditionally one would use the numbers of faces, edges, and vertices in a triangu-
lation of M , but using a polygonal decomposition like this is also OK
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we take
z0 : U0 → C

[X : Y ] 7→ Y
X

and
z1 : U1 → C

[X : Y ] 7→ X
Y

.

Writing U01 := U0 ∩ U1, we have z0(U01) = C∗ ⊂ C and z1(U01) =

C∗ ⊂ C. The transition function (which goes from z0(U01) to z1(U01)

by definition) is then

Φ10 : C∗ → C∗

u 7→ 1
u

.

Example 2.2.4. (g = 1) Let λ1, λ2 ∈ C be linearly independent
over R. Then Λ := Z 〈λ1, λ2〉 = Zλ1 + Zλ2 is a lattice, and we set
M := C/Λ. (This means that z, z′ ∈ C give the same point in M if
and only if z − z′ ∈ Λ.) We endow M with local coordinates on the
neighborhoods shown

M covering by coordinate
neighborhoods

basically by using the coordinate on C (before quotienting by Λ), and
find that the transition functions Φij are all either the idenitity or
translation by some λ ∈ Λ. Topologically, M is a torus (cf. the g = 1

pictures above), which is evident from performing the identifications
on the sides of a fundamental region for C/Λ as shown.

2.3. Riemann surfaces

Traditionally, a Riemann surface M is a compact complex 1-manifold
obtained as the “existence domain” of an algebraic (typically multival-
ued) function over P1. That isn’t the definition I’ll use here, but I do
want to explain the concept.
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For example, given distinct complex numbers αi, the algebraic func-
tion

F(z) :=

√√√√2g+2∏
i=1

(z − αi)

on P1 can be made single-valued on a complex manifoldM (of genus g,
it turns out) constructed as follows: On two copies of P1, cut identical
nonintersecting slits from α2j−1 to α2j for j = 1, . . . , g + 1. Then
glue the two copies of P1 together on these slits, forming a set on
which F becomes single-valued; finally, endow this set with an analytic
atlas to get a complex manifold M . This manifold has a distinguished
morphism M

π→ P1 presenting it as a finite branched cover of the
projective line. We won’t do this explicitly here — especially endowing
it with an analytic atlas, since that is really a special case of normalizing
an algebraic curve (cf. §3.1).9

Instead, let’s visualize what a couple of “existence domains” for
algebraic functions look like, starting with the “Riemann surface of
(w =)z

1
3 over the unit disk”. This is some object fitting (as “{z = w3}”)

into the following picture:

1

2

3

e

e
i

2π

3
i

4π

3

1

{z=w }
3

π

112
3

w−disk

z−disk

To construct it, think about following z
1
3 around the disk once coun-

terclockwise: when you reach your starting point the function has be-
come e

2πi
3 times the branch of z

1
3 you started with; going around once

more, you get e
4πi
3 z

1
3 ; and one more time gets you back to your original

9it makes a very instructive exercise though, and the next example gives a hint on
how to do it
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branch. So taking three unit disks, slitting them along the positive
reals, and gluing them as indicated

I II III

"e   z  ""e   z  ""z  "
1/3 1/3 1/3

3

4πι2πι
3

we get the “parking lot”

π

z−disk

{z=w }3

(The green segments are glued but I can’t draw in 4 dimensions.) An
easier way to visualize this “Riemann surface” is this: it’s just the w-
disk. The difficulty is in seeing the w-disk “over” the z-disk.

Next, let’s construct an existence domain for

F(z) =
√

(z − a)(z − b)(z − c)

over P1. In a neighborhood of z0 = a, b, c this looks like the “Riemann
surface of (z− z0)

1
2 over a disk”, which is the same as the construction

we just did except with 2 unit disks instead of 3. Indeed, going once
around a, b, or c takes F 7→ −F; and furthermore, because the degree
of the polynomial under the square root is odd, going once around ∞
does the same thing. Since

a b is equivalent to a b

going around two points at once gives no change. So taking two P1’s
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and cutting and pasting them as indicated, we end up with a manifold
of genus 1 on which F becomes well-defined:

α

α

β

β

β

a

b
c

a

b

c

c c

b b

a a

8

8

8 8

"+  f " "−  f "

"open" the
cuts and

join

α

β

P
1

(In the picture, α and β are called 1-cycles; there just there to make
the topology clear.) The same construction works if we replace F(z)

by
√

(z − a)(z − b)(z − c)(z − d), with d replacing ∞.
In fact, by a deep result (on existence of nonconstant meromorphic

functions on complex 1-manifolds) any compact complex 1-manifold
is an “existence domain” of the sort we have just discussed: they are
equivalent objects in the end. The following is motivated by this, and
the desire to keep things simple:

Definition 2.3.1. A Riemann surface is a compact complex 1-
manifold.

Exercises
(1) Take projective closures of C := {y2 = (x−1)(x−2)(x−3)(x−4)}

and L := {x = 0} in P2 (find associated homogeneous equations),
and determine all intersections and their multiplicities (give the
projective coordinates of the points). What is the sum of multi-
plicities?

(2) Find the affine equation associated to Z3
0 + Z3

1 + Z3
2 = λZ0Z1Z2.

(This equation is homogeneous of degree 3 — λ is a scalar, not a
coordinate).
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(3) Let F be a polynomial in 3 variables. Prove that F (z0, z1, z2) =

0 =⇒ F (αz0, αz1, αz2) = 0 (∀α ∈ C∗) forces F to be homo-
geneous (of some degree). [You will have to assume the following
result: given two polynomials f and g (in (z0, z1, z2)), with vanish-
ing locus {f = 0} ⊆ {g = 0}, then f divides a power of g. This
is called Study’s lemma and will be proved later.] If this is too
challenging, show the converse. If you like, do both.





CHAPTER 3

The normalization theorem

We state (but do not yet prove) the promised relationship between
algebraic curves and Riemann surfaces, and explain how to work it out
directly for conics. To state the general relationship, however, we need
the notion of meromorphic functions on a Riemann surface, so we will
first define and prove a few results about those.

3.1. Meromorphic functions on a Riemann surface

Let M be a Riemann surface (Definition 2.15) with analytic atlas
{(Uα, zα)} (Definition 2.11), and write Vα := zα(Uα) ⊆ C. The local
analytic chart ϕα : Vα → Uα(⊆ M) is simply defined to be the (com-
position) inverse of of the local coordinate zα. (I just don’t like writing
z−1 since in some settings this is easy to confuse with 1

z
.)

Definition 3.1.1. A meromorphic (resp. holomorphic) function
f ∈ K(M) (resp. O(M)) is a collection of continuous maps fα : Uα →
P1 such that
• the {fα} “agree” on overlaps (viz., fα = fβ on Uαβ), and
• fα ◦ ϕα is a meromorphic (resp. holomorphic) function, in the

sense of complex analysis, for all α.

U

U

Φ
βα

U
αβ

z

βz

α

α

β
ϕ
β

ϕ
α

Vα

V
β

f

f
α

β

P
1

39



40 3. THE NORMALIZATION THEOREM

Remark 3.1.2. (a) One really works with functions of the coordi-
nate zα, i.e. the function fα ◦ ϕα =: gα (mapping Vα → P1), and then
the compatibility condition reads

(3.1.1) gα ◦ Φαβ = gβ.

(b) K(M) is a field, since you can multiply, add, and invert (addi-
tively and multiplicatively) meromorphic functions.

Proposition 3.1.3. [Liouville’s Theorem] M compact =⇒
O(M) ∼= C (constant functions).

Proof. On the one hand, f ∈ O(M) =⇒ f(M) ⊂ (P1\{∞}) =

C; while on the other, M compact and f continuous =⇒ f(M) is
compact. Applying absolute value gives a compact subset |f(M)| ⊂
R≥0. This has a maximum element, whch is assumed at some point
p ∈ M , and this p lies in some Uα. Hence, the absolute value of
the holomorphic function gα = fα ◦ ϕα attains a maximum on Vα (at
ϕα(p)), and by the maximum modulus principle, gα (and thus fα) is
some constant c ∈ C.

Let Uβ be any open set of the atlas meeting Uα. Since fβ = fα = c

on Uαβ, and Uαβ has accumulation points, fβ = c on Uβ. One continues
this argument now for any open set meeting Uα or Uβ, and so forth.
By connectedness of M , this shows f = c on all open sets of the atlas,
hence on all of M . �

Definition 3.1.4. Let f ∈ K(M) be a meromorphic function. For
any p ∈M , f is locally of the form

(3.1.2) zmh(z)

with m ∈ Z, z a local coordinate vanishing at p (i.e. z(p) = 0), and
h(z) a local holomorphic function of z with h(0) 6= 0.1 We say that the
order νp(f) of f at p is m.

With this bit of language it is easy to compute the meromorphic
function field for Riemann surfaces of genus 0 and 1.

Theorem 3.1.5. (a) K(P1) ∼= C(z) (z an indeterminate).
1To be absolutely precise, if z is a local coordinate on U 3 p, with V = z(U),
then h is a holomorphic function on V . I’ll frequently assume things like this to be
“understood”.
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(b) Writing Λ := {m1λ1 + m2λ2 |mi ∈ Z} (λ1, λ2 ∈ C linearly
independent over R) for a lattice, K(C/Λ) ∼= C(℘, ℘′) where ℘(u) is
the Weierstrass ℘-function for Λ.

Proof. (a) Referring to Example 2.13, write z = z0 and w = z1

for the two local coordinates. I am really going to use z as a global
coordinate on P1; the statement we want to prove is that meromorphic
functions on P1 are precisely the rational functions of z.

In one direction, this is easy: if P , Q are polynomials in z (with
Q 6= 0), clearly P (z)

Q(z)
is the restriction to U0 of a meromorphic function

on P1 (on U1, it is
P ( 1

w
)

Q( 1
w

)
).

Conversely, are all meromorphic functions rational? Given f ∈
K(P1), νp(f) < 0 at finitely many2 points zi(= p), and we shall for sim-
plicity assume none of these is the point∞. Let Pi(z) =

∑
νzi (f)≤k<0 βik(z−

zi)
k (sum is over k) be the principal part of the Laurent expansion of

f at zi, and consider G(z) =
∑

Pi(z). Then f −G ∈ O(P1) is constant
by Liouville; and since G is rational, we’re done.

(b) Next, f ∈ K(C/Λ) if and only if f is a doubly-periodic mero-
morphic function on C: that is, f(u) = f(u + m1λ1 + m2λ2) for all
m1,m2 ∈ Z (also known as an elliptic function). We will see later that
these are generated (rationally) by

℘(u) :=
1

u2
+
∑
λ∈Λ
λ6=0

(
1

(u− λ)2
− 1

λ2

)
and its derivative. �

Definition 3.1.6. A morphism (or holomorphic map) M F→ M̃

of Riemann surfaces3 is a collection Fα : Uα → M̃ of continuous
maps (agreeing on the {Uαβ}) such that the composition4 z̃i ◦ Fα ◦
ϕα|zα{F−1(Ũi)∩Uα} is holomorphic for all α, i. (Note that this defini-
tion works more generally for complex 1-manifolds — compactness is
inessential.)

2otherwise compactness =⇒ zeroes of 1
f have an accumutaion point =⇒ 1

f

identically 0. (Also, note that I am identifying points by the value of the coordinate
z on P1. If M were not P1, I would write pi instead of zi.)
3write {Uα, zα} and {Ũi, z̃i} for the atlases.
4this composition renders z̃i as a function of zα (and is a local snapshot of F in
this sense)
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U

Uz
α

αV

α
ϕ

MM

F
U

α

F(   )
F

α

i

i

V z
α

i α
F  (U  )  U

−1

i

the composition

0

0

p

q

(this can ramify!)

Now suppose we have p ∈ (Uα ⊂)M and q ∈ (Ũi ⊂)M with F (p) = q,
zα(p) = 0 and z̃i(q) = 0, as shown in the above figure. Assuming
F is nonconstant, then after “normalizing” the local coordinates,5 we
have z̃i(zα) = (zα)µ for some (unique) µ ∈ Z>0. One says that f has
ramification index µ at p (over q). If this index is > 1, we say that f
is branched over q (or ramifies at p).

Remark 3.1.7. For µ = 3, we have already seen this picture in §2.3.
In general, for a holomorphic map of Riemann surfaces π : X → Y ,
for all but finitely many y ∈ Y the number |π−1(y)| is the same, and
this is called the degree of the mapping π. (This will be explained in
greater depth in a later chapter.) The branch points of π are just the
remaining points of Y . Usually we will just draw a schematic picture
like

X

Y

π

and it is understood that the picture is really as in §2.3 — so that going
around the point on the “base” Y moves you between branches of the
“cover” X.

Proposition 3.1.8. Let M be a Riemann surface (or, more gen-
erally, a complex 1-manifold). The holomorphic maps M → P1, ex-
cluding the constant map sending all points to {∞}, are simply the
meromorphic functions K(M).

5see Exercise 4 below
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Proof. Again refer to Example 2.13: given a morphism F : M →
P1 (Definition 3.6), by definition z0 ◦ Fα ◦ ϕα is holomorphic on the
complement of the preimage of ∞, while z1 ◦ Fα ◦ ϕα = 1

z0◦Fα◦ϕα is
holomorphic on the complement of the preimage of 0.6 Hence, Fα ◦ ϕα
is meromorphic and {Fα} defines a meromorphic function (Definition
3.1). The converse is even more tautological! �

Later we will discuss morphisms (holomorphic maps) of complex
manifolds of any dimension. The following is a special case:

Definition 3.1.9. Write [Z0 : Z1 : · · · : Zn] for (projective) coordi-
nates on Pn. A map σ from a Riemann surface M to Pn is called holo-
morphic if and only if all compositions [Zi ◦σ : Zj ◦σ] are holomorphic
as maps to P1 on the open subsets of M where they are well-defined.

Remark 3.1.10. If the image σ(M) does not live in a coordinate
hyperplane, this is the same as saying that composing σ with each affine
coordinate on Cn gives a meromorphic function.

To see this, first write Mij for the subsets of M where (under σ)
Zi and Zj are not both zero; these are the open subsets in the last
definition.7 By Prop. 3.1.8, the conditions of Defn. 3.1.9 mean that
Zj
Zi

are meromorphic functions on theMij. We need to show that the
zj =

Zj
Z0

extend to meromorphic functions on all of M . First, M is
covered by the open sets {Zi 6= 0}. Hence, for p /∈M0j (i.e. Zj and Z0

vanish at p), we have a neighborhood U containing p where some other
Zi does not vanish, so that U ⊂ Mij,Mi0. Now, on U ∩M0j we can

write zj =
Zj
Zi
·
(
Z0

Zi

)−1

as a product of functions which are meromorphic
on all of U , hence showing that zj extends as desired.

3.2. Riemann surfaces parametrize algebraic curves

Here is the Normalization Theorem. We will prove part (A) in this
course.

Theorem 3.2.1. (A) Given an irreducible algebraic curve C ⊂ P2,
there exists a Riemann surface M and a holomorphic map σ : M → P2

with C as its image which is 1-to-1 on σ−1(C\sing(C)).
6The holomorphicity of 1

z0◦Fα◦ϕα guarantees, in particular, that Fα ◦ ϕα has only
poles and not essential singularities.
7Some, but not all, of theseMij may be empty if σ(M) is contained in a coordinate
hyperplane. We have excluded this “degenerate” possibility for simplicity.
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(B) Given a Riemann surface M , there exists a holomorphic map
σ : M → P2 such that
• σ(M) is an irreducible algebraic curve with sing(σ(M)) consisting

of ordinary double points (or empty), and
• σ is 1-to-1 off the preimage of these ordinary double points.

In this sense, irreducible smooth projective algebraic plane curves
are equivalent to, and are isomorphically parametrized by, Riemann
surfaces.

C

M P
2

σ

" "

If a curve C is not smooth, then the normalization “desingularizes” it
(and we shall see this quite explicitly later on). In either case, we say
that M is the normalization of C.

Let’s look briefly at the meaning of (B), which we will not prove
in this course. For a given Riemann surface (i.e. compact complex
1-manifold) M , it guarantees a holomorphic map to P2, with image
σ(M) = C =projective closure of {f(x, y) = 0}. Changing coordinates
on P2 if necessary, we may assume that C does not pass through [0 :

0 : 1]. So it makes sense to consider the composition

Μ

P [Z:X]

P

1

2

Σ

σ

projection

{[0:0:1]}
[Z:X:Y]

which exhibitsM as a branched cover of P1 — or more precisely, as the
existence domain of the algebraic function g(x) obtained by solving

f(x, g(x)) = 0.

So Theorem 3.10(B) contains the statement that every complex 1-
manifold is an existence domain in the sense of §2.3.
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We should also note that any Riemann surface admits a holomor-
phic embedding σ : M ↪→ P3, an even nicer result than part (B) above!

3.3. Stereographic projection

As a plausibility check on Theorem 3.10(A), we’d like a recipe for
normalizing conics — i.e. degree-2 (conic) curves C ⊂ P2. Given a
point p ∈ C, and any line line ` through p, by Proposition 2.8 ` either
meets C in two points with mutliplicity 1 or in 1 point with multiplicity
2. Put differently, we have either

• ` ∩ C = {p, q}
or

• ` ∩ C = 2p, i.e. ` = TpC is the tangent line to C at p.

(We will give a systematic treatment of tangent lines below.) Con-
versely, given p and any other point q on C, there is a unique line
through them (and it doesn’t meet C anywhere else).

There are two ways to think of why this gives a parametrization of
C. One possibility is to take a fixed line (∼= P1) and use lines through
p to project C onto it:

C

P
1

tangent line

p

This is where the term “stereographic projection” comes from.
But this auxiliary projective line is superfluous, because the family

of lines through p already gives a P1. (Indeed this is close to the original
definition of what P1 is.) We can parametrize this P1 by the slope of
the line with respect to suitable coordinates (usually (x, y) = (Z1

Z0
, Z2

Z0
)).

The upshot is that we get a 1-1 correspondence between lines through
p and points on C, so that we are in the situation of §3.2 withM ∼= P1.

Example 3.3.1. Suppose we wish to find a parametrization P1 σ→ C

of the conic {X2 + Y 2 = Z2} ⊂ P2, which in affine coordinates is
x2 + y2 = 1. We choose a point on C, say p = (1, 0), and draw lines
y = µ(x−1) through p. (The slope here is µ, and this should be viewed
as a choice of coordinate on P1.) Substituting into x2 + y2 = 1 and
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solving for x in terms of µ, we have

x2 + µ2(x− 1)2 = 1

=⇒ (µ2 + 1)x2 − 2µ2x+ (µ2 − 1) = 0

=⇒ (x− 1){(1 + µ2)x+ (1− µ2)} = 0.

Ignoring the solution x = 1 (which corresponds to p), we have

x =
µ2 − 1

µ2 + 1
, y = µ

(
µ2 − 1

µ2 + 1
− 1

)
=
−2µ

µ2 + 1
.

Hence, we find

σ(µ) =

(
µ2 − 1

µ2 + 1
,
−2µ

µ2 + 1

)
.

One can also do stereographic projection to construct normaliza-
tions of singular cubic curves:

P
1

C p

The idea here is to consider lines through the singular point p̂; since
any such ` already meets C “twice”, it will only hit C in one additional
point (by Proposition 2.8). You’ll work an example in the exercises
below. This will not work for a smooth cubic.

Exercises
(1) Give a parametrization m 7→ (x(m), y(m)) (hence an isomorphism

P1 → C) of the smooth conic curve C that is the projective closure
of 3x2 − y2 = 1. (You may work in affine coordinates.)

(2) Show that for any RS M and meromorphic function (0 6=) f ∈
K(M), one has

∑
p∈M νp(f) = 0. [Hint: Use the residue theorem

from complex analysis. Cut open the RS as in Chapter 2, and
integrate df

f
along the “boundary”.]

(3) Convince yourself that the order νp(f) of a meromorphic function
on a RS M (Definition 3.1.4) is independent of the choice of local
coordinate.

(4) Prove the following, which was claimed in Definition 3.1.6: Given
M, M ′ Riemann surfaces with a holomorphic map f : M → M ′
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(and f(p) = q). Then there exist (U, z) on M and (V,w) on M ′

satisfying z(p) = 0 = w(q), such that w = zµ (for some µ ∈ N) is
the local form taken by f near p. [Here for example “(U, z)” means
an open disk U ⊂M with local coordinate z : U → C.]

(5) Find a parametrization P1 → C of the singular cubic Y 2Z−X2Z+

X3 = 0 in P2. (C has an ordinary double point p̂ at [Z : X : Y ] =

[1 : 0 : 0]. Check that this point is indeed a singularity of C.) To
do this, convert to affine coordinates, substitute in y = mx, and
solve for the other intersection point’s coordinates as a function of
m. Two points will go to p̂ = (0, 0). Picture:

1
P

C

α,β

α

β p
p

What are α and β? Change coordinates on P1 (fractional linear
transformation) so that in your new coordinate, 0 and ∞ are sent
to p̂. Your parametrization should read now ϕ : P1 → C sending
z 7→ (x(z), y(z)) with 0,∞ 7→ p̂. This will be used in a later
exercise.





CHAPTER 4

Lines, conics, and duality

To complete our introduction to algebro-geometric concepts on the
level of curves, in this chapter we’ll study projective transformations,
tangent lines, and dual curves. Our convention will be to write Z = Z0

Z1

Z2

 for column vectors in C3 (written with respect to the “standard

basis” e), and [Z] = [Z0 : Z1 : Z2] for the corresponding point in P2.

4.1. The classification of complex conics

The story begins in even lower degree, with lines — i.e. degree 1

algebraic curves. These are subsets of P2 of the form

(4.1.1) Lλ = { tλ · z = 0},

where λ is a nonzero vector in C3. Note that for α ∈ C∗, Lαλ = Lλ.
By stereographic projection (cf. §3.3), lines and smooth conics are

isomorphically parametrized by P1 in the sense of the Normalization
Theorem. (For lines, the projection is done through a point not on
the line; for conics, one chooses any point on the conic.) However,
not all conics are smooth, and so we will need to classify conics up to
projective equivalence.1 The two key non-smooth examples to keep in
mind are the pair of lines

{XY = 0} = {X = 0} ∪ {Y = 0}

and the double line
{X2 = 0}.

1There is a somewhat subtle point here. For smooth curves in general, projective
equivalence is finer (equates fewer curves) than isomorphism as Riemann surfaces.
However, you have to consider curves of degree at least 5 to see this discrepancy. As
far as conics are concerned, we like projective equivalence simply because it gives
a uniform and algebraic treatment of singular and smooth curves.

49



50 4. LINES, CONICS, AND DUALITY

The first has two irreducible components (and is hence reducible), while
the second has one component of “multiplicity two” (and is said to be
non-reduced).2

To define projective equivalence, we introduce the projective general
linear group

PGL(n,C) :=
GL(n,C)

〈α · id. |α ∈ C∗〉
.

(We have A ≡ B ⇐⇒ B = αA for some α ∈ C∗.) Consider the action
of PGL(3,C) on P2 by

T


 a00 a01 a02

a10 a11 a12

a20 a21 a22


 [Z0 : Z1 : Z2] =

[
a00Z0 + a01Z1

+a02Z2

:
a10Z0 + a11Z1

+a12Z2

:
a20Z0 + a21Z1

+a22Z2

]
or in more compact notation

T (A)[Z] = [A · Z].

(We are, consistently with the notation mentioned at the beginning of
the chapter, letting the matrix A act on Z viewed as a column vector.3)
This action is well-defined:

• it sends no nonzero Z to 0 (recall [0] is not a point in P2);
• if Z = αY , then T (A)[Z] = [AZ] = [A · αY ] = [αAY ] = [AY ];
• if A = αB, then T (A)[Z] = [αBZ] = [BZ] = T (B)[Z].

Definition 4.1.1. The transformations T (A) : P2 → P2, A ∈
PGL(3,C), are the projective linear transformations (or projectivities)
of P2.

2roughly speaking, “reduced” means “all of its irreducible components are of mul-
tiplcity one”. So while {XY = 0} is reduced, something like {XY 3 = 0} is not.
Obviously this is going a bit beyond the notion of an algebraic curve as a solution
set, since it incorporates multiplicity. To really formalize what such an object is,
we would have to work with scheme theory or algebraic cycles, which I do not want
to do. So unless otherwise stated, in this course an “algebraic curve” is assumed to
be reduced.
3the dot indicates matrix multiplication. This will often be omitted.
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Remark 4.1.2. The analogue of projectivities on P1 are simply the
fractional linear transformations:

T

((
a b

c d

))
[Z0 : Z1] = [aZ0 + bZ1 : cZ0 + dZ1].

So writing “z” for the point [1 : z],

T

((
a b

c d

))
(z) =

c+ dz

a+ bz
.

You probably know from complex analysis that such transformations
preserve the cross-ratio of 4 points. Furthermore, they are the only au-
tomorphisms of P1 (invertible morphisms from P1 → P1) as a complex
1-manifold.

How do projectivities affect algebraic curves? For a curve C = {F (Z) =

0} of degree d, points in T (A)C are of the form T (A)Z for Z ∈ C. These
are precisely the solutions of the equation

(4.1.2) {F
(
T (A−1)(·)

)
= 0} (= T (A)C)

since then

F (T (A−1)T (A)Z) = F (T (A−1A)Z) = F (Z) = 0.

Since (4.1.2) just substitutes linear forms4 for Z0, . . . , Zn in the equation
for C, we find:

Proposition 4.1.3. The images of (smooth resp. singular) alge-
braic curves of degree d under projectivities, are again (smooth resp.
singular) algebraic curves of degree d.

So lines are carried to lines, conics to conics, and so on. In gen-
eral, if T (A)C = C ′ for some A, then the curves C, C ′ are said to be
projectively equivalent.

Proof. To see why smoothness is preserved, write F̃ (ξ) = F (T (A−1)ξ)

(where we have in mind [ξ] = T (A)[Z]); and suppose (for a contradic-
tion) that for some Z ∈ C we have ∂F

∂Z0
(Z) 6= 0 but ∂F̃

∂ξi
(T (A)Z) = 0

(∀i).

4i.e. homogeneous polynomials of degree 1 in Z0, . . . , Zn
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If F̃ = F ◦ T (A−1), then F = F̃ ◦ T (A), and by the (multivariable)
chain rule

∂F

∂Z0

=
∑
i

∂T (A)i
∂Z0

∂F̃

∂ξi
=
∑
i

ai0
∂F̃

∂ξi
,

so that

0 6= ∂F

∂Z0

(Z) =
∑
i

ai0
∂F̃

∂ξi
(T (A)Z) = 0,

a contradiction. �

Next we want to get formulas for the effect of projectivities on lines
and conics. Given Lλ = { tλ · Z = 0}, (4.1.2) gives 0 = tλA−1Z =
t( tA−1λ)Z, so that

(4.1.3) T (A)Lλ = L( tA−1λ).

Since GL(3,C) acts transitively on C3, this implies the (relatively triv-
ial)

Proposition 4.1.4. All lines in P2 are projectively equivalent.

Let

Q = {0 = aZ2
0 + bZ2

1 + cZ2
2 + dZ0Z1 + eZ0Z2 + fZ1Z2}

be an arbitrary conic. We can rewrite the equation

0 =
(
Z0 Z1 Z2

) a d
2

e
2

d
2

b f
2

e
2

f
2

c


 Z0

Z1

Z2

 =: tZBZ

in terms of a (unique) symmetric5 matrix B. (The expression tZBZ is
called a symetric bilinear form.) Given such a QB, (4.1.2) substitutes
in A−1Z for Z, yielding

0 = t(A−1Z)BA−1Z = tZ( tA−1BA−1)Z

so that
T (A)QB = Q( tA−1BA−1).

Given an invertible complex matrixM , the transformation B 7→ tMBM =:

B′ is called a cogredience, and B, B′ are cogredient over C. All nonzero

5i.e. the transpose tB equals B
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symmetric matrices are cogredient /C to one of the form6 1 0 0

0 0 0

0 0 0

 ,

 1 0 0

0 1 0

0 0 0

 , or

 1 0 0

0 1 0

0 0 1

 .

We conclude:

Proposition 4.1.5. All conics in P2 are projectively equivalent to
one of

{X2 = 0}, {X2 + Y 2 = 0}, or {X2 + Y 2 + Z2 = 0}.

Notice that X2 +Y 2 = (X +
√
−1Y )(X −

√
−1Y ) is a pair of lines,

and so projectively equivalent to XY = 0.

Corollary 4.1.6. (i) All smooth7 conics are projectively equiva-
lent.

(ii) QB is smooth ⇐⇒ detB 6= 0.

Proof. (i) Since {X2 + Y 2 + Z2 = 0} is the only smooth option
in Prop. 4.1.5, by Prop. 4.1.3 all smooth conics must be equivalent to
this hence to each other.

(ii) Cogredience B 7→ tMBM multiplies determinant by (detM)2,
which is always nonzero (as M ∈ GL(3,C)); so projectivities preserve
non-zero-ness of detB. �

4.2. Tangent lines

Let C = {F (Z0, Z1, Z2) = 0} be a projective algebraic curve, and
suppose

R ⊃ (−ε, ε)→ C

t 7→ f(t) = [Z0(t) : Z1(t) : Z2(t)]

is a differentiable path segment in C. Then,

0 = (F ◦ f)′(0) =
2∑
i=0

∂F

∂Zi
(f(0)) · dZi

dt
(0)

6This is Sylvester’s theorem. For an easy proof of the real version, see pp. 161-162
of my linear algebra book. (To get rid of the “−1” entries, hence arrive at the
simpler complex version, just multiply the relevant basis vectors by

√
−1.)

7or equivalently, irreducible
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=
(

∂F
∂Z0

(f(0)) ∂F
∂Z1

(f(0)) ∂F
∂Z2

(f(0))
) Z ′0(0)

Z ′1(0)

Z ′2(0)


= t∂F (f(0)) · f ′(0),

and so the line L∂F (f(0)) contains all tangent vectors f ′(0) to all such
paths in C through f(0).

There is one catch: if the gradient vector ∂F (f(0)) = 0, then it
does not define a line at all. So we must ask C to be smooth at f(0)

for this computation to work.

Definition 4.2.1. The tangent line TpC to a curve C = {F =

0} ⊂ P2 at a smooth point p = [p0 : p1 : p2] ∈ C is L∂F (p).

f(f(0))

f(−      )ε, ε

C

T Cp

p=f(0)

=L

The next proposition makes the intuitively obvious statement that “pro-
jectivities respect tangent lines”:

Proposition 4.2.2. If L is the tangent line to C at p, then T (A)L

is the tangent line to T (A)C at T (A)p.

Proof. We must show

T (A)L∂F (p) = L∂(F◦T (A−1))(T (A)p).

Writing F̃ = F ◦ T (A)−1, this is equivalent to

T (A)L∂(F̃◦T (A))(p) = L∂F̃ (T (A)p)

hence to
L tA−1∂(F̃◦T (A))(p) = L∂F̃ (T (A)p)

or

(4.2.1) ∂(F̃ ◦ T (A))(p) ≡ tA∂F̃ (T (A)p)

where ≡ means up to multiplication by C∗. As you may wish to check
by writing everything out, equality of both sides of (4.2.1) is just an
expression of the chain rule. �
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Now, the tangent line to a line (at any point) is the line itself; for
conics the story is less trivial. First we write

F (Z) = tZBZ,

B symmetric, and compute the gradient: writing e0, e1, e2 for the stan-

dard basis vectors

 1

0

0

 ,

 0

1

0

 ,

 0

0

1

,

∂F (Z) =

 ∂F/∂Z0

∂F/∂Z1

∂F/∂Z2

 =

 tZBe0 + te0BZ
tZBe1 + te1BZ
tZBe2 + te2BZ



= 2

 te0BZ
te1BZ
te2BZ

 = 2BZ.

(Here tZBei = t( tei
tBZ) = t( teiBZ) = teiBZ uses the fact that B is

symmetric and teiBZ is “1×1”, i.e. a scalar.)

Proposition 4.2.3. The tangent line to QB at [p] ∈ QB is LBp.8

4.3. The dual projective plane

Suppose we have a vector space V/C, a basis e = {ei} of V and an
invertible linear transformation T : V → V with matrix [T ]e =: M .
Recall that the dual of V is the vector space

V̌ := Hom(V,C)

of linear functionals (f : V → C); one has the tautological pairing

(4.3.1) V̌ × V 〈·,·〉−→ C

given by 〈f, v〉 = f(v). We have a dual basis e∗ = {e∗i } (
〈
e∗i , ej

〉
= δij),

with respect to which one has

〈f, v〉 = t([f ]e∗)[v]e︸ ︷︷ ︸
matrix multiplication

.

Finally, there is a dual transformation Ť : V̌ → V̌ defined by〈
Ť f, T v

〉
= 〈f, v〉

8here we are treating p as a column vector (which is consistent with earlier notation)
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with matrix
[Ť ]e∗ = tM−1.

This gives a more conceptual way to look at the story of lines in P2

above: put V = C3, [T ]e = A, f ∈ V̌ , λ = [f ]e∗ and so on. Of course
C3 ∼= Č3 as vector spaces, but we want to keep them conceptually
separate.

The crucial point is to projectivize V and V̌ : writing

P2 =
C3\{0}
C∗

, P̌2 =
Č3\{0}
C∗

,

we see that lines in P2 correspond to points [λ] ∈ P̌2. In fact, since the
notion of duality is defined by (4.3.1), it is symmetric: ˇ̌V = V , and so
points in P2 correspond to lines in P̌2. This entire correspondence is
invariant under projectivities provided one operates simultaneously on
P2 with T (A) and P̌2 with T ( tA−1). A bit more formally, then:

Definition 4.3.1. The dual projective plane P̌2 is the space of lines
in P2.

Now write

p =

 p0

p1

p2

 , λ =

 λ0

λ1

λ2


for column vectors. Though this is maybe a little awkward, here is how
I want to standardize notation:

p = [p] = [p0 : p1 : p2] ∈ P2

λ = [ tλ] = [λ0 : λ1 : λ2] ∈ P̌2,

in other words, points in P2 are thought of as column vectors and
points in P̌2 as row vectors. As above the line Lλ ⊂ P2 is defined by
the equation

tλ · Z = 0

solve for Z =

 Z0

Z1

Z2


 ,

and we say that its dual Ľλ = λ. Moreover, p defines a line Lp ⊂ P̌2

via
tW · p = 0

(
solve for tW =

(
W0 W1 W2

))
,
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and we write p̌ = Lp.
What about the dual of a configuration of

(a) a point p on a line L(λ) (important in Poncelet)?
(b) a pair of lines L, L through a point p?
(c) a pair of points p, q on a line L?

For the first one, the equation

tλ · p = 0

expresses “p ∈ Lλ”; but from the above it also expresses Ľλ ∈ p̌ (i.e.
λ ∈ Lp). Repeating this reasoning, we have

(ǎ) a line p̌ through a point Ľ;
(b̌) a pair of points Ľ, Ľ on a line p̌;
(č) a pair of lines p̌, q̌ through a point Ľ.

Here is something more interesting to dualize, which is left as an exer-
cise for you.

Theorem 4.3.2. [Pappus of Alexandria, c. 300 AD] Let L,L ⊂
P2 be two distinct lines, and write s = L ∩ L. On L (resp. L) take
distinct p(1), p(2), p(3) (resp. q(1), q(2), q(3)) different from s, and set
(for k = 1, 2, 3) r(k) := p(i)q(j) ∩ p(j)q(i) (where {i, j, k} = {1, 2, 3}).
Then r(1), r(2), r(3) are collinear.

r

r

r

p

p

p

q

q

q
(1)

(2)

(3)

(1)

(2)

(3)

(1)
(2)

(3)
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Proof. In fact, p(1)q(2)p(3)q(1)p(2)q(3) is a hexagon “inscribed” in the
conic L∪L, and the {r(i)} are the intercepts of its opposite edges. After
changing by a projectivity (which preserves the “figure”), this conic is
XY = 0, which is obviously the limit of the smooth conicXY−αZ2 = 0

as α → 0. Since Pascal’s theorem implies collinearity of the hexagon
edge intercepts for all α 6= 0, this remains true at α = 0. �

4.4. Dual conics and polar lines

Definition 4.4.1. The dual Č ⊂ P̌2 of a smooth algebraic curve
C = {F = 0} ⊂ P2 is the set of (dual points of) tangent lines to C.
That is, Č = { ˇTpC ∈ P̌2 | p ∈ C}.

This is consistent with our definition for lines. For higher degree
curves, however, the dual is not one point: consider the duality map

DC : P2 −→ P̌2

sending9

p 7−→ [ t∂F (p)].

Proposition 4.4.2. (a) Č = DC(C).

(b) If Č is smooth at λ = ˇTpC, then TλČ = p̌.

Proof. (a) For p ∈ C, TpC = L∂F (p) =⇒ ˇTpC = [ t∂F (p)]. So
this is practically a tautology.

(b) Here we jump into a little deep water. It suffices to show that
for any path tλ(·) : (−ε, ε)→ Č through ˇTpC = [ t∂F (p)] = DC(p),

(4.4.1)
d tλ

dt
(0) · p = 0.

Since Č is the image of C by DC , tλ(t) = (DC ◦ q)(t) for some q(·) :

(−ε, ε)→ C through p. So the left-hand side of (4.4.1) becomes

d

dt
(DC ◦ q)(0) · p =

(4.4.2)

(
q′0(0) q′1(0) q′2(0)

) 
∂2F
∂Z2

0

∂2F
∂Z0∂Z1

∂2F
∂Z0∂Z2

∂2F
∂Z1∂Z0

∂2F
∂Z2

1

∂2F
∂Z1∂Z2

∂2F
∂Z2∂Z0

∂2F
∂Z2∂Z1

∂2F
∂Z2

2


∣∣∣∣∣∣∣∣
p

 p0

p1

p2

 .

9i.e., [Z0 : Z1 : Z2] 7→
[
∂F
∂Z0

(Z0, Z1, Z2) : ∂F
∂Z1

(Z0, Z1, Z2) : ∂F
∂Z2

(Z0, Z1, Z2)
]
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The matrix in the middle is the Hessian of F at p and has nonvanishing
determinant if Č is nonsingular at DC(p). We will return to the Hessian
later in this course.

Now, since each ∂F
∂Zi

is homogeneous (of degree d−1, if d = deg(C)),
the Euler formula ((2.1.8), with Z set equal to p) collapses (4.4.2) to

(d− 1).
(
q′0(0) q′1(0) q′2(0)

)
∂F
∂Z0

(p)
∂F
∂Z1

(p)
∂F
∂Z2

(p)

 =

(d− 1).∂F (q(0)) ·
dq

dt
(0),

which is indeed zero by the beginning of §4.2. �

Remark 4.4.3. One can show that the dual of a smooth algebraic
curve of degree d is an algebraic curve of degree d(d−1); moreover, for
d ≥ 2 this dual is singular, so the duality map cannot be “reversed” as
defined.

We consider the dual of the conic QB. By the computation in §4.2
(for F (Z) = tZBZ), t∂F (Z) = 2 tZB ≡ tZB and so

DQB(QB) =
{

[ tZB | [Z] ∈ C]
}

= {[ tZB] | tZBZ = 0}.

Making the substitition tλ = tZB ←→ Z = tB−1λ, this becomes

Q̌B = {[ tλ] ∈ P̌2 | tWB−1B tB−1W = 0}

= {λ ∈ P̌2 | tλB−1λ = 0}

where we have used the fact that B is symmetric. This gives part (i)
of:

Proposition 4.4.4. (i) Q̌B = QB−1, and ˇ̌QB = QB. (In particular,
the dual of a smooth conic is a smooth conic, since detB 6= 0 =⇒
detB−1 6= 0.)

(ii) Given p ∈ P2\QB, there exist exactly two lines through p and
tangent to QB.

Proof. (ii) By Proposition 4.4.2(b), this is dual to the statement:
if the line p̌ ⊂ P̌2 is not tangent to Q̌B, then it meets Q̌B in exactly 2

points. This last statement then follows from Proposition 2.1.8. �
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Definition 4.4.5. Let QB be a smooth conic and p be a point not
on QB, with TqQB and TrQB the two tangent lines to QB containing p.
(Here q, r ∈ QB.) Then the polar line L(p,QB) ⊂ P2 of p with respect to
QB is the line through q and r.

p

rq

T QT Qq B r B

B
Q

L

Proposition 4.4.6. Let p ∈ P2\QB, with polar line L = L(r,QB)(⊂
P2). Then the polar line L(Ľ,Q̌B) ⊂ P̌2 (of the dual point Ľ with respect
to the dual conic) is p̌ (the dual line of p). In a picture, where dual
objects are the same color:

T Qq B

T Qq B

T Q
r B

T Q
r B

p

rq

B
Q

L

q
r

L

L

Q
B

p

P P
2 2

Proof. This is an immediate consequence of the rules (a,b,c)←→
(ǎ, b̌, č), the definition of the dual curve, and Proposition 4.4.2(b). �

Example 4.4.7. Q = {−4Z2
0+Z2

1+Z2
2 = 0} −→B =

 −4

1

1

 .

Let p = [1 : 2 : 2] (/∈ Q) so that the polar line L is given by

0 =
(

1 2 2
) −4

1

1


 Z0

Z1

Z2

 = −4Z + 2X + 2Y,
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i.e. L = Lλ where λ = [−4 : 2 : 2].

On the dual P̌2 side: Ľ = λ; Q̌ has matrix B−1 =

 −
1
4

1

1

 ,

hence equation 0 = −1
4
Z2

0 +Z2
1 +Z2

2 ; and p̌ is the line 0 = W0 + 2W1 +

2W2. On the other hand, the polar line of λ with respect to Q̌ is

0 =
(
−4 2 2

) −
1
4

1

1


 W0

W1

W2

 = W0 + 2W1 + 2W2,

agreeing with p̌.

It is instructive to think about what happens to Pascal and Poncelet
under duality. While the dual of Poncelet is again just Poncelet (but in
P̌2), we do find that if polygons inscribed in C and circumscribed about
D close up after n sides, then so do the polygons (in P̌2) inscribed in
Ď and circumscribed about Č.

The dual of Pascal, on the other hand, does give a different state-
ment:

Proposition 4.4.8. The 3 lines through opposite vertices of a hexagon
circumscribed about a conic, pass through a single point.

Proof is basically the same as for Proposition 4.4.6; I’ll let you work
it out.

Exercises
(1) Given a configuration of 4 points p, q, r, s ∈ P2 in “general position”,

i.e. no three of them collinear, show there exists a unique projec-
tivity sending p 7→ [1 : 0 : 0], q 7→ [0 : 1 : 0], r 7→ [0 : 0 : 1], s 7→ [1 :

1 : 1]. [Hint: work with vectors p, q, r, s ∈ C3. You only have to
send p (resp. q, r, s) to a multiple of e0 (resp. e1, e2, e0 + e1 + e2).]

(2) (a) Give a direct proof of Pappus’s theorem. [Hint: use the last
exercise to first simplify the coordinates of several of the points.]
(b) State a dual version of Pappus’s theorem, and draw a figure.
[Note: it would be better to state the dual version in P2: think first
of Pappus in P̌2 and then dualize that.]
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(3) Show that the equation of the polar line of p with respect to QB
has equation tpBZ = 0. Use this to give another (short) proof of
Proposition 4.4.6.

(4) Prove that all automorphisms of P1 (as a complex manifold) are
fractional linear transformations. Deduce thatAut(P1) ∼= PGL2(C).
[Use material from §3.1.]
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General definitions and results





CHAPTER 5

Complex manifolds and algebraic varieties

In Chapters 2-3 we introduced Riemann surfaces and plane alge-
braic curves, and stated the Normalization Theorem which produces
a strong relation between them. Here we will introduce the arbitrary-
dimensional generalizations of these objects. While it is true that an
algebraic variety of dimension n has a desingularization1 which is a com-
plex n-manifold, the converse is false: already there are non-algebraic
complex 2-manifolds.

However, it is true that any global analytic object (functions or dif-
ferential forms, for example) on a projective algebraic variety viewed
as a complex manifold, is a algebraic. This is Serre’s “GAGA” (global
analytic = global algebraic) principle. For example, global meromor-
phic functions in this context turn out to be nothing but restrictions
to the algebraic variety of rational functions on the ambient projective
space (elements of C(z1, . . . , zn)).

5.1. Complex n-manifolds

These are the generalization of complex 1-manifolds (or of Riemann
surfaces, if we assume compactness) to higher dimension. Once again,
we begin with a Hausdorff topological space X with open cover {Uα}
and write Uαβ = Uα ∩ Uβ. This is made into a complex n-manifold by
the additional data of an analytic atlas on X: that is, a collection of
holomorphic coordinates2

zα : Uα
'−→ Vα ⊆ Cn,

1“normalization” is no longer the correct term (refers to a weaker process which still
produces a singular object)
2As usual, an underline means a vector or tuple of some kind; in this case, zα =
(zα1, . . . , zαn).

65
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or homeomorphisms between Uα and an open set in Cn, such that the
transition functions

Φβα := zβ ◦ zα−1 : V β
α → V α

β

are biholomorphic.

X

Uαβ β
UU

α

α1
(z  ,...,z  )−space

β1
(z  ,...,z  )−space

nα βn

Φ
βα

α β
V V

C C
nn

z z
α β

Here V β
α := zα(Uαβ) and V α

β := zβ(Uαβ) are open subsets of Cn,
and we need to explain what biholomorphic means. First, a function
f : Cn → C is holomorphic if and only if it looks locally (about each
point) like f(z) =

∑
I=(i1,...,in) aIz

I where zI means zi11 z
i2
2 · · · zinn and

aI ∈ C are constants. A holomorphic map Cn → Cm is just m of these:
(z1, . . . zn) = z 7→ (f1(z), . . . , fm(z)). (Since these definitions are local,
they immediately have meaning when Cn etc. are replaced by open
sets.) Finally, “biholomorphic” simply indicates a bijective map (Φβα

is bijective by construction) which is holomorphic in each direction.
To generalize the morphisms of Riemann surfaces introduced in

§3.1, we can define a morphism F : X → Y of complex manifolds.
Here X and Y need not be of the same dimension; for X we keep the
above notation and for Y write Zγ : Uγ

'−→ Vγ ⊆ Cm. A morphism F

is then a collection of continuous functions Fα : Uα → Y (agreeing on
the Uαβ) such that each composition

Zγ ◦ Fα ◦ zα−1 : zα
(
F−1
α (Uγ ∩ Fα(Uα))

)
→ Zγ (Uγ ∩ Fα(Uα))
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yields a holomorphic map (from a subset of Vα ⊆ Cn to a subset of
Vγ ⊆ Cm). If n = m = 1 then this reproduces Definition 3.1.6.3

Moreover, compositions of morphisms are morphisms.
Basic examples of complex manifolds include (besides Riemann sur-

faces when n = 1) Cartesian products of Riemann surfaces, complex
n-tori

Cn/Z
〈
λ1, · · · , λ2n

〉
(where λ1, . . . , λ2n are linearly independent over R in Cn ∼= R2n), and
projective n-space

Pn :=
Cn+1\{0}

〈(ξ0, . . . , ξn) ∼ (γξ0, . . . , γξn) ∀γ ∈ C∗〉
.

Demonstrating that Pn is a complex n-manifold (as we do in the next
section) immediately gives meaning to a “morphism of complex mani-
folds from a Riemann surface to Pn.” This notion is equivalent to (but
more intrinsic than) Definition 3.1.9, as we shall see.

5.2. Pn as a complex manifold

Pn is covered by the open sets Ui := {ξi 6= 0}, with local coordinates

zi = (zi1, . . . , zin) :=

(
ξ0

ξi
, . . . ,

ξ̂i
ξi
, . . . ,

ξn
ξi

)
: Ui

∼=−→ Cn.

(Here “i” replaces “α”, Vi = Cn, and (̂·) means to omit that term.) We
need to check that the transition functions

Φji : V j
i → V i

j

are holomorphic. Now, Φji tells us how to write the zj = (zj1, . . . , zjn)

as functions of the zi = (zi1, . . . , zin) in such a way that(
ξ0

ξi
, . . . ,

ξ̂i
ξi
, . . . ,

ξj
ξi
, . . . ,

ξn
ξi

)
is sent to

(
ξ0

ξj
, . . . ,

ξi
ξj
, . . . ,

ξ̂j
ξj
, . . . ,

ξn
ξj

)
(where for convenience we assume j > i). Now, V j

i ⊂ Cn is simply the
subset where zij 6= 0. So the correct transition function is

Φji(zi1, . . . , zin) = (zj1(zi1, . . . , zin), . . . , zjn(zi1, . . . , zin))

3it might be a good idea to glance back at the picture there (for intuition purposes)
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where

(5.2.1) zjk(zi1, . . . , zin) =


zik/zij, for k ≤ i, k > j

zi,k−1/zij, for i+ 1 < k ≤ j

1/zij, for k = i+ 1

.

For P1, zi reduces to zi (i = 0, 1). More precisely, z0 = ξ1
ξ0

and
z1 = ξ0

ξ1
are the two local coordinates, while (5.2.1) becomes z1(z0) = 1

z0
,

so that we recover Example 2.2.3. Here is a “schematic picture” of the
local coordinates on P1:

P
1ξ  /ξ

1 0 ξ  /ξ
0 1

0

8

For P2, we have z0 = (z01, z02) =
(
ξ1
ξ0
, ξ2
ξ0

)
, z1 = (z11, z12) =

(
ξ0
ξ1
, ξ2
ξ1

)
,

and z2 = (z21, z22) =
(
ξ0
ξ2
, ξ1
ξ2

)
, with e.g. Φ20 (z01, z02) =

(
1
z02
, z01

z02

)
.

Again, the local coordinates can be visualized as follows:

ξ  /ξ
1 0 ξ  /ξ

0 1

P
2

ξ  /ξ

ξ  /ξ2 1

1 2

ξ  /ξ
0 2

ξ  /ξ
2 0

[0:1:0][1:0:0]

[0:0:1]

So, for instance, the coordinates z1 =
(
ξ0
ξ1
, ξ2
ξ1

)
are defined on the com-

plement U1 of the vertical line, and both vanish at [0 : 1 : 0].

Remark 5.2.1. Whenever you have a local holomorphic coordinate
(system) like zi : Ui → Vi ⊆ Cn, the inverse mapping ϕi = zi

−1 : Vi
'→

Ui ⊂ X (or just Vi ↪→ X) is called a local analytic chart. In case
X = Pn, ϕi : Cn ↪→ Pn is given by

ϕi(zi1, . . . , zin) = [zi1 : · · · : zii : 1 : zi,i+1 : · · · : zin]

, and one can visualize this as a map from Cn ↪→ (Cn+1\{0}) � Pn.
Here are pictures of the image of ϕ0 for P1 and P2:
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U

U

0

0

C

C

2

3

ξ

ξ

ξ

ξξ

0

0
2

1

0

ξ =1

ξ =1

0

0

The next statement says that the notion of “holomorphic map” from
a Riemann surface to projective space (Defn. 3.1.9) is just a special
case of “morphism of complex manifolds”. It is enough to consider (as
we do) the situation where the image is not contained in a coordinate
hyperplane, since these are just smaller-dimensional projective spaces
(included into Pn by morphisms).

Proposition 5.2.2. Let M be a complex 1-manifold, and consider
a continuous mapping F : M → Pn with F (M) not contained in any
{Zi = 0}. The following statements are then equivalent:

(i) F is a morphism of complex manifolds;
(ii) each composition [ξi ◦ F : ξj ◦ F ] is a morphism of complex

manifolds to P1 (on the open subset of M where it is well-defined);
(iii) each ξi

ξj
◦ F gives a meromorphic function on M .

Proof. First, write Ui := {Zi 6= 0} ⊂ Pn as above. For each
{i, j} (where i 6= j), the projections πij : Ui ∪ Uj � P1 defined by
[ξ0 : · · · : ξn] 7→ [ξi : ξj] are morphisms of complex manifolds. So if
M

F→ Pn is one, then πij ◦ F = [ξi ◦ F : ξj ◦ F ] is one too, showing
(i) =⇒ (ii). Next, (ii) =⇒ (iii) is Remark 3.1.10. Finally, if all
the ξj

ξi
◦ F give meromorphic functions on all of M , then in particular

zi ◦ F =

(
ξ0
ξi
◦ F, . . . , ξ̂i

ξi
◦ F , . . . , ξj

ξi
◦ F, . . . , ξn

ξi
◦ F
)

is holomorphic on

F−1(Uj) (or a suitable covering of it by coordinate neighborhoods).
These give the local holomorphic representations of F required for a
morphism, proving (iii) =⇒ (i). �

We will refine Proposition 5.2.2 in Chapter 7 below.
Whilst we are dwelling on the subject of projective space, I would

like to mention (just for P2) a trick for drawing the real solution sets
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of homogeneous equations on the page: barycentric coordinates. First
draw 3 points A(0), A(1), A(2) on a piece of paper:

Α

Α

Α
1

2

0

Think of these as vectors A(i) ∈ R2; it doesn’t matter where the origin
is. Now, plot [ξ0 : ξ1 : ξ2] as

(5.2.2)
2∑
i=0

(
ξi∑2
j=0 ξj

)
A(i).

To “draw” an algebraic curve, simply find all the solutions [ξ0 : ξ1 : ξ2]

with ξi ∈ R, and use (5.2.2) to plot them.

Example 5.2.3. (i) The line y = α (assume α ∈ R) projectively
completes to ξ2 = αξ0. Plotting the points [1 : x : α] in this way gives

x[1:   :α]
y= α

(ii) The conic xy = 1 completes to ξ1ξ2 = (ξ0)2, and we get
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for its real barycentric plot.
(iii) The cubic curve y2 = x(x + 1)(x − 1) becomes (ξ2)2ξ0 = ξ1(ξ1 +

ξ0)(ξ1 − ξ0) with picture

0 1−1

In fact, this is the precise meaning of the “schematic” real 1-dimensional
pictures of complex algebraic curves we have been drawing and will
continue to draw — we are plotting the real solutions in barycentric
coordinates.

5.3. Affine and projective algebraic varieties

We are going to approach this from a slightly more algebraic angle
than, “take the common solution of a bunch of polynomial equations”.
Start with the commutative ring Sn := C[z1, . . . , zn] of polynomials in
n variables.

Let J ⊂ Sn be an ideal. The affine variety associated to J is

V (J) := {z = (z1, . . . , zn) | f(z) = 0 ∀f ∈ J} ⊆ Cn,
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which is the vanishing locus of all polynomials in J . By a result in
algebra known as Hilbert’s basis theorem, any ideal in Sn is finitely
generated, that is, of the form (f1, . . . , fk); consequently V (J) is simply
of the form f1(z) = · · · = fk(z) = 0. However, working in terms
of ideals does have a payoff, in the form of the famous “theorem on
zeroes” or nullstellensatz :

Theorem 5.3.1. [D. Hilbert, 1893] If g ∈ Sn vanishes identically
on V (J), then for some m ∈ N,gm belongs to J .

If J = (f), then this just says “if g vanishes (in Cn) wherever f
does, then f divides some power of g.”

Next we consider the projective case, writing Sn+1 = C[Z0, . . . , Zn].
Its underlying additive group can be viewed as the direct sum ⊕dSdn+1,
where Sdn+1 denotes homogeneous polynomials of degree d in n + 1

variables. Hence, any polynomial G can be written uniquely as a finite
sum of homogeneous terms

∑
dGd.

Definition 5.3.2. An ideal I ⊂ Sn+1 is homogeneous if and only
if the condition

G ∈ I =⇒ Gd ∈ I (∀d)

is satisfied.

The projective variety associated to a homogeneous ideal I ⊂ Sn+1is4

V̄ (I) := {[Z] = [Z0 : · · · : Zn] | F (Z) = 0 ∀F ∈ I} ⊆ Pn.

A version of the Nullstellensatz suited to this case, which is an imme-
diate consequence of Theorem 3.1, is:

Corollary 5.3.3. Given a homogeneous polynomial g vanishing
on all of V̄ (I), some power of g belongs to I.

Remark 5.3.4. If F1, . . . , Fk are homogeneous polynomials (of var-
ious degrees), then

(i) I := (F1, . . . , Fk) is a homogeneous ideal; and
(ii) V̄ (I) = {F1(Z) = · · · = Fk(Z) = 0}.

4technically, one should keep track of multiplicities of irreducible components,
rather than just defining V̄ (I) as a set. For the most part we will suppress this
detail.
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As in the case of curves, we want to be able to go between the affine
and projective settings. To “restrict” a projective variety to the affine
world, start with the ring (or algebra) homomorphism

Sn+1 → Sn

induced by
F (Z0, Z1, . . . , Zn) 7→ F (1, z1, . . . , zn).

If we write I◦ for the image of a homogeneous ideal I under this map,
then

V (I◦) = V̄ (I) ∩ Cn.

To go the other way, recall the space Pdn = ⊕dj=1S
j
n of polynomials

of degree at most d. We have a homomorphism of abelian groups (or
vector spaces)

Pdn
θd−→ Sdn+1

which is defined by

f(z) 7−→ (Z0)df (Z/Z0) .

Now, take J ⊂ Sn an ideal. Given generators {fi}ki=1 (fi of degree di)
for J , so that J = (f1, . . . , fk), set J̄ := (θd1(f1), . . . , θdk(fk)). Then we
have

V̄ (J̄) ∩ Cn = V (J).

So if n = 3, then V̄ (J̄) is adding stuff in the “P2 at infinity” {Z0 = 0}
to complete your affine variety to a projective one, as suggested by the
picture:

hyperplane {Z  =0} at 
0

8

in which the black points get added in the process of completing the
curve.
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Example 5.3.5. A key example of affine or projective varieties are
the hypersurfaces cut out of Cn or Pn by a single equation. Let F ∈
Sdn+1 and5

X = V (F ) = {F (Z) = 0} ⊆ Pn

the corresponding projective hypersurface of degree d. (Like algebraic
curves, these are called linear, quadric, cubic, quartic, quintic, etc.
according as d = 1, 2, 3, 4, 5, . . ..) We will define dimension rigorously
below, but X is (n− 1)-dimensional (and thus of codimension 1).

Now since Sn is a unique factorization domain, we can factor

F =
k∏
i=1

Fmi
i ,

uniquely (up to order), where each Fi is prime (irreducible). We can
then write unambiguously

X =
k∑
i=1

miXi,

and say X is reduced when all mi = 1, and irreducible when k = 1.

Exercises
(1) Show that each projection πij : Ui∪Uj � P1 described in the proof

of Prop. 5.2.2 is a morphism of complex manifolds. [This is a quick
one.]

(2) Sketch the real solutions of [the projective closure of] {y2 =
∏2g+2

i=1 (x−
ai)} in P2, if a1 < a2 < · · · < a2g+2 are real numbers.

5here we really mean V ((F )), the variety of the ideal (F ), but we shorten this to
V (F ).



CHAPTER 6

More on projective algebraic varieties

We warm up with two examples we can get our hands on imme-
diately: linear varieties and quadric hypersurfaces. Then we launch
into what it means for an algebraic variety to be singular resp. smooth
at a point, and in the latter case introduce its tangent space at that
point (which is a linear variety). This leads to a careful definition
of dimension for algebraic varieties. As a sort of “appendix” I’ll give
a long-overdue introduction to plane curve singularities (which were
glossed over in Chapter 2).

6.1. Linear subvarieties of Pn

We start by generalizing the “projectivities” of Chapter 4. Recall
that the projective general linear group is defined as the quotient of
invertible matrices by the scalar action:

PGL(n+ 1,C) :=
GL(n+ 1,C)〈 α 0
. . .

0 α


∣∣∣∣∣∣∣α ∈ C∗

〉 .

This group acts on projective space by the rule

PGL(n+ 1,C)× Pn −→ Pn

(M, [Z]) 7−→ [M.Z] =: T (M)[Z].

That is, for each M ∈ PGL(n + 1,C), T (M) gives an automorphism
of Pn as a complex manifold. In fact, the projectivities T (M) give all
automorphisms (generalizing the last exercise of Chapter 4), but we
won’t prove this here.

75
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A system of k linear equations

(6.1.1)


`10ξ0 + · · ·+ `1nξn = 0

...
`k0ξ0 + · · ·+ `knξn = 0


defines a linear subspace V ⊆ Pn. Recalling that the rank of a matrix
is its number of linearly independent row (or equivalently, column)
vectors, the matrix  `10 · · · `1n

... . . . ...
`k0 · · · `kn

 =: L

has rank(L) =: r ≤ k. Defining

codim(V ) := r (equivalently, dim(V ) = n− r),

we have the

Proposition 6.1.1. (i) All projective linear subvarieties of the
same (co)dimension are projectively equivalent.

(ii) A linear subvariety of Pn of codimension r is isomorphic to
Pn−r as a complex manifold.

Proof. Given L and V as above, note that if the equations (6.1.1)
are not independent (i.e. k > r), then without changing V or r, we can
eliminate equations (reducing k) until they are (and k = r, i.e. L has
maximal rank). Assume this has been done, so that reordering Zi’s if
necessary,

det

 `10 · · · `1,k−1

... . . . ...
`k0 · · · `k,k−1

 6= 0.

Let M be the (n+ 1)× (n+ 1) matrix whose first k rows are given by
L (a k× (n+ 1) matrix) and last n− k+ 1 rows by (0 , In−k+1), where
0 denotes a (n − k + 1) × k matrix of zeroes and Im always means an
m×m identity matrix.

Consider the automorphism T (M) of Pn. By definition of V , [ξ] ∈ V
if and only if (matrix multiplication by) L kills ξ. So one should view
T (M) as taking V to the subspace V0 = {ξ0 = · · · = ξk−1 = 0},
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which proves (i) since V was arbitrary. This also proves (ii) since V0 is
evidently a Pn−k (with homogeneous coordinates [ξk : · · · : ξn]). �

A linear subvariety of codimension 1 is called a hyperplane.

6.2. Quadric hypersurfaces

Recall that a (projective) hypersurface is a subvariety X ⊂ Pn cut
out by a single homogeneous equation F (Z) = 0. We are interested
in the case where F ∈ S2

n+1 (degree 2), so that X is a quadric. The
polynomial can be written

F (Z) = tZBZ =
(
Z0 · · · Zn

) b00 · · · b0n

... . . . ...
bn0 · · · bnn


 Z0

...
Zn


with B symmetric. Under a linear change of projective coordinates Z0

...
Zn

 = M

 Y0

...
Yn

 (M ∈ GL(n+ 1,C)),

we find

F (Z) =
(
Y0 · · · Yn

)
tMBM

 Y0

...
Yn

 =: G(Y ),

where (as in Chapter 4) tMBM is said to be cogredient to B.

Lemma 6.2.1. [Sylvester’s Theorem /C] Any given symmetric
complex (n+ 1)× (n+ 1) matrix B is cogredient to exactly one of the
matrices

Mk =



1
. . .

1

0
. . .

0


,

where k is the number of 1’s.

Corollary 6.2.2. A given quadric hypersurface in Pn is projec-
tively equivalent to (or transformable by a linear change of coordinates
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into) exactly one of the quadrics

Qk =

{
k−1∑
j=0

Y 2
j = 0

}
(k = 1, . . . , n+ 1).

Note that Q1 = {Y 2
0 = 0} is a double hyperplane, Q2 = {Y 2

0 +Y 2
1 =

0} is a union of two hyperplanes (each ∼= Pn−1), and Qk for k ≥ 3 is
irreducible (equation does not factor). You’ll investigate these a tiny
bit further in one of the exercises.

6.3. Singularities, tangent planes, and dimension

We’ll need the Euler formula mentioned in §2.1, so let’s prove it
first:

Lemma 6.3.1. [Euler’s formula] F ∈ Sdn+1 =⇒
∑n

i=0 Zi
∂F
∂Zi

=

d.F

Proof. It suffices to check this on monomials (F =)Zd0
0 · · ·Zdn

n ,∑
di = d. We have

∑
i Zi

∂
∂Zi

(Zd0
0 · · ·Zdn

n ) =
∑

i Zi
di
Zi

(Zd0
0 · · ·Zdn

n ) =

(
∑

i di)Z
d0
0 · · ·Zdn

n = dZd0
0 · · ·Zdn

n . �

Now, the definition of smoothness for hypersurfaces is similar to
what we have learned for curves; the general case of varieties cut out
by more than one equation is trickier. So we’ll start, then, with an
affine hypersurface

V = V (f) ⊂ Cn,

and a point p ∈ V .

Definition 6.3.2. (i) V is smooth at p ⇐⇒ ∂f
∂zj

(p) 6= 0 for some
j ∈ {1, . . . , n}. Otherwise, p is a singular point (or singularity) of V .

(ii) If V is smooth at all of its points, V is smooth. Otherwise, V is
singular.

(iii) If V is smooth at p, define the tangent plane

TpV :=

{
(z1(p) + α1, . . . , zn(p) + αn) |

n∑
i=1

αi
∂f

∂zi
(p) = 0

}
⊂ Cn.

(Here the αi ∈ C.)

So one can think of TpV as a copy of Cn−1 with origin at p and
coordinates {αi}. It’s also worth noting the formal correspondence
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between “tangent vectors” (points in TpV ) and differential operators
“at p”, namely

∑
i αi

∂
∂zi

. This is not misleading at all, and in fact the
intrinsic construction of tangent planes (for complex or more generally
differentiable manifolds) uses local differential operators.

As for singularities, i.e. points where f(p) = fz1(p) = · · · =

fzn(p) = 0, we saw examples of those in Example 2.1.10 for curves.
Here is one more: y2 = x3 − x2 is singular at (0, 0) since both partials
of y2 − x3 + x2. On the other hand, y2 = x3 − x is smooth because
this equation together with 0 = ∂

∂x
(y2 − x3 + x) = −3x2 + 1 and

0 = ∂
∂y

(y2 − x3 + x) = 2y admit no common solution. This is easy to
see: the points ( 1√

3
, 0) and (−1√

3
, 0) where both partials vanish, do not

lie on the curve.
Next, consider a projective hypersurface

V = V̄ (F ) ⊂ Pn,

where F is homogeneous and P ∈ V .

Definition 6.3.3. (i) V is smooth at P ⇐⇒ ∂F
∂Zj

(P ) 6= 0 for some
j ∈ {0, . . . , n}. Otherwise, P is a singular point (or singularity) of V .

(ii) If V is smooth at all of its points, V is smooth. Otherwise, V is
singular.

(ii) If V is smooth at P , define the tangent plane (∼= Pn−1)

TPV :=

{
[Z0(P ) + α0 : . . . : Zn(P ) + αn] |

n∑
i=0

αi
∂F

∂Zi
(P ) = 0

}
⊂ Pn.

Now a priori, the definition of a singular point is one at which
F (P ) = FZ0(P ) = · · · = FZn(P ) = 0; but by the Euler formula,

(6.3.1)
∑
i

Zi(q)
∂F

∂Zi
(P ) = deg(F ) · F (P )

and so it is in fact enough to check FZ0(P ) = · · · = FZn(P ) = 0. In fact,
(6.3.1) also implies (for the projective case only!) the simplification

(6.3.2) TPV =

{
[α0 : · · · : αn] |

∑
i

αi
∂F

∂Zi
(P ) = 0

}
Note that (6.3.2) is really just the solution set of t∂F (P ) ·α = 0, as in
Chapter 4 (but now in Pn rather than P2).
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As you might expect, the notions of tangent plane in affine and
projective cases “agree”, in the sense that – at a point on an affine
hypersurface – the tangent plane of the projective completion is the
completion of the tangent plane:

Proposition 6.3.4. TpV (F (1, z1, . . . , zn)) = T[1:p]V̄ (F )∩Cn, where
(P =)[1 : p] means [1 : z1(p) : · · · : zn(p)].

Proof. Given q = (z1(q), . . . , zn(q)) ∈ Cn. Writing f(z) = F (1, z)

and Q = [1 : q], we want to show

(6.3.3) q ∈ TpV (f) ⇐⇒ Q ∈ TP V̄ (F ).

The left-hand (affine) condition is, writing zi(q) = zi(p) + αi in Defini-
tion 6.3.2(iii),

n∑
i=1

(zi(q)− zi(p))
∂f

∂zi
(p) = 0.

This is really
n∑
i=1

(Zi(Q)− Zi(P ))
∂F

∂Zi
(P ) = 0,

which by Euler becomes
n∑
i=1

Zi(Q) · ∂F
∂Zi

(P ) − deg(F ) · F (P ) + 1 · ∂F
∂Z0

(P ) = 0.

Since F (P ) = 0, we get

1 · ∂F
∂Z0

(P ) +
n∑
i=1

Zi(Q) · ∂F
∂Zi

(P ) = 0,

which is exactly the right-hand (projective) condition of (6.3.3). �

Now let’s have a look at singularities and smoothness in the general
projective case. The definition is complicated, but after this chapter
we won’t use it much. Let

V = V̄ (F1, . . . , Fk) ⊆ Pn,

and p be a point on V .
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Definition 6.3.5. (i) V is smooth at p if and only if there exists a
neighborhood W ⊂ Pn of p and sub-index set{i1, . . . , ic} ⊆ {1, . . . , k}
such that1

(a) V ∩W = V̄ (Fi1 , . . . , Fic) ∩W , and

(b) rank


∂Fi1
∂Z0

(p) · · · ∂Fi1
∂Zn

(p)
... . . . ...

∂Fic
∂Z0

(p) · · · ∂Fic
∂Zn

(p)

 = c.

We say V has codimension c (or dimension n− c) at p.
(ii) If V is smooth at each point p ∈ V , then V is smooth (otherwise,

V is singular).
(iii) If V has the same (co)dimension at each smooth point p ∈ V ,

then V is equidimensional. If moreover that codimension is c, we just
say V is a variety of codimension c (dimension n− c).2

(iv) The tangent plane TpV ⊂ Pn to V at a smooth point p is the
solution set of L.p = 0, where

L =


∂F1

∂Z0
(p) · · · ∂F1

∂Zn
(p)

... . . . ...
∂Fk
∂Z0

(p) · · · ∂Fk
∂Zn

(p)

 .

Condition 6.3.5(i)(a) says that locally about p, once you set Fi1(Z) =

· · · = Fic(Z) = 0, the remaining equations are redundant; and roughly
speaking, the condition (b) on rank says that no more (none of the
Fi`) are redundant. In the terminology of §6.1, TpV is a linear subva-
riety, and it follows from condition 6.3.5(i)(b) that its codimension is
c. That is, we have really just defined the (co)dimension of a variety
V at a smooth point p, to be the (co)dimension of TpV — something
we already knew how to define.

Finally, the “neighborhood” W in the definition is an analytic open
set containing p (such as a “ball”), but the definition would also work
if we only permitted “algebraic” open sets defined by complements of
(other) subvarieties,3 known as Zariski open sets. In general, if you

1the matrices in this definition assume a particular representative (Z0(p), . . . , Zn(p))
in Cn+1 of the projective coordinate [Z0(p) : · · · : Zn(p)]. It doesn’t matter which
one you take, as long as you are consistent.
2note that the dimension of V at a singular point is not defined, so the definition of
a m-dimensional variety must be “one that is of dimension m at all smooth points”.
3this is exactly how Example 6.3.6(iii) is started below
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want to view an algebraic variety as a complex analytic space (or man-
ifold, if it is smooth), then you must use analytic open sets; on the
other hand, the Zariski open sets introduce a different topology on V
or Pn, which is coarser but has the advantage of being algebraic (and
is still Hausdorff). We need both. In brief, when we study varieties an-
alytically, we use the analytic topology; when we want to make heavy
use of the correspondence between varieties and ideals in commutative
rings, we use the Zariski topology.

Example 6.3.6. (i) Let V be the affine variety {z2
1 +z2

2 +z2
3 = 0} ⊂

C3. The partial derivatives ∂zi(
∑

j z
2
j ) = 2zi all vanish at p = (0, 0, 0)

and so V is singular there:

p

(ii) Now for a nasty one. Let V ⊂ P3 be defined by

{
Z1Z3 = 0

Z2Z3 = 0

}
,

and take p = [1 : 0 : 0 : 0], q = [1 : 0 : 0 : 1], r = [1 : 1 : 0 : 0]:

r

q

p

Locally about r, Z1 6= 0 and so having set Z1Z3 = 0 (i.e. Z3 = 0), the
second equation Z2Z3 = 0 is redundant. So the relevant matrix from
6.3.5(i)(b) is

(
∂Z0(Z1Z3) ∂Z1(Z1Z3) ∂Z2(Z1Z3) ∂Z3(Z1Z3)

)∣∣∣
r

=(
0 Z3 0 Z1

)
|r =

(
0 0 0 1

)
, which has rank 1 proving that

V has codimension 1 (dimension 2) at r. Locally about q, Z3 6= 0 and
so the equations are effectively Z1 = 0 and Z2 = 0, neither of which is
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redundant. The matrix in 6.3.5(i)(b) is now

(
0 Z3 0 Z1

0 0 Z3 Z2

)∣∣∣∣∣
q

=(
0 1 0 0

0 0 1 0

)
, which does have rank 2 confirming that V has codi-

mension 2 at q. So V is not equidimensional. Finally, at p neither

equation is redundant but the matrix 6.3.5(i)(b) is

(
0 0 0 0

0 0 0 0

)
,

meaning V is singular at p.
(iii) Finally, consider the variety C ⊂ P3 defined by the three equa-

tions 
Z0Z3 − Z1Z2 = 0 (I)

Z2
1 − Z0Z2 = 0 (II)

Z2
2 − Z1Z3 = 0 (III)

 ,

and the covering Ui := {Zi 6= 0} of P3. In U0, we can divide by Z0,
so that (II) becomes Z2 =

Z2
1

Z0
. Together with (I), this gives Z2

2 =

Z2Z2 = Z1Z2
Z1

Z0
= Z0Z3

Z1

Z0
= Z1Z3. Consquently, (III) is redundant on

U0. Now, for any point in U0 ∩ C, you can check that the matrix in
6.3.5(i)(b) has rank 2, showing that C is smooth of dimension 1 at all
of those points. To finish, and show that C is a 1-dimensional smooth
variety, carry out a similar analysis in each of U1, U2, and U3 (exercise).

Somewhat unsurprisingly, a variety of dimension 1 is called a curve,
of dimension 2 a surface, and of dimension d ≥ 3 a d-fold. So-called
“Calabi-Yau threefolds” play a central role in mathematical string the-
ory.

6.4. Singularities of plane curves

Consider a curve

C = {F (Z) = 0} ⊂ P2

defined by a homogeneous polynomial F ∈ Sd3 (of degree 3 in Z0, Z1, Z2).
A point p ∈ C is a singularity if and only if FZ0(p) = FZ1(p) = FZ2(p) =

0, and (moving C by a projectivity if necessary) we may assume that
p = [1 : 0 : 0]. To locally analyze C at p, we can pass to affine coordi-
nates x = Z1

Z0
, y = Z2

Z0
and replace F by

f(x, y) = F (1, x, y) =
d∑

m=k

fm(x, y),
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where fm ∈ Sm2 for each m, and fk 6= 0. Now 0 = fx(p) = fy(p) = f(p)

(p = (0, 0)) translates to 0 = f1 = f0, so that k ≥ 2. We say that p is
a k-tuple point of C, or a singularity of order k.

So far, we have not defined tangent planes at singular points. In-
deed, this can really only be done for curves in general. To decide
what the tangent lines to C at 0 should be, we think of [x : y] as
homogenous coordinates on the P1 of lines through (0, 0) = p. The
lowest-order homogeneous term fk of f defines a 0-dimensional vari-
ety τp(C) := {fk(x, y) = 0} in this P1. For each [x0 : y0] ∈ τp(C),
one should think of y0

x0
as the slope of a line tangent to some “local

irreducible component”4 of the curve C at p.

Definition 6.4.1. The tangent lines to a curve C at a singularity
p are the lines through p corresponding to points of τp(C).

Now, fk(x, y) = 0 has k solutions counted with multplicity. If these
are all distinct, i.e. if τp(C) is reduced, then we say p is an ordinary
k-tuple point. The most geometric way to think of this is that C has
k distinct tangent lines at p.

Any line through a k-tuple point p other than one of C’s tangent
lines there, meets C with multiplicity k at p: if L is given parametrically
by t 7→ (at, bt) (fk(a, b) 6= 0) then the intersection multiplicity is com-
puted as in Chapter 2 by taking the order of f(at, bt) = tkfk(a, b) + · · ·
at t = 0.

Remark 6.4.2. Given a polynomial f(x, y) =
∑

(a,b)∈Z2
≥0
αabx

ayb it
can be useful (for various purposes) to plot the finitely many (a, b) with
αab 6= 0. If you do this when (0, 0) is a k-tuple point and f has degree
n, then these lie in the shaded region

4this will be made precise when we do local normalization
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k d

k

d

This may be useful for one of the exercises below.

There is more to singularities, it turns out, than their order or even
the tangent line configuration reflected by τp(C). A local analytic clas-
sification of so-called simple5 singularities of curves has been carried
out. For the purposes of this classification, if C,C ′ are two curves
through p = (0, 0), their singularities at p are considered equivalent if
there are small neighborhoods U,U ′ of (0, 0) in C2 and a biholomor-
phism U

'→ U ′ carrying p to p and C to C ′. The different classes of
simple singularities carry “A-D-E” labels, which reflect a relation to
other classifications in mathematics (simple Lie algebras/Dynkin dia-
grams, rational surface singularities, etc.)

The results are that double points are all equivalent to one of

An : x2 + yn+1 = 0 (n ≥ 1),

and (simple) triple points to one of

Dn : y(x2 + yn−2) = 0 (n ≥ 4),

E6 : x3 + y4 = 0,

E7 : x(x2 + y3) = 0,

E8 : x3 + y5 = 0.

The ODP’s (ordinary double points: two distinct tangents) are all of
type A1, as all An≥2 have only one tangent; amongst the latter, “cusps”
are the singularities of type A2.6 OTP’s (ordinary triple points) are all

5cf. [Barth, Hulek, Peters, and van de Ven, “Compact complex surfaces”, Springer,
2004] for the definition. Simple singularities encompass all double (2-tuple) points
and some triple (3-tuple) points, and nothing of higher order.
6refer back to Chapter 2 for a few pictures (cusps, ODP, OTP)
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of type D4; we note that the tangent lines to y(x2 +y2) = 0 have slopes
0, i,−i. All Dn≥5 have two distinct tangents (one with “mutliplicity 2”)
and the E6,7,8 each have one tangent (of “multiplicity 3”).

Exercises
(1) (i) Prove that a quadric hypersurface in Pn defined by a symmetric

bilinear form B is smooth if and only if det(B) 6= 0.
(ii) Corollary 6.2.2 associates a number k to each projective quadric
hypersurface in Pn. Show that any two are projectively equivalent
if and only if they have the same value of k. [This is easy.]

(2) Show that [the closure in P2 of] y2 = 4x3 + ax+ b is smooth unless
a3 + 27b2 = 0.

(3) Find the tangent plane to the complex surface 2x4+y4+z4−4xyz =

0 (in C3) at the point p = (1, 1, 1).
(4) Finish the proof in Example 6.3.6(iii) that C is a smooth curve.
(5) What form does a degree k projective algebraic curve (in P2) take

if it has a singularity of order k?
(6) Analyze the singularity of C = {(x2 + y2)2 + 3x2y − y3 = 0} ⊆ C2

at the origin. (What is its order, and type?)
(7) For which values of µ are the algebraic curves F (X, Y, Z) = 0 in

P2 singular (in (a) and (b) below)? Attempt a sketch of each of
the singular curves, saying where the singularities are located and
what type they are.
(a) F (X, Y, Z) = X3 + Y 3 + Z3 + µ(X + Y + Z)3,

(b) F (X, Y, Z) = X3 + Y 3 + Z3 + 3µXY Z.



CHAPTER 7

Smooth varieties as complex manifolds

This Chapter starts the long slog toward a proof of part (A) of the
Normalization Theorem 3.2.1. After introducing a bit of the theory of
several complex variables, we’ll use the holomorphic implicit function
theorem to put a complex manifold structure on any smooth irreducible
(affine or projective) algebraic variety:

Theorem 7.0.1. A smooth irreducible algebraic curve C ⊂ Pn “is”
a Riemann surface. (More precisely, there exists a Riemann surface M
and an injective morphism of complex manifolds σ : M ↪→ P2 with C
as its image.)

This is, of course, the “smooth” case of Thm. 3.2.1(A). As for going
the other way, from Riemann surfaces to algebraic curves, here is a
statement which is different in character from 3.2.1(B):

Theorem 7.0.2. A Riemann surface M with n + 1 linearly inde-
pendent meromorphic functions f0, . . . , fn ∈ K(M), yields an algebraic
curve in Pn not contained in any proper linear subvariety.

We won’t prove this in full — just the existence of a morphism
M → Pn of complex manifolds which is nondegenerate, i.e. whose
image is not contained in any Pn−1. Proving that the image is described
by algebraic equations (hence yields an algebraic curve) is harder.

7.1. Background from several complex variables

LetOn (or C{z1, . . . , zn}) denote the ring of convergent power series∑
I aIz

I in z1, . . . , zn, or equivalently, holomorphic functions defined on
some neighborhood of 0 ∈ Cn (cf. §5.1).

Proposition 7.1.1. [W. Osgood, 1900] Let f be a function on
an open neighborhood of 0 ∈ Cn which is holomorphic in each zi as the
other {zj}j 6=i are held fixed; that is, ∂f

∂zi
= 0 (∀i). Then f is in fact a

holomorphic function (and so gives an element of On).
87
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Proof. We will only give the proof for n = 2. Since f is holomor-
phic in z2, we have

f(z1, z2) =
1

2π
√
−1

˛
f(z1, ζ2)

ζ2 − z1

dζ2;

using the holomorphicity in z1, this

=
1

(2π
√
−1)2

˛ ˛
f(ζ1, ζ2)

(ζ1 − z1)(ζ2 − z2)
dζ1dζ2

=
1

(2π
√
−1)2

˛ ˛
f(ζ1, ζ2)dζ1dζ2

ζ1ζ2

(
1− z1

ζ1

)(
1− z2

ζ2

) .
Now using the power-series expansion

1

1− zi
ζi

=
∑
k≥0

(
zi
ζi

)k
,

whose uniform convergence allows us to swap integration and summa-
tion, we find

f(z1, z2) =
∑

k1,k2≥0

(
1

(2π
√
−1)2

˛ ˛
f(ζ1, ζ2)dζ1dζ2

ζk1+1
1 ζk2+1

2

)
zk1

1 z
k2
2 .

�

In order to put a complex manifold structure on a smooth variety,
we will need a way to parametrize zero-loci of holomorphic functions.
This is given by the holomorphic implicit function theorem which here
I will just state and prove in the two variable case.

Proposition 7.1.2. Let f ∈ O2 with f(0, 0) = 0, ∂f
∂z1

(0, 0) 6= 0.
Then there exists w ∈ O1 such that in a neighborhood of (0, 0) in C2,

f(z1, z2) = 0 ⇐⇒ z1 = w(z2).

The upshot of this is that z2 gives a local holomorphic coordinate
on {f(z1, z2) = 0}.

Proof. We will assume the C∞ implicit function theorem, and
just check that the w it yields is holomorphic:

0 =
∂

∂z2

f(w(z2), z2)

=
∂f

∂z2

(w(z2), z2) +
∂f

∂z1

(w(z2), z2) · ∂w
∂z2

+
∂f

∂z1

(w(z2), z2) · ∂w
∂z2

.



7.2. SMOOTH NORMALIZATION 89

Now since f ∈ O2, ∂f
∂z1

= ∂f
∂z2

= 0; moreover, by assumption ∂f
∂z1
6= 0

locally. So we find that ∂w
∂z2

= 0, so that w ∈ O1. �

Here is a visual explanation of why the nonvanishing condition on
∂f/∂z1 matters:

f f
z

1z1

(0)=0 (0)=0
z

z

z

z

1

2

1

2

In the left-hand picture, you can write z1 as a function of z2 (as desired);
on the right-hand side, you cannot.

7.2. Smooth normalization

The more general statement which implies Theorem 7.0.3 is:

Theorem 7.2.1. Given
• a closed connected subset Y of a compact complex n-manifold X;
• a system of open neighborhoods {Wα ⊂ X} covering Y (with local

holomorphic coordinates zα = (zα1, . . . , zαn));
• holomorphic functions fα1, . . . , fα` ∈ O(Wα) (for each α) such

that1 Y ∩Wα = V ({fαj}j=1,...,`) ∩Wα; and (also for each α)

• rank

{∂fαj/∂zαk} j = 1, . . . , `

k = 1, . . . , n

 = ` [the “Jacobian condition”].

Then Y is an (n− `)-dimensional compact complex (n− `)-manifold.

We say that Y is a codimension-` complex submanifold of X. In
fact, Theorem 7.2.1 immediately gives:

Corollary 7.2.2. Any smooth irreducible projective algebraic va-
riety Y ⊂ Pn of dimension d is a compact complex d-manifold.

1this condition makes Y into an “analytic subvariety” ofX; here V (f1, . . . , f`) means
the vanishing locus f1 = · · · = f` = 0, just as in the algebraic setting.
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Proof. Put X = Pn and ` = n−d. That Y is smooth of dimension
d (Defn. 6.3.5) implies the Jacobian condition required in Thm. 7.2.1.

�

Now we prove the Theorem.

Proof. Refining the covering if necessary, we can arrange to have

(7.2.1) det

({
∂fαj
∂zαk

}
1≤j,k≤`

)
6= 0.

Write “zαI” for (zα1, . . . , zα`) and “zαII” for (zα,`+1, . . . , zαn). (So zα =(
zαI , zαII

)
A schematic picture:

Y

z

zβΙΙ

βΙ

z

z

αΙ

αΙΙ

W

W
β

α

By the condition (7.2.1), and the general holomorphic implicit function
theorem, we have holomorphic functions {wα} (mapping from open
subsets of Cn−` to C`) such that

Y ∩Wα =
{
zαI = wα

(
zαII

)}
for each α. Hence, the

{
zαII

}
give local coordinates on the {Y ∩Wα},

which constitute an open cover of Y .
Consider the transition functions for X

Φαβ : zβ(Wαβ)
'→ zα(Wαβ)(

zβ
I
, zβ

II

)
7→
(
φI

(
zβ

I
, zβ

II

)
, φII

(
zβ

I
, zβ

II

))
=:
(
zαI , zαII

)
corresponding to change of coordinates on Wαβ. Clearly the functions
describing change of coordinates on Y ∩Wαβ are then

ΦY
αβ : zβ

II
7→ φII

(
wβ

(
zβ

II

)
, zβ

II

)
=: zαII .

This is 1-to-1 because Φαβ is, and holomorphic because φII and wβ are.
So we have the data of an analytic atlas on Y . �
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7.3. Nondegenerate morphisms

The statement related to Theorem 7.0.4 which we shall prove is:

Proposition 7.3.1. Given a Riemann surface M , the following
data are equivalent:

(a) n+ 1 linearly independent meromorphic functions fi ∈ K(M);
(b) a nondegenerate holomorphic map (morphism of complex man-

ifolds) σ : M → Pn.

We will need the notion of a meromorphic function on a complex
manifold of any dimension.

Definition 7.3.2. A meromorphic function F ∈ K(X) (on a com-
plex manifold X) is a collection {(Uα, gα, hα)} such that
• {Uα} is an open cover of X;
• gα, hα ∈ O(Uα) (they are holomorphic functions); and
• gαhβ = gβhα on Uαβ.

We write “F = gα
hα
” on Uα.2

Remark 7.3.3. For dim(X) = 1, this coincides with the earlier
Definition 3.1.1 (via g/h); by Prop. 3.1.8 meromorphic functions on
Riemann surfaces yield morphisms X → P1. But this does not gen-
eralize: if dim(X) > 1, a meromorphic function on X need not even
yield a well-defined mapping X → P1.

Example 7.3.4. Consider X = C2 with complex coordinates x, y.
Then F := x/y (one Uα = X; g = x, h = y) defines a meromorphic
function, which is not well-defined (as a mapping to P1) at (0, 0).

??? x

y

1
2

=2

=1

=

C
2

2the third condition says that gα
hα

=
gβ
hβ

on overlaps — at least, where the quotients
are defined! (see Remark 7.3.3)
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The notion of “blowing up” in algebraic geometry is motivated (in
part) by the desire to remove such indeterminacies. In the last example,
the idea would be to replace the origin in X = C2 by the P1of lines
through the origin, yielding a new space X̃ (mapping down onto X) on
which the meromorphic function becomes well-defined as a morphism.

Example 7.3.5. The meromorphic functions on Pn and its smooth
subvarieties (viewed as complex manifolds) are the rational functions
F = P (Z)

Q(Z)
for P,Q ∈ Sdn+1. For instance, the affine coordinates zi = Zi

Z0

are meromorphic functions (and more generally, zji = Zi
Zj

is one).
Here is how to see at least that “rational functions are meromor-

phic” in the sense of Definition 7.3.2. (That meromorphic functions are
rational is more nontrivial.) In Uj = {Zj 6= 0}, set

gj(zj) := P (zj0, . . . , 1
jth

entry

, . . . , zjn) = P (Z/Zj) =
1

Zd
j

P (Z)

hj(Zj) := Q(zj0, . . . , 1
jth

entry

, . . . , zjn) =
1

Zd
j

Q(Z);

then
gjhi =

1

Zd
j

1

Zd
i

P (Z)Q(Z) = gihj.

Example 7.3.6. Consider a holomorphic map f : C → X from a
Riemann surface to a complex manifold, and let F ∈ K(X) be given
by {(gα, hα, Uα)}. Assume that f(C)|Uα ∩ {hα = 0} is a finite point
set, and put Wα := f−1(Uα), Gα := gα ◦ f , Hα := hα ◦ f . Then
f ∗F := {(Gα, Hα,Wα)} (or rather, G/H) belongs to K(C).

The last two examples will be used in the proof of Prop. 7.3.1,
which we now give:

Proof. The first issue is how we get from n + 1 meromorphic
functions to a morphism to Pn. The set of points in M which cause a
problem is

∆ := {q ∈M | fi(q) = 0 for all i} ∪ {q ∈M | fi(q) =∞ for some i}

Define
f : (M\∆)→ Pn
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by
p 7−→ [f0(p) : · · · : fn(p)].

Near q ∈ ∆ let z be a local holomorphic coordinate with z(q) = 0, then
write fi(z) = zνq(fi)hi(z) (where hi are local holomorphic functions not
vanishing at q), and put ν := mini∈{0,...,n}{νq(fi)}. For z 6= 0,

f(z) =
[
z−νf0(z) : · · · : z−νfn(z)

]
;

none of the entries in this blows up locally, and at least one does not
vanish at z = 0 (i.e. at q). Hence, f extends to all of M , and it is
evident that this extension is still holomorphic as a map to P1.

Next, given a morphism f : M → Pn, we want to product an
(n + 1)-tuple of meromorphic functions. Referring to Examples 7.3.5
(for zi) and 7.3.6 (for f ∗), simply take fi := f ∗zi and you’re done.

Finally, to see that f is degenerate iff the {fi} are linearly depen-
dent, consider the correspondence between nonzero vectors v ∈ Cn+1

(up to scale) and hyperplanes in Pn, by taking Pn−1
v to be the projecti-

fication of (Cn+1)⊥v. Degeneracy of f occurs iff f(M) ⊂ Pn−1
v for some

v, which is to say (f0(p), . . . , fn(p)) ⊥ v for all p ∈ M . But this just
reads

∑
vifi(p) = 0 (∀p), which is a nontrivial linear relation. �

We give two examples of nondegenerate projective embeddings of
Riemann surfaces (the first is actually a series of examples). For these
cases we actually give algebraic equations for the image.

Example 7.3.7. The so-called rational canonical curves are the
images of the nondegenerate morphisms

f : P1 ↪→ Pn

given, for each n ∈ N, by

[Z0 : Z1] 7→ [Zn
0 : Zn−1

0 Z1 : · · · : Zn
1 ].

(In affine terms, one can think of this as z 7→ [1 : z : . . . : zn], with
∞ 7→ [0 : · · · : 0 : 1].)

Let’s see what this looks like for the first few values of n:
• for n = 1, f sends [Z0 : Z1] 7→ [Z0 : Z1] and so is just the identity

map.
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• for n = 2, we have [Z0 : Z1] 7→ [Z2
0 : Z0Z1 : Z2

1 ]. If we write
[Y0 : Y1 : Y2] for the homogeneous coordinates on P2, then the image is
the conic {Y 2

1 − Y0Y2 = 0} ⊂ P2.
• for n = 3, [Z0 : Z1] 7→ [Z3

0 : Z2
0Z1 : Z0Z

2
1 : Z3

1 ](= [Y0 : Y1 : Y2 : Y3])

has image

V := V (Y0Y3 − Y1Y2, Y
2

1 − Y0Y2, Y
2

2 − Y1Y3) ⊂ P3.

By exercise 4 from Chapter 6 you know that V is smooth.

Example 7.3.8. Let M = C/Λ (Λ ⊂ C a lattice) be a complex
1-torus. We want to demonstrate that there is a (nondegenerate) mor-
phism from M to P2 with a cubic curve as image. Note that this will
present M as the normalization of such a cubic curve:

M

C

Some of the steps will be exercises.
First, there exists a unique meromorphic function ℘ ∈ K(C) satis-

fying
• ℘(u+ λ) = ℘(u) for every λ ∈ Λ and u ∈ C
• ℘(u) = u−2 + h(u), where h ∈ K(C) is holomorphic in a neigh-

borhood of 0, has all its poles in Λ\{0}, and h(0) = 0.

Existence is an exercise. Uniqueness is easy: if Q were another such
function, ℘ − Q = (℘ − u−2) − (Q − u−2) has no pole at 0 and is Λ-
periodic, hence has no poles in Λ either. But the only possible zeroes
were in Λ, and so ℘ − Q is entire. By compactness of a fundamental
region for Λ, any Λ-periodic entire function is bounded hence (by Li-
ouville) constant. Since ℘ − Q is zero at 0, this constant is zero and
℘ = Q.
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In the exercises below, you will also show that ℘ is an even function
(℘(u) = ℘(−u)) and (℘′)2 = 4℘3 + a℘ + b for some a, b ∈ C. In each
case, you get equality by showing the right-hand side minus the left-
hand side has no poles and is zero at some point (as in the uniqueness
argument just described). The upshot is that

f : C/Λ→ P2

defined by
u 7→ [1 : ℘(u) : ℘′(u)] for u 6= 0̄

and
0̄ 7→ [0 : 0 : 1]

parametrizes (or normalizes) C = {Z0Z
2
2 = 4Z3

1 + aZ1Z
2
0 + bZ3

0}, a
smooth cubic with the affine equation

y2 = 4x3 + ax+ b.

What we have said so far only gives that f(M) ⊆ C, but viewing
the smooth curve C as a complex manifold, and f as a morphism
M → C, the open mapping theorem from complex analysis says the
image is open; while on the other hand the image of a compact set by
a continuous map is compact (hence closed in C). So f(M) is open
and closed in C, and thus f(M) = C.

Exercises
(1) Show that the rational canonical map f : P1 → Pn has the following

property: the image of any collection of k (≤ n+ 1) distinct points
{w1, . . . , wk} ⊂ P1 is in general position (spans a Pk−1 in Pn). [Hint:
Vandermonde determinant.] Then, taking k = 2, explain why this
shows f is injective.

(2) Turning to the case n = 3 in Example 7.3.7, (a) actually prove that
V = Image(f) and (b) that you cannot throw out any of the three
equations defining V .

(3) Show that the map P2 → P5 given by [Z0 : Z1 : Z2] 7→ [(Z0)2 :

Z0Z1 : Z0Z2 : (Z1)2 : Z1Z2 : (Z2)2] is (a) well-defined and (b)
holomorphic (i.e. a “morphism of complex manifolds”), then (c)
write (polynomial) equations expressing the image as an algebraic
variety. (For (c) you can just write the equations and not prove it.)
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(4) Let λ1, λ2 ∈ C be two complex numbers which are R-linearly inde-
pendent, and let

Λ = Zλ1 + Zλ2 = {n1λ1 + n2λ2| n1, n2 ∈ Z}

be the lattice in C that they generate.
(a) Show that the series

℘(u) =
1

u2
+

∑
λ ∈ Λ

λ 6= 0

(
1

(u− λ)2
− 1

λ2

)

is absolutely and uniformly convergent on any compact subset of
the complex u-plane which does not contain any of the points of Λ.

[Hint: any compact subset is contained inside one of the following
form: |u| ≤ K ∩ |u − λ| ≥ ε (∀λ). Break the sum into terms
with |λ| ≤ 2K, and |λ| > 2K, and use (essentially) the Weierstrass
M-test.]
(b) Verify the pole condition in Example 7.3.8: that all poles are
on Λ, and in a neighborhood U of 0, ℘(u) = u−2 + h(u) with h

holomorphic and h(0) = 0. [Hint: what do you know about an
absolutely and uniformly convergent series of analytic functions?]
(c) Show that ℘ is a doubly-periodic function; that is, show that

℘(u+ λ) = ℘(u) for every u ∈ C and every λ ∈ Λ.

[Hint: From (a), you can calculate the derivative ℘′(u) by dif-
ferentiating each term of the series defining ℘(u). First prove
℘′(u+ λ) = ℘′(u), then integrate.]

(5) Now forget the explicit formula for ℘(u) just given, and retain just
these facts: that ℘ ∈ K(C) is Λ-periodic with all poles ∈ Λ, and
locally of the form ℘(u) = u−2 + h(u) with h holomorphic (on
some U ⊂ C containing a fundamental domain) and h(0) = 0.
Prove that (a) ℘(u) = ℘(−u) [ =⇒ h even =⇒ h′ odd] and (b)
(℘′(u))2 = 4(℘(u))3 + a℘(u) + b for some a, b ∈ C. [See hint given
in the Example.]



CHAPTER 8

The connectedness of algebraic curves

The main theorem of this chapter will be that the smooth part1

C\sing(C) of an irreducible algebraic curve C ⊂ P2 is path-connected
(and then, of course, so is C). For example, in Exercise 5 of Chapter
3, you showed that the complement of the ODP p̂ = [1 : 0 : 0] in the
singular cubic curve {Y 2Z − X2Z + X3 = 0}, viewed as a complex
1-manifold, is isomorphic to C∗ — which is certainly connected.

Just so that there is no confusion, we should say what the situation
is for reducible curves right away and why the result does not generalize.
For plane projective algebraic curves with more than one irreducible
component, say C = ∪Ci, the components Ci must intersect (this will
be one consequence of Bezout’s theorem later), making C connected.
But the complement of the singularities in C will not be connected, as
these will include all of the intersection points.

We begin by introducing a new, somewhat technically involved, tool
for dealing with singularities, intersections, and projections of curves.

8.1. Resultants and discriminants

Let D be a unique factorization domain (UFD), where we recall
that this is a commutative domain in which each element has a unique
factorization into irreducibles, up to reordering and multiplication by
units. In a UFD, amongst other things, the notion of a greatest com-
mon divisor2 has meaning. By the Gauss lemma, D[y] is also a UFD.
In practice we will always take D to be C or C[x]. (Note that C[x] is a
PID, but C[x, y] is not.)

Consider f(y) = a0y
m + a1y

m−1 + · · ·+ am, g(y) = b0y
n + b1y

n−1 +

· · ·+ bn elements of D[y] with a0, b0 6= 0.

1we will show that the set sing(C) of singular points is always finite
2recall that these are well-defined up to units (invertible elements); for example in
C[x] or C[x, y] the units are C∗, hence the notion of “monic gcd” (which is completely
well-defined).

97
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Definition 8.1.1. The resultant3 of f and g, written R(f, g), is
the element of D given by the determinant of the (n + m) × (n + m)

Sylvester matrix 4

M(f,g) :=



a0 a1 · · · · · · am 0 · · · 0

0 a0 a1 · · · · · · am
. . . ...

... . . . . . . . . . 0

0 · · · 0 a0 · · · · · · am−1 am

b0 b1 · · · · · · bn 0 · · · 0

0 b0 b1 · · · · · · bn
. . . ...

... . . . . . . . . . 0

0 · · · 0 b0 · · · · · · bn−1 bn


.

Now writing K for the field of fractions of D, we have the

Proposition 8.1.2. R(f, g) = 0 ⇐⇒ gcdK[y](f, g) 6= 1.5

Proof. The gcd (say, h) is nontrivial if and only if

(8.1.1) Fg = Gf

for some F = A0y
m−1 + · · · + Am−1 and G = B0y

n−1 + · · · + Bn−1 in
D[y]. Indeed, if h 6= 1 then put F = f/h and G = g/h. Conversely,
since degF < deg f and degG < deg g, and both sides of (8.1.1) factor
into the same irreducibles, f and g have a common factor of degree
> 0.

In turn, (8.1.1) is equivalent to

(8.1.2)

a0B0 = b0A0

a1B0 + a0B1 = b1A0 + b0A1

...
amBn−1 = bnAm−1

being satisfied for some {Ai}m−1
i=0 , {Bj}n−1

j=0 ⊂ D. To get from (8.1.1) to
(8.1.2), just take coefficients of ym+n−1, ym+n−2, . . . , 1.

3also called “eliminant”, since y is eliminated
4the line in the matrix is just an organizational device — it has no meaning
5two further equivalent conditions: (i) degy(gcdD[y](f, g)) > 0; and, noting that
K[y] is a PID, so that the ideal (f, g)K[y] = (gcdK[y](f, g)), (ii) (f, g)K[y] 6= (1)K[y].
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Now notice that (8.1.2) can be rephrased in matrix multiplication
terms: there exist {Ai}, {Bj} such that

tM(f,g).



B0

...
Bn−1

−A0

...
−Am−1


= 0.

In other words, we have shown h 6= 1 is the same as ker(tM(f,g)) 6= {0},
i.e. det(M(f,g)) = 0. �

Definition 8.1.3. D(f) := R(f, f ′) is the discriminant of f . Here
f ′ denotes the formal derivative ∂f

∂y
.

Example 8.1.4. If f ∈ C[y], then D(f) ∈ C is a number, and the
criterion

(8.1.3) D(f) vanishes ⇐⇒ f has a multiple root

follows immediately from Prop. 8.1.2. For the affine curve

z2 = 4y3 + ay + b

to be singular, we need two of the roots of the right-hand side to coin-
cide. That is, by (8.1.3), we need

0 = R(4y3 + ay + b, 12y2 + a) =

∣∣∣∣∣∣∣∣∣∣∣∣

4 0 a b

4 0 a b

12 0 a

12 0 a

12 0 a

∣∣∣∣∣∣∣∣∣∣∣∣
which after a bit of row-reduction

=

∣∣∣∣∣∣∣∣∣∣∣∣

4 0 a b 0

0 4 0 a b

0 0 −2a −3b 0

0 0 0 −2a −3b

0 0 12 0 a

∣∣∣∣∣∣∣∣∣∣∣∣
= 16(4a3 + 12 · 9b2)

= 64(a3 + 27b2).
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This recovers the result from Exercise 2 of Chapter 6.

Example 8.1.5. If f ∈ C[x, y], then D(f) ∈ C[x] is a polynomial
and from Prop. 8.1.2 we have:

(8.1.4) D(f) vanishes at x0 ⇐⇒ f(x0, y) has a multiple root in y.

The collection of x0’s where this happens, that is, the set of roots of
D(f), is called the discriminant locus for the projection of the affine
curve {f(x, y) = 0} onto the x-line:

x

y

f=0

discriminant locus

Proposition 8.1.6. An irreducible (reduced) algebraic curve {F =

0} ⊂ P2 has (if any) finitely many singularities.

Proof. The affine polynomial f(x, y) = F (1, x, y) has multiple
roots in y for x in the discriminant locus ∆ = {(D(f))(x) = 0} ⊆ C.
We may assume f has positive degree in y, since otherwise V (f) is just
a vertical line.

Since f is irreducible in C[x, y] of positive degree in y, the identi-
cal vanishing of D(f) would imply that V (f), hence V̄ (F ), was non-
reduced. So D(f) is a nontrivial polynomial, and ∆ is finite:

(8.1.5) #{x ∈ C | ∃y such that f(x, y) = fy(x, y) = 0} <∞

It is easy to argue directly6 that were V (f) to contain a vertical line{x =

α}, then (x − α) would divide f (contradicting irreducibility). So by

6or you can wait for Study’s lemma in the next Chapter
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(8.1.5) and Prop. 2.1.8, in fact

#{p ∈ C2 | f(p) = fy(p) = 0} <∞.

The set in brackets includes all singularities of V (f). The only possible
additional singularities of V̄ (F ) are the (finitely many) points where it
meets the line at ∞. �

8.2. Monodromy and connectedness

Let Ω ⊆ C be a region, that is, an open connected subset. Let
∆ ⊂ Ω be a small disk about a point p ∈ Ω on which one is given a
holomorphic function, f ∈ O(∆). We are interested in the question of
when f extends to a holomorphic function on all of Ω. To see why this
doesn’t always happen, take Ω = C and ∆ a small disk about z = 1:
then f = 1

z
only extends to a holomorphic function on C∗. Even worse,

f = log(z) becomes “multivalued” on C∗ and so (as a holomorphic
function) only extends to C\R≤0.

To give a condition which will ensure the existence of a well-defined
holomorphic extension, we need the concept of analytic continuation.
Define a path γ ⊂ Ω from p to q to be the image of a continuous
function P : [0, 1] → Ω with P(0) = p and P(1) = q. (Here we are
allowed to pick q = p.) An analytic continuation of f along γ

C

C

p

p

analytic continuation of f

γ

∆

∆

γ
i

q
∆i

,f

,f
i

q

consists of
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• a partition of γ into segments {γi}Ni=0,
• a covering of γ by disks ∆i ⊃ γi (with ∆0 = ∆), and
• functions fi ∈ O(∆i) (with f0 = f) satisfying fi ≡ fi+1 on

∆i ∩∆i+1.

If we continue f along two different paths from p to q and compare the
“results”, i.e. the last function fN ∈ O(∆N) (in the neighborhood of q)
in each case, these need not agree. In the above example of f = log(z)

on a disk about p = {z = 1}, we can analytically continue f along
any path in C∗. However, if we take q = p so that the path is closed,
then we do not have fN(p) = f(0)(p): they differ by 2π

√
−1 times the

winding number of the path about z = 0, hence the “multivaluedness”
referred to above. This problem only occurs, however, for non-simply-
connected regions:

Proposition 8.2.1. [Riemann Monodromy Principle] Given
a region Ω ⊆ C which is simply connected, i.e. π1(Ω) = {0}. Let
∆ ⊂ Ω be a small disk, and assume that f ∈ O(∆) can be analytically
continued along any path γ ⊂ Ω starting at p ∈ ∆. Then there exists
f̃ ∈ O(Ω) extending f .

We will frequently use this together with the

Proposition 8.2.2. [Heredity principle] Given F (x, y) ∈ O(C2),
f ∈ O(∆) with

(8.2.1) F (x, f(x)) = 0.

Then the analytic continuation of f along any path γ must satisfy
(8.2.1).

Proof. Since F and each fi in the analytic continuation are holo-
morphic, so is each F (x, fi(x)) (on ∆i). But F (x, f(x)) ≡ 0 on ∆ =

∆0 by assumption, and since f = f0 ≡ f1 on ∆0 ∩ ∆1, we have
F (x, f1(x)) ≡ 0 on ∆0 ∩ ∆1 and therefore (by basic complex analy-
sis) on all of ∆1. Simply iterate this argument for i = 1, . . . , N . �

Now given an affine algebraic curve C = {f0(x0, y) = 0} with f0 of
degree n, it is convenient to write C as the vanishing locus of a monic
polynomial in y over C[x]:

(8.2.2) f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x) = 0.
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This is acheived by performing a change of variable x0 = x + λy and
writing f(x, y) := f0(x0, y) = f0(x + λy, y), which has coefficient of
yn depending polynomially on λ; choose λ so that this coefficient is 1.
(The main point is that in f0(x0, y), the yn term may be zero, and we
want to remedy that.)

Having put the equation of C in this form, we write

π : C −→ C
(x, y) 7−→ x

for the projection of the curve to the x-axis. Writing D := {D(f)(x) =

0} for the discriminant locus of this projection, by (8.1.4) we have that
for x ∈ C\D, the fibre π−1(x) consists of n distinct points. For some
fixed disk ∆ ⊂ C\D, label these points {y1(x), . . . , yn(x)}. Notice that
R(f, ∂f

∂y
) = D(f)(x) 6= 0 implies that ∂f

∂y
6= 0 on {f = 0} ∩ π−1(∆), so

that the holomorphic IFT (Prop. 7.1.2) gives yi(x) ∈ O(∆). The point
here is that the “roots” of (8.2.2) in y are algebraic — hence multivalued
— functions of x, but we can take well-defined holomorphic branches
of them over ∆. As we shall see, the multivaluedness will intertwine
them outside ∆.

Label the points of D = {p1, . . . , pK}, and let Γ be the path in
P1 consisting of segments connecting ∞ to p1, p1 to p2, and so on up
to pK . Then the region Ω := (P1\Γ) ⊂ C is simply connected. By
Propositions 8.2.1-2, the {yi(x)} extend to functions in O(Ω) which
still satisfy

(8.2.3) f(x, yi(x)) = 0.

to "i   "8 C

Γ

= points of D Ω=     ΓP \
1

Analytically continued through Γ in C\D, the yi continue to satisfy
(8.2.3) by the heredity principle, but may swap.
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Example 8.2.3. f(x, y) = y3 − x, D = {0}, Γ = R≤0. Passing
through Γ cyclically permutes y1(x) = 3

√
x, y2(x) = e

2π
√
−1

3 3
√
x, y3(x) =

e
4π
√
−1

3 3
√
x.

This swapping (or permutation)7 of the yi(x) gives rise to an equiv-
alence relation “∼”: yi(x) ∼ yj(x) if one may be analytically continued
into the other in C\D. An equivalence class is just all the {yλ} which
are equivalent to a given yi in this sense.

Proposition 8.2.4. For any equivalence class E of ∼, formed (re-
ordering if necessary) by y1(x), . . . , ym(x),

(8.2.4)
m∏
λ=1

(y − yλ(x))

belongs to C[x, y].

Put differently: while the {yλ(x)}mλ=1 are multivalued algebraic
functions on C\D, the elementary symmetric polynomials in them are
not multivalued; in fact, they are polynomials!8

Corollary 8.2.5. C irreducible =⇒ C\π−1(D) is connected ( =⇒
C connected).

Proof. [assuming Prop. 8.2.4] If f ∈ C[x, y] doesn’t factor, then
by the Proposition there can be only one equivalence class: E =

{1, . . . , n}. So the complete set of “branches” {yi(x)} is acted on tran-
sitively by monodromy about D, and one can therefore draw a path on
C\π−1(D) connecting any two points. �

We now prove Proposition 8.2.4, using some theorems from complex
analysis. In particular, recall that Rouché’s theorem asserts that for
two holomorphic functions f, g ∈ O(R) on a simply connected region9

satisfying |f | > |g| on a path γ ⊂ Ω, f+g and f have the same number
of zeroes (counted with multiplicity) inside γ.

7the transformations of an algebraic structure arising from its transport around
loops (in this case, loops in C about points of D) are what is meant by the word
monodromy in general. So the Riemann monodromy principle is really a statement
about the absence of monodromy.
8we use λ to index E (i.e. 1, . . . ,m) and i to index {1, . . . , n}
9the main point is that R should contain the “interior” of γ
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Proof. The product (8.2.4) is clearly well-defined on C\D, since
monodromy about D simply swaps its factors; hence it is in O(C\D).
Write

(8.2.5)
∏m

λ=1
(y − yλ(x)) =

m∑
j=0

em−j(y1(x), . . . ym(x))yj

where em−j(y1(x), . . . , ym(x)) =: em−j(x) denotes the elementary sym-
metric polynomials in the {yλ}. Again, because these are not changed
under monodromy, we have em−j(x) ∈ O(C\D). Observe that given
α ∈ D with neighborhood Nα (a small disk about α), the polynomials
aj(x) from (8.2.2) satisfy

x ∈ Nα =⇒ |aj(x)| ≤M (∀j)

for some M ∈ N. Fixing x0 ∈ Nα, put aj = aj(x0) and

F(y) = yn , G(y) = yn + a1y
n−1 + · · ·+ an,

so that the {yi(x0)} are the roots of G. On γ = {|y| = M + 1} ⊂ C,
we have

|F−G| = |a1y
n−1 + · · ·+ an| ≤M ((M + 1)n + · · ·+ 1)

= (M + 1)n − 1 < (M + 1)n = |F|.

By Rouché, F and G have the same number of zeroes inside γ; since
F = yn has n zeroes (at y = 0!), we find that

|yj(x0)| < M + 1 for all j = 1, . . . , n and x0 ∈ Nα.

Consequently the ek(x) ∈ O(C\D) are bounded on Nα ∩ (C\D) =

Nα\{α}, and so by the Riemann removable singularity theorem extend
across {α}. Doing this for each α ∈ D, we conclude that ek(x) ∈ O(C).

So the coefficients of the yj’s in (8.2.5) are entire functions of x. To
prove that they are polynomials in x, we shall have to consider their
behavior about x = ∞. If we work in the local coordinates x̃ = 1

x
,

ỹ = y
x
about [0 : 1 : 0] in P2, then the polynomial (8.2.2) defining C

becomes10

x̃nf

(
1

x̃
,
ỹ

x̃

)
= ỹn +

(
x̃a1

(
1

x̃

))
ỹn−1 + · · ·+ x̃nan

(
1

x̃

)
,

10here we are essentially taking the projective completion of C and restricting that
to U1 ⊂ P2.
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with roots

(8.2.6) ỹi(x̃) = x̃yi

(
1

x̃

)
.

Let N∞ be a small neighborhood of x̃ = 0 and N ∗∞ := N∞\{x̃ = 0}. By
(8.2.6), the monodromy of the {ỹi}ni=1 about x̃ = 0 stabilizes the sub-
set {ỹλ}mλ=1, so that the ek(ỹ1(x̃), . . . , ỹm(x̃)) = x̃kek(

1
x̃
) are well-defined

holomorphic functions on N ∗∞. Since deg(aj(x)) ≤ j, the x̃jaj( 1
x̃
) are

polynomials in x̃ hence bounded on N∞. Using Rouché as above, the
ek({ỹλ(x̃)}mλ=1) are also bounded on N ∗∞, and thus extend to holomor-
phic functions on N∞.

In other words, ek(x) = ek(
1
x̃
) has a pole at x =∞ of order at most

k. Since ek(x) was also holomorphic on C, we have ek ∈ K(P1). Now
K(P1) ∼= C(P1) and so ek(x) = P (x)

Q(x)
where P,Q are polynomials; since

its only pole is at ∞, Q is a constant. Therefore each ek ∈ C[x], and
with (8.2.5) we see that (8.2.4) is a polynomial in C[x, y]. �

Exercises
(1) Are the real points11 of a smooth algebraic curve ⊂ P2 necessarily

connected?
(2) For what values of a, b does x4 + ax+ b have a multiple root?

11i.e. points on the curve which can be written [X0 : X1 : X2], with all Xi ∈ R



CHAPTER 9

Hilbert’s nullstellensatz

In something of an algebraic detour, we will now prove Theorem
5.3.1 for affine hypersurfaces. In the general case, we shall also state
(but not prove) a more precise theorem which lays out the correspon-
dence between affine algebraic varieties and ideals in commutative
rings. (This is part of the foundation for scheme theory, which you
can explore further in the books by R. Hartshorne and E. Kunz.)

9.1. Resultants (bis)

We will need some more results on resultants. As in §8.1 let D be a
UFD with fraction field K; and for f = a0Y

n + a1Y
n−1 + · · ·+ an and

g = b0Y
m + b1Y

m−1 + · · ·+ bm polynomials in D[Y ], define R(f, g) :=

detM(f,g). (In case D is itself a polynomial ring, we will sometimes write
RY (f, g) to make it clear that Y is the variable being eliminated.)

Proposition 9.1.1. R(f, g) = Gf+Fg for some F,G ∈ D[Y ] with
degG < deg g, degF < deg f .

Proof. If R(f, g) = 0, then we are done by (8.1.1). Otherwise,
write
(9.1.1)
Y m−1f = a0Y

n+m−1 +a1Y
n+m−2 + · · · +anY

m−1

Y m−2f = a0Y
n+m−2 + · · · · · · +anY

m−2

...
f = a0Y

n + · · · · · · +an

Y n−1g = b0Y
n+m−1 +b1Y

n+m−2 + · · · +bmY
n−1

Y n−2g = b0Y
n+m−2 + · · · · · · +bmY

n−2

...
g = b0Y

m + · · · · · · +bm.

Working in K[Y ], divide by a0 in the first m equations, then use “el-
ementary row operations” to kill the first m columns (to the right of

107
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“=”) apart from the Y j’s along the diagonal. Then, divide out the
equations by the leading coefficients to the right of “=”, normalizing
those leading coefficients to 1. That is, we have essentially carried out
row-reduction on M(f,g) in the context of the linear system, under the
assumption that its determinant is nonzero.

The new system takes the form

(9.1.2)

?? = Y n+m−1

?? = Y n+m−2

... . . .
?? = 1

where each “??” is a K-linear combination of the entries to the left of
“=” in (9.1.1). In particular, the last row of (9.1.2) is

G0f + F0g = 1

where G0, F0 ∈ K[Y ] satisfy degG0 ≤ m − 1, degF0 ≤ n − 1. Now
multiply by the product of all the elements of D we divided the equa-
tions by, clearing denominators of G0, F0 to give elements G,F of D[Y ].
But this product is in fact one definition of the determinant of M(f,g),
namely R(f,g). The result follows. �

We should mention the formula for the resultant of two polynomials
whose irreducible factors are all linear (or constant) in y, although we
will probably neither use nor prove it:

Proposition 9.1.2. If f and g decompose into linear factors f =

a0

∏
i(Y − xi), g = b0

∏
j(Y − yj) (for xi, yj ∈ D), then R(f, g) =

am0 b
n
0

∏
i,j(xi − yj).

9.2. Study’s lemma

We continue to assume that D is a UFD with f ∈ D[Y ] of degree
n. Given δ ∈ D, we have the ring homomorphism given by “evaluation
at δ”:

D[Y ]
θδ−→ D

G(Y ) 7−→ G(δ)
.

Proposition 9.2.1. (i) If f(δ)(= θδ(f)) = 0, i.e. δ is a root of f ,
then (Y − δ) | f(Y ).

(ii) f has at most n roots in D.
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Proof. (i) By the division algorithm,

(9.2.1) f = q.(Y − δ) + r

where deg r < deg(Y − δ) = 1, i.e. r ∈ D. Applying θδ to (9.2.1), we
have

0 = f(δ) = q(δ).0 + r

and thus r = 0, so that (Y − r) divides f .
(ii) Follows from (i) (and the fact that D[Y ] is a UFD) since f can

have at most n = deg(f) linear factors. �

Now we will specialize to the case D = C[X]; more generally, the
results of this section will hold with any algebraically closed field re-
placing C and (X1, . . . , Xn−1) replacing X.

Let F ∈ D[Y ] = C[X, Y ] = S2.

Proposition 9.2.2. If V (F ) = C2, i.e. F vanishes on all of C2,
then F = 0 as an element of S2.

Proof. Suppose F 6= 0. By Prop. 9.2.1(ii), viewed as an element
of D[Y ], F has a finite number of roots in C[X]. Some of these may
be constants in C. Since C is an infinite field, there exists β ∈ C such
that β is not one of these roots, and then F (X, β)(= θβ(F )) 6= 0 in
C[X]. Again by Prop. 9.2.1(ii), F (X, β) itself has finitely many roots,
so there exists α ∈ C such that F (α, β) 6= 0. Hence, F is not identically
zero on C2. �

Proposition 9.2.3. [Study’s Lemma] Given f, g ∈ S2, with f

irreducible and V (f) ⊆ V (g). Then f divides g.

Remark 9.2.4. Suppose we drop the requirement that f be irre-
ducible, so that f =

∏
fmii (fi irreducible in S2). Then V (fi) ⊂ V (f)

for each i, and by the Proposition fi|g for each i. This implies that
f |g

∑
mi , i.e. f divides a power of g.

Proof. Since f |0 is trivial, we take g 6= 0. By Prop. 9.2.2, we have
V (g) 6= C2, which implies V (f) 6= C2 hence f 6= 0. We may assume
that f /∈ C (since a constant divides anything), and furthermore that
degY (f) 6= 0 (otherwise just swap X and Y ). Writing

f = a0(X)Y n + a1(X)Y n−1 + · · ·+ an(X) /∈ C[X]
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(n > 0 and a0(X) 6= 0), I make the claim:1 we can assume that
g /∈ C[X].

Assuming the claim, f and g are of degree > 0 in Y , so by
Prop. 9.1.1 (with D = C[X]), RY (f, g) = Fg + Gf ∈ C[X] for
degY F < degY f , degY G < degY g. Given any α ∈ C\V (a0), since
C is algebraically closed there exists a root β ∈ C of f(α, Y ). From
V (f) ⊆ V (g) we see that (α, β) ∈ V (f(α, Y )) ⊆ V (f(β, Y )) ⊆ C, so
that f(α, Y ) and g(α, Y ) have a common root for every α ∈ C\V (a0).
It follows that a0RY (f, g) ∈ C[X] evaluates to zero at every α ∈ C,
hence is zero. As a0 6= 0, we find RY (f, g) = 0 in C[X]; and then
by Prop. 8.1.2, degY (gcdS2

(f, g)) > 0. (Alternately, Fg = (−G)f

=⇒ f, g have a divisor of nonzero degree in Y .) But f is irre-
ducible, so divides any nonzero non-unit dividing it; we conclude that
f | gcdS2

(f, g) | g.
To prove the claim, suppose g ∈ C[X]\{0}. Then there exists

α ∈ C\V (g.a0). Viewed as a function on C2, g is constant in Y , so
g(α, β) 6= 0 ∀β ∈ C. But since a0(α) 6= 0, degY (f(α, Y )) > 0; and
then (as C is algebraically closed) ∃β ∈ C such that f(α, β) = 0. By
assumption, V (f) ⊆ V (g) and so g(α, β) = 0, a contradiction. �

9.3. The nullstellensatz

The proof of Study immediately generalizes to Cn. This yields a
version of Hilbert’s nullstellensatz for hypersurfaces:

Corollary 9.3.1. If V (f) = V (g) for f, g ∈ Sn and . . .
(i) f, g are irreducible, then f = λg (λ ∈ C∗)
(ii) f, g are not irreducible, then ∃ M,N ∈ N such that f |gN , g|fM .

Equivalently, f and g have the same irreducible factors.

Proof. (i) Study =⇒ f |g and g|f ; (ii) is by Remark 9.2.4. �

The point of this is that, modulo issues with powers, there is a
bijection between hypersurfaces and principal ideals (i.e. polynomials
up to multiplication by constants) in Sn which reverses inclusion. That
is, provided f and g are “reduced” (all irreducible factors occur with
multplicity 1), (f) ⊃ (g) ⇐⇒ f |g ⇐⇒ V (f) ⊂ V (g).

1at this point, of course, we can’t “just swap X and Y ”
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To get a more general perspective on this, we introduce a few new
ideas. First, given a subset X ⊆ Cn, we define the ideal of X by

I(X) := {f ∈ Sn | f(z) = 0 ∀z ∈ S}.

For example, if f is “reduced”, we clearly have I(V (f)) = (f) by Study’s
Lemma. A subset X ⊆ Cn is algebraic if it is of the form V (J) for
some ideal J ⊂ Sn. (Indeed, this is just an affine algebraic variety.)
The statement V (I(X)) = X is true (almost a tautology) for algebraic
subsets.

Given any ideal J ⊂ Sn, we let rad(J) denote the radical of J ,
which is the ideal comprising all elements of Sn some power of which
belongs to J . A radical ideal is an ideal which equals its own radical.
Finally, J is prime ⇐⇒ Sn/J is a domain ( ⇐⇒ J is irreducible in
the monoid of ideals in Sn), and maximal ⇐⇒ Sn/J is a field.

Theorem 9.3.2. Let k be an algebraically closed field.
(i) Every maximal ideal m ⊂ Sn is of the form (Z1 − α1, . . . , Zn −

αn) = mα (here α ∈ Cn);
(ii) Let J ( Sn be an ideal: then V (J) 6= ∅;
(iii) For any ideal J ⊂ Sn, I(V (J)) = rad(J).

Corollary 9.3.3. The correspondence

ideals subsets

{J ⊂ Sn}
I

�
V

{X ⊂ Cn}

induces bijections

{radical ideals} ←→ {algebraic subsets}
∪ ∪

{prime ideals} ←→ {irred. alg. subsets}
.

This is clear from the Theorem; to see the last correspondence,
notice that V (J1J2) = V (J1) ∪ V (J2).

One can push the relation between commutative algebra and affine
algebraic geometry much further. For example, the ring of regular
functions on an irreducible affine variety V = V (P) (P a prime ideal)
is defined by

C[V ] := Sn/P,
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and it is easy to see that this embeds (say, for V smooth) in O(V ).
(The idea is that P is the kernel of the map from Sn to O(V ) given
by restricting polynomial “functions” to , and so Sn/P is its image.)
C[V ] is sometimes also called the coordinate ring of V . Furthermore,
if V is the affine part of a smooth projective variety V̄ , the field of
meromorphic functions K(V̄ ) is isomorphic to the fraction field C(V )

of C[V ]. Usually C(V ) is called the function field of V̄ (or V ).
There is even a way to recover varieties from their coordinate rings;

this is the “Spec” operation. Very roughly speaking, the affine story is
this: any finitely generated commutative domain A may be presented
as C[z1, . . . , zN ]/I (where I ⊆ C[z1, . . . , zN ] is an ideal), and then you
take V (I) ⊆ CN . This gives one realization of Spec(A); of course,
there are many ways of writing A in this form (different N , different
I, etc.). From the standpoint of scheme theory, Spec(A) is something
intrinsic, an affine scheme which exists in the absence of any particular
embedding in an affine space CN . The best resources on this are the
book by E. Kunz and the classic text by R. Hartshorne.

Exercises
(1) Prove: (i) that for any algebraic subset X ⊆ Cn, V (I(X)) = X; (ii)

that for any two ideals J1, J2 ⊆ C[Z1, . . . , Zn], V (J1J2) = V (J1) ∪
V (J2).



CHAPTER 10

Local analytic factorization of polynomials

Recall the idea of normalization for an irreducible algebraic curve
C ⊂ P2: there should exist a Riemann surface C̃ mapping holomor-
phically to P2 with C as its image. In Chapter 7 we did this for
nonsingular C by using the holomorphic implicit function theorem to
put a complex manifold structure on C itself. This essentially con-
sisted, for each p ∈ C, in exhibiting a neighborhood Np ⊂ P2 of p
and a (bi)holomorphic parametrization of Np ∩ C by some open set
U ⊂ C. (The holomorphicity of the transition functions was then a
consequence.)

Now suppose C has an ordinary double point (ODP) at p — recall
that this is a singularity with 2 distinct tangent lines. Denoting disjoint
union by “q”, one has

Np ∩ C '
U1 q U2

0U1 ≡ 0U2

;

that is, C locally looks like two disks U1, U2 (⊂ C) glued together at
one point. In order to normalize C, U1 and U2 must be “detached”:

113
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U U
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schematic picture topological picture
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2
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1

0 0

Our overarching goal is to produce C̃ and σ as in this figure. Geomet-
rically it seems clear that the “local analytic curve” Np∩C is reducible,
even though the global curve C is not. The first step, then, will be
to find an appropriate formalism (in terms of 2-variable power series)
for working with Np ∩ C, which one might call “analytic localization.”
In this setting, the local equation can be uniquely factored. This will
allow us (in the next Chapter) to carry out local normalization — that
is, put local coordinates on the irreducible components of Np ∩ C. Fi-
nally, we will patch these parametrizations together with those of open
subsets of C\sing(C) to obtain C̃.

There are algebraic approaches to “localization” of C at p. For con-
venience, replace C for the moment by its affinization in C2. From
§9.3, we have the coordinate ring R = C[C], and to any point p ∈ C
corresponds a maximal ideal in m ⊂ R (consisting of polynomials van-
ishing at p). Inverting all primes not contained in m, or “localizing R at
m”, replaces polynomial functions by rational functions with poles any-
where but p, which roughly corresponds to replacing C by C minus any
set of points not including p. This is quite different from intersecting
C with an analytic ball at p, and will not produce a local factorization
of a globally irreducible C. Instead of rational functions, we need con-
vergent power series. The closest construction in algebra is something
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called completion (or Henselian localization). If you are curious (we
won’t get into this), a good reference is the book by D. Eisenbud.

10.1. Analytic localization

It will suffice to think of C as an affine curve {f(x, y) = 0} ⊂ C2

passing through p = (0, 0). The defining polynomial f ∈ C[x, y] is,
trivially, a convergent power series; so we may consider how f factors
in O2 = C{x, y} (cf. §7.1). In fact, for purposes of examining the inter-
section of C with a small neighborhood of the origin, we will show that
f may be replaced by an element of C{x}[y] (⊂ O2) in a particularly
nice form:

Definition 10.1.1. The subset1 W ⊂ C{x}[y] of Weierstrass poly-
nomials comprises elements of the form

yd + a1(x)yd−1 + · · ·+ ad−1(x)y + ad(x) (d ∈ Z≥0)

where each aj(x) ∈ C{x} satisfies

aj(0) = 0.

Lemma 10.1.2. Let f ∈ O2 with2 f /≡ 0 on the y-axis. Then ∃
ε, ρ > 0 such that:

(a) f 6= 0 on (i){|x| < ρ, |y| = ε} and (ii){x = 0, 0 < |y| < ε};
(b) the number of roots (counted with multiplicity) of f(x, y) in y

with |y| < ε, is constant in x for |x| < ρ.

Proof. The zeroes of f(0, y) are isolated: otherwise they would
have a limit point, forcing f to be identically zero. We may therefore
choose ε so that f(0, y) 6= 0 for 0 < |y| ≤ ε. To get (a)(i) from this, just
use continuity and choose ρ sufficiently small. The number of roots in

1technically, a submonoid – you can multiply (but not add) elements, and it has
the identity element 1; the notions of “irreducible element” and “uniqueness of
factorization” still have meaning. Since W is inside a UFD (see proof of Thm.
10.2.2) and has 1 as its sole unit, it does indeed have unique factorization in a very
strong sense. (See the discussion after the proof of Thm. 10.2.2.)
2in general, if S is some subset of the domain of definition of a function f , one
should read “f /≡ 0 on S” as “f is not identically zero on S”, and “f 6= 0 on S”
as “f does not vanish on S” (i.e. f is zero at no point of S) — two very different
meanings. Henceforth the symbols will be used with no further explanation.
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(b) is computed by

1

2π
√
−1

˛
|y|=ε

fy(x, y)

f(x, y)
dy ∈ Z,

which is continuous in x and therefore constant. �

Lemma 10.1.3. For f as in Lemma 10.1.2, let {yν(x)}ν=1,...,d be the
roots described in (b).3 Denote the elementary symmetric polynomials
in them by ej(x) (=

∑
ν1<···<νj yν1(x) · · · · · yνj(x)). Then

w := yd + e1(x)yd−1 + · · ·+ ed(x)

is a Weierstrass polynomial.

Proof. Note that for each ν, yν(0) = 0 from Lemma 10.1.2(a)(i).
Clearly then the ej(x) are well-defined and satisfy ej(0) = 0; we must
show that they are holomorphic on {|x| < ρ}. First we have

1

2π
√
−1

˛
|y|=ε

yk
fy(x, y)

f(x, y)
dy =

∑
ν

(yν(x))k =: σk(x),

since the residue at each yν(x) of the argument is (yν(x))k·Resyν(x)(
fy
f

) =

(yν(x))k · ordyν(x)(f(x, ·)). Here the Newton symmetric polynomials
σk(x) span the same vector space over C as the ej(x) (a general fact
from algebra). From the integral expression, the σk are evidently holo-
morphic, and therefore so are the ej. �

Let U := O∗2 ⊂ O2 denote the units, which are just the invertible
convergent power series, or equivalently the convergent power series
with nonzero constant term. (That is, given g ∈ O2, g ∈ U ⇐⇒ 1

g
∈

O2.)

Lemma 10.1.4. For f and w as above, there exists a unique u ∈ U

such that uw = f, and this holds on all of V := {|x| < ρ and |y| ≤ ε}.

Proof. Write ũ := f
w
∈ O(V \{w = 0}). For fixed x, w(x, y) =∏d

ν=1(y− yν(x)), as mutliplying this out gives the ej(x) as coefficients.
Consequently, for each fixed x (with |x| < ρ), w(x, y) and f(x, y) have

3These may well be multivalued on {|x| < ρ} — in particular, one should expect
them to be permuted as x goes about 0. So the yν(x) are really only well-defined
on some simply-connected subset of the disk {|x| < ρ} (e.g., deleting the positive
real numbers gives a slit disk).
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the same roots (in y). Therefore ũ 6= 0 on V , and ũ(x, y) is (for each
x) holomorphic in y. Now, for any given y0 with |y0| < ε,

ũ(x, y0) =
1

2π
√
−1

˛
|y|=ε

ũ(x, y)

y − y0

dy .

Since ũ(x, y) is holomorphic on a neighborhood of |y| = ε, this formula
shows ũ(x, y0) is holomorphic in x. By Osgood’s lemma, we have ũ ∈
O(V ). Since ũ 6= 0, it has nonzero constant term ũ(0, 0), and is thus a
unit. Uniqueness is clear since ũw = f and uw = f =⇒ (ũ−u)w = f

=⇒ u− ũ = 0. �

10.2. Uniqueness of local factorization

The uniqueness of u in the last Lemma was trivial. A slightly less
trivial uniqueness question would be: can we write f as a product of a
unit and a Weierstrass polynomial in two different ways – i.e., with a
different w and u? We cannot:

Lemma 10.2.1. Given f ∈ O2 (with f /≡ 0 on the y-axis), the
decomposition f = wu in Lemma 10.1.4 (i.e., into w ∈W and u ∈ U)
is unique.

Proof. Since any unit u has u(0, 0) 6= 0, shrinking ε, ρ (hence V )
if necessary, we have u 6= 0 on V . Thus if f = wu, the zeroes of f and
w are the same. This forces w =

∏
(y− yν(x)) = yd + e1(x)yd−1 + · · ·+

ed(x), which makes w (hence u) unique. �

Making use of the last two lemmas, we now show that f ∈ O2 factors
uniquely (up to units) into irreducibles fi ∈ O2. If f began its life as a
polynomial defining an irreducible algebraic curve C = {f = 0} ⊂ C2,
then the local piece C∩V breaks (uniquely) into irreducible components
{fi = 0}. Provided there is more than one of them, the fi are no longer
polynomials, for that would contradict (global) irreducibility of C.

Theorem 10.2.2. O2 is a UFD.

Proof. We must demonstrate that f ∈ O2 factors into irreducibles
f1 · · · f` uniquely up to order and units.

First, note that O1 = C{x} is a UFD: given g ∈ O1, we have a
unique decomposition g(x) = xν0(f)h(x), where h is a unit (convergent



118 10. LOCAL ANALYTIC FACTORIZATION OF POLYNOMIALS

power series with h(0) 6= 0) and ν0(f) ∈ Z. The irreducibles in this
case are just the factors of x.

By the Gauss lemma, it follows that C{x}[y] is a UFD.
Next, suppose that f(x, y) =

∑
a,b αabx

ayb ∈ O2 vanishes identically
on the y-axis; that is, 0 ≡ f(0, y) =

∑
b α0by

b. It follows that all α0b = 0

for all b, so that f = xνf0 where ν > 0 and f0(0, y) /≡ 0. We must prove
unique factorization for f0.

Let f ∈ O2 with f(0, y) /≡ 0. Lemmas 10.1.4 and 10.2.1 give
f = uw uniquely. Since w belongs to the UFD C{x}[y], we have a
unique decomposition w = h1 · · · · · h` into irreducibles hj ∈ C{x}[y].
Clearly also hj(0, y) /≡ 0, and so Lemma 10.1.4 applied to each hj

gives uniquely hj = ujwj, with each wj a Weierstrass polynomial irre-
ducible in C{x}[y] (since hj is). This yields w = (u1w1) · · · · · (u`w`) =

(u1 · · ·u`)w1 · · ·w` =: ũw̃, and by Lemma 10.2.1 ũ must be 1. So far
we have f = uw1 · · ·w`.

We do not know yet whether wj is irreducible in O2. If wj =

v′v′′ (v′, v′′ ∈ O2), then wj(0, y) /≡ 0 =⇒ the same thing for v′, v′′.
Lemma 10.1.4 applies to yield v′ = u′w′ and v′′ = u′′w′′, so that wj =

(u′u′′)(w′w′′); applying Lemma 10.2.1 yet again gives u′u′′ = 1 =⇒
wj = w′w′′. But w′, w′′ ∈W ⊂ C{x}[y], contradicting irreducibility of
wj in C{x}[y].

To see uniqueness, write factorizations f = f1 · · · f` = g1 · · · gk into
irreducibles in O2; we may assume f(0, y) /≡ 0. Then Lemma 10.1.4
gives fj = ujwj and gi = ũiw̃i with wj, w̃i irreducible Weierstrass poly-
nomials. We then have (u1 · · ·u`)(w1 · · ·w`) = (ũ1 · · · ũk)(w̃1 · · · w̃k), so
that by Lemma 10.2.1 u1 · · ·u` = ũ1 · · · ũk and w1 · · ·w` = w̃1 · · · w̃k.
By uniqueness of factorization in C{x}[y] (and Lemma 10.2.1), the
{wj} and {w̃i} are the same (up to reordering), and ` = k. �

Note the key statement that comes out of this proof: given f ∈ O2

with f(0, y) /≡ 0, we have

(10.2.1) f = uw1 · · ·w`,

where u ∈ U and wi are Weierstrass polynomials which are irreducible
(as Weierstrass polynomials, as elements of C{x}[y], and as elements
of O2). Moreover, this decomposition is completely unique, up to re-
ordering of the wi. Finally – this also comes out of the proof – if f
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was a Weierstrass polynomial, then u = 1 in (10.2.1), and degy(f) =∑`
i=1 degy(wi). This will be useful in working the following problems.

Exercises
(1) Show f(x, y) = x3 − x2 + y2 is (a) irreducible in C[x, y] and (b)

reducible in C{x}[y].
(2) Show g(x, y) = x3 − y2 is irreducible in C{x}[y].





CHAPTER 11

Proof of the normalization theorem

The purpose of this chapter is twofold: to find a method for explic-
itly parametrizing neighborhoods of singular points on algebraic curves;
and, using this, to completely prove part (A) of Theorem 3.2.1. In fact,
we shall prove a stronger result which contains a uniqueness statement:

Theorem 11.0.1. Let C ⊂ P2 be an irreducible algebraic curve,
with S = sing(C) its set of singular points. Then there exists a Rie-
mann surface C̃ and morphism (of complex manifolds) σ : C̃ → P2

such that

(a) σ(C̃) = C

(b) #{σ−1(S)} <∞
(c) σ : (C̃\σ−1(S))→ (C\S) =: C∗ is injective (hence an isomorphism).

The pair (C̃, σ) is called the normalization of C, and is unique in the
sense that if (C̃ ′, σ′) is another, then there exists a morphism τ : C̃

∼=−→
C̃ ′ such that σ = σ′ ◦ τ .

We remark that in the correspondence (cf. §9.3) between ideals I ⊂
C[x, y], varieties V = V (I), and rings C[V ] = C[x,y]

I
, “normalization”

means taking the integral closure of C[V ] in C(V ). Taking “Spec” of
the result produces an affine variety Ṽ with a morphism to V . This
procedure may be carried out for projective varieties by patching affine
ones together, and if this is done for curves (V = C), then Ṽ is really
just C̃ constructed algebraically. While this is beyond the scope of our
course, it’s instructive to look at an example.

Example 11.0.2. If we take V = {x3 − x2 + y2 = 0} ⊂ C2, then
the coordinate ring

C[V ] =
C[x, y]

(x3 − x2 + y2)

is not integrally closed in its fraction field C(V ). That is, the equation
ξ2 + (x − 1) = 0, while irreducible in C[V ][ξ], is “solved” by ξ = y

x
, as

121
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y2

x2 ≡ x2−x3

x2 = 1 − x in C(V ). A schematic picture of the irreducible
cubic curve V is

(1,0)(0,0)

and y
x
can be viewed as “separating the branches” of V at the singular

point (0, 0).

In an exercise above you were asked to carry out the (local) analytic
approach, proving that x3−x2+y2 is irreducible in C[x, y] but reducible
in C{x}[y]. Here is another such example.

Example 11.0.3. Consider the equation y4 + x3 − x2(= 0), which
is irreducible in C[x, y] but reducible in C{x}[y], into the product of
Weierstrass polynomials

(y2 − x
√

1− x)(y2 + x
√

1− x).

Here x
√

1− x is regarded as a convergent power series (in C{x}) van-
ishing at x = 0. The local picture (near (0, 0)) described by this fac-
torization is of two “parking lots” (topologically, these are just disks)
attached at their centers:

g
2

g
1

We need a procedure that gives the indicated holomorphic parametriza-
tions of these two branches.

11.1. Overview

Informally, here is the main idea of the proof of Theorem 11.0.3.
Given an irreducible algebraic curve C with singular point p, we may
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use a PGL(3,C)-transformation (i.e. a projectivity) of P2 to move
p 7→ [1 : 0 : 0]. By another linear transformation of coordinates (cf.
§8.2), we can put the affine equation in the form

(11.1.1) f = yn + a1(x)yn−1 + · · ·+ an(x) (= 0) , aj(x) ∈ C[x].

Now we want to normalize a neighborhood of the singularity (0, 0).
Since f is irreducible in C[x][y], its discriminant D(f)(x) is not iden-
tically zero in C[x]. Hence the “local factorization” f = fm1

1 · · · f
m`
`

into irreducibles in C{x}[y] will have no repeated factors (all mi = 1).
Writing ∆ = {|x| < ρ} and W∆ = ∆ × {|y| < ε} for sufficiently
small ρ, ε > 0, this corresponds to the decomposition of C ∩W∆ into
C∆

1 ∪· · ·∪C∆
` , where each C∆

i is homeomorphic to a disk and the union
attaches them only at their centres.

More precisely, writing

f = uw1 · · ·w`

as in §10.2, the C∆
i are the zero-loci {wi = 0} of irreducible Weierstrass

polynomials. If we can write down 1-to-1 holomorphic maps ϕ̃i : ∆̃→
C2 (∆̃ is some other disk related to ∆) with image ϕ̃i(∆̃) = C∆

i , and
repeat this procedure over all singular points, then the normalization C̃
can be constructed as follows. On C∗ = C\sing(C), we have a covering
by holomorphic parametrizations ϕα = z−1

α (from §7.2). Composing the
ϕ̃i with the zα whenever C∆

i ∩Uα in nonempty, yields holomorphic tran-
sition functions. Thinking of C∗ as an abstract complex 1-manifold,
these transition functions indicate how to attach each C∆

i to C∗ to
yield a new complex 1-manifold C̃. To obtain C (topologically) from
this, you simply reattach the centers of the C∆

i .
The first step indicated in his outline, which we do not yet know

how to do, was the construction of the {ϕ̃i}. We shall now do this.

11.2. Irreducible local normalization

Let w = yk + b1(x)yk−1 + · · · + bk(x) be a Weierstrass polynomial,
irreducible in C{x}[y]. Unless k = 1, the discriminant (D(w))(x) has a
zero at x = 0. Since D(w) is not identically zero, this zero is isolated,
and we can take ρ small enough that x = 0 is its only zero on ∆ =

{|x| < ρ}.



124 11. PROOF OF THE NORMALIZATION THEOREM

Now, there is a factorization w =
∏k

ν=1(y− yν(x)) which is valid in
the sense of §8.2, but not in C{x}[y]. Namely, the {yν(x)} are “multival-
ued” on ∆,1 but become well-defined on ∆ minus a slit. (Another, more
algebraic, way to think of this factorization, if 0 < |x0| < ρ, is as taking
place in C{x−x0}[y].) The multivaluedness is manifested as follows: by
the heredity principle, going once counterclockwise around the origin
in ∆∗, permutes the roots of w by yν(x) 7→ yτ(ν)(x) where τ ∈ Sk(=the
symmetric group on k elements). This permutation must be transitive,
i.e. a k-cycle: otherwise, it splits into a product of (smaller) cycles,
each of which gives rise to an irreducible proper factor of w in C{x}[y],
in contradiction to its irreducibility.

Here, then, is how to parametrize the set {w = 0} ⊂ W∆:

Proposition 11.2.1. Let w ∈ W be irreducible of degree k, and
pick any ν ∈ {1, . . . , k}. Then writing ∆̃ := {t ∈ C| |t| < ρ

1
k },

g : ∆̃→ C2

t 7→ (tk, ỹν(t
k))

is well-defined and injective,2 with image the local analytic curve

C∆ := {(x, y) |w(x, y) = 0, |x| < ρ, |y| < ε},

and gives a biholomorphism (of complex 1-manifolds)

∆̃\{0}
∼=→ C∆\{(0, 0)}.

Remark 11.2.2. Here C∆\{(0, 0)} is a complex 1-manifold by the
holomorphic implicit function theorem as in §7.2, and is covered by
neighborhoods with local holomorphic coordinate x. One can regard
the last biholomorphism as giving the transition function between (∆0, t)

and (more generally) any open set in C∗ with holomorphic coordinate
x.

Proof. (of Prop. 11.2.1) Recall that yν(x) is well-defined on the
slit disk ∆− := ∆\{x ∈ R≥0}. Analytic continuation of yν(x) once
counterclockwise around x = 0 yields yτ(ν)(x); going around once more
gives yτ2(ν)(x), and so on. Since τ is a k-cycle, τ k(ν) = ν and going
around zero k times returns us to yν(x). But tk does precisely this when
1except at 0, since all yν(0) = 0
2The meaning of “ ỹν(tk)” will be defined in proof.
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t goes around 0 once, and so yν(tk) extends to a well-defined analytic
function on ∆̃.

A bit more carefully, we subdivide ∆̃∗ = ∪k−1
j=0∆̃(j) into pie-slices

∆̃(j) := {0 < |t| < ρ
1
k and j

2π
≤ arg(t) ≤ j+1

2π
}. On the interior of each

slice (that is, where j
2π
< arg(t) < j+1

2π
), we can define a holomorphic

function by yτ j(ν)(t
k), since t 7→ tk maps this interior (isomorphically)

to ∆− where yτ j(ν)(x) is defined. Extending these functions continu-
ously to ∆̃(j), they patch together (in fact, analytically continue into
one another) to yield a single holomorphic function ỹν(tk) on ∆̃∗. This
is bounded exactly as in §8.2, and so extends to O(∆̃) by the removable
singularity theorem.

Let ζk := e
2π
√
−1
k . If (tk1, ỹν(t

k)) = (tk2, ỹν(t
k
2)) then

t2 = (ζk)
`t1

for some ` ∈ Z, and
yτ`(ν)(t

k
1) = yν(t

k
1).

Since the {yν} are all distinct away from 0, the last equation is impos-
sible unless k|`, which implies (ζk)

` = 1 so that t1 = t2. This proves
that g is injective.

Since τ is transitive, g maps surjectively onto C∆. It gives, fi-
nally, a holomorphic map of Riemann surfaces on the complement of
0 since in local coordinates t (on ∆̃∗) and x (for open subsets covering
C∆\{(0, 0)}) we have x =“g(t)’s x-coordinate”= tk. �

11.3. Finishing local normalization

Referring back to §8.1, for each of the irreducible factors wj of f
we now apply Proposition 11.2.1. This yields normalizations

gj : ∆̃j → C∆
j

of the irreducible components of the local analytic curve C ∩W∆:
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x

y

x
|x|<ρ

∆ ∆

∆

1
2

3

C

C

C

∆

∆

∆

1

2

3

g g

g

1 2

3

C

Each restriction

g◦j : ∆̃∗j
∼=−→ (C∆

j \{(0, 0)}) ↪→ C∗

is biholomorphic with respect to local coordinates on ∆̃j and an open
covering of C∆

j \{(0, 0)}. In fact, it takes the form t 7→ tk(= x) as
indicated at the end of the last proof. These may be regarded as the
“glueing” maps that will attach each ∆̃j to C∗ thereby plugging the
holes in C∗, which is what we do next.

Before that, we just note that one should carry out the construction
of gj’s as we have done near p = (0, 0), at all the other singular points
of C.

11.4. Global normalization (patching)

Suppose for the moment (0, 0) is the only singular point of C, so
that C∗ = C\{(0, 0)}. Then we put

C̃ := C∗ ∪
g◦1

∆̃1 ∪
g◦2

∆̃2 ∪ · · · ∪
g◦`

∆` ,

where C∗ ∪
g◦1

∆̃1 means

C∗ q ∆̃1

g◦1(p) ∼ p (∀p ∈ ∆̃∗1)
,

C∗ ∪
g◦1

∆̃1 ∪
g◦2

∆̃2 means

C∗ q ∆̃1 q ∆̃2

g◦1(p) ∼ p , g◦2(q) ∼ q (∀p ∈ ∆̃∗1, q ∈ ∆̃∗2)
,

and so forth.
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If there are more singularities, then repeat this patching at each
point in S = sing(C).

To get a map σ : C̃ → P2 with image C, set

σ(c) :=

 c , for c ∈ C∗

gj(c), for c ∈ ∆̃j

.

These two prescriptions are compatible with the patching.
To see that C̃ is compact: given an open cover {Uα} of C̃, pick

one Uα(q) containing each q ∈ σ−1(S). The complement C̃ ′ of these
in C̃ is isomorphic to a closed subset of C, since σ is bijective away
from σ−1(S). Now a closed subset of C is a closed subset in P2, P2

is compact, and a closed subset of a compact set is compact. So C̃ ′

is compact and {Uα ∩ C̃ ′} has a finite subcover {Ui ∩ C̃ ′}. The {Ui}
together with the {Uα(q)} then furnish a finite subcover of C̃.

We have now proved all but the uniqueness part of 11.0.3 and it is
time to backtrack and get explicit.

11.5. Examples of local normalization

Example 11.5.1. Assuming gcd(k, a) = 1,

yk − xa

is irreducible in C{x}[y], and we shall apply the procedure of Prop.
11.2.1. The n (multivalued) roots of yk − xa = 0 in y are

y1(x) = k
√
xa , y2(x) = ζk

k
√
xa , . . . , yk(x) = (ζk)

k−1 k
√
xa;

they are well defined on the slit disk {0 < |x| < ρ, arg(x) ∈ (0, 2π)}.
If we plug tk into y1(x) and analytically continue, we get

ỹ1(tk) = ta.

Hence by definition
g(t) = (tk, ta).

We should check that the image of g lies in yk − xa = 0: this is just
the statement that (tk)a = (ta)k.
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Example 11.5.2. Here is a more complicated example where there
is more than one gj (as in §5.3):

f = y8 + y4 − x6 + x3 − x2y4 + x5 − x2.

Viewed in C{x}[y], this is not a Weierstrass polynomial (the coefficient
1−x2 of y4 is not zero at x = 0), so we should expect a nontrivial unit
u in (10.2.1). Indeed,

f = (y4 − x3 + 1)(y4 + x3 − x2)

= (y4 − x3 + 1)︸ ︷︷ ︸
u

(y2 − x
√

1− x)︸ ︷︷ ︸
w1

(y2 + x
√

1− x)︸ ︷︷ ︸
w2

,

where u is a unit because u(0, 0) 6= 0.
Now w1, w2 are irreducible Weierstrass polynomials and so we apply

11.2.1 (with k = 2) to normalize their zero-sets.
Beginning with w1, the roots are y11(x) =

√
x
√

1− x and y12(x) =

−
√
x
√

1− x, which are swapped as x goes around 0. So ỹ11(t2) is ob-
tained by substituting t2 for x and analytically continuing: informally,√
t2
√

1− t2 = t 4
√

1− t2. So

g1(t) = (t2, t
4
√

1− t2).

For w2, the roots are y21(x) = i
√
x
√

1− x and y22(x) = −i
√
x
√

1− x;
and this yields

g2(t) = (t2, it
4
√

1− t2).

Let’s check this parametrizes w2 = 0: one need only write (y(t))2 +

x(t)
√

1− x(t) = (it 4
√

1− t2)2 + t2
√

1− t2 = 0.

11.6. Uniqueness

Begin with two normalizations:

C̃
σ // P2 C̃ ′

σ′oo

C̃ \ σ−1(S)
∼= //

66P S U X Z ] _ a d f i k n

?�

OO

C \ S
?�

OO

C̃ ′ \ (σ′)−1(S)
∼=oo

?�

OO

with σ, σ′ holomorphic maps of complex manifolds. Essentially what
we have to show is that neighborhoods of the points of σ−1(S) (in C̃)
and (σ′)−1(S) (in C̃ ′) are isomorphic in a way which is compatible with
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σ and σ′. Put together with the bottom dotted arrow these isomor-
phisms will yield the desired map τ : C̃ → C̃ ′ of Riemann surfaces
making the diagram

C̃
τ //

σ

��?
??

??
??

? C̃ ′

σ′

��~~
~~
~~
~~

C
To start, let p ∈ S ⊂ C be a singular point and U ⊂ P2 be a small
open set containing it. For simplicity assume p = [1 : 0 : 0] and choose
coordinates so that U ⊂ {|x| < ρ, |y| < ε} and C ∩ U is given by the
vanishing set of a Weierstrass polynomial. Write U∗ := U\{p}.

Now pick q ∈ σ−1(p); by continuity of σ, σ−1(U) is open in C̃. So
there exists an open set V , which we may assume to be connected, with
q ∈ V ⊂ σ−1(U). Since σ(V \{q}) ⊂ C ∩ U∗ must then be connected,
and C ∩ U∗ is homeomorphic to a disjoint union of punctured disks,
σ maps V \{q} into one of these punctured disks. Consequently, V is
mapped into only one (local) irreducible component3 W of C∩U . This
yields the following diagram:

V

T

++
k i g f d b a _ ] \ Z X

σ̃ //

σ

��

X

''O
OOOOOOOO W

π

��

(
{|t| < ρ

1
k } ⊂ Ct

)∼=
g

oo

t7→tk
vvmmm

mmm
mmm

mmm
mmm

(
U ⊂ C2

(x,y)

)
prx // ({|x| < ρ} ⊂ Cx)

in which prx and σ are morphisms of complex manifolds, so that their
composition X is evidently a holomorphic (obviously bounded) function
on V .

The composition T is also evidently a bounded, well-defined func-
tion on V . By the holomorphic IFT (and holomorphicity of X), it is
holomorphic on V \{q}; hence by the removable singularity theorem,
T ∈ O(V ). It is also clear that T(0) = 0. So by the open mapping
theorem, T maps V onto a neighborhood N of 0 in Ct (which we may
assume is a disk). Shrinking U (and thus W ) if necessary, we may
conclude that σ̃ – the restriction of σ to a neighborhood of q – maps
V onto W . From the diagram, this σ̃ is just g ◦ T.
3remember that these components are homeomorphic to disks; take out p and that
is where the punctured disks came from



130 11. PROOF OF THE NORMALIZATION THEOREM

Since σ is 1-to-1 off σ−1(S), no neighborhood of any other point q0 ∈
σ−1(S) can be sent to W . Repeating the argument above by varying
q, sets up a 1-to-1 correspondence between “V ’s” (i.e. neighborhoods
of points in σ−1(S) in C̃) and “W ’s” (irreducible local components of
C at points of S). We can play the same game for the normalization
C̃ ′, and find that for a unique q′ ∈ (σ′)−1(S) we have a neighborhood
V ′ and an isomorphism T′ : V ′ → N whose composition with g gives
σ̃′ : V ′ → W .

The piece of τ carrying (V, q) to (V ′, q′) is now defined simply by
(T′)−1◦T. This is automatically holomorphic, and its composition with
σ′ is g ◦ T = σ as desired.

Exercises
(1) Locally normalize the zero-set of f(x, y) = y4− (x+ 1)7 at (−1, 0).
(2) Locally normalize the zero-set of g(x, y) = y4 − x6 + x7 at (0, 0).



CHAPTER 12

Intersections of curves

Now we come to the applications of normalization, which will oc-
cupy this chapter and Chapter 14. You may recall that in Chapter 2
we studied intersections of an plane algebraic curve C with a (projec-
tive) line L. The points of L ∩ C were each assigned a multiplicity by
restricting the equation of C under a parametrization of L, and looking
at the multplicities of the roots of the resulting one-variable polyno-
mial. With this definition, the multiplicities added up to the degree of
the curve (cf. Prop. 2.1.8).

If we had tried to replace L by an arbitrary curve E at that point,
we would have run into the problem of no longer knowing how to locally
parametrize E near the intersection points. Now that we can do this
(Prop. 11.2.1), we can pull the defining equation of C back under the
parametrization and look at its order of vanishing at the intersection
point. This leads to the general definition of intersection multiplicity,
and with this in hand that we can finally state (and prove!) Bezout’s
theorem in general. In its proof the intersection divisor will make an
appearance, so we begin with a short bit on divisors.

12.1. Divisors on a Riemann surface

Let M be a Riemann surface. The group of divisors on M is the
free abelian group on points of M ,

Div(M) :=

{∑
finite

mi[pi]

∣∣∣∣∣ mi ∈ Z , pi ∈M

}
.

The uncountably many symbols [pi] are the generators of this (very
big) abelian group. Associated to a divisor D =

∑
mi[pi] ∈ Div(M) is

a degree
deg(D) :=

∑
mi.

131
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The resulting group homomorphism

(12.1.1) Div(M)
deg−→ Z.

is called the degree map.
The divisor of a (nontrivial) meromorphic function f is given by

(f) :=
∑
p∈M

νp(f).[p] ∈ Div(M),

where νp(f) is the order of f at p (Defn. 3.1.4). Note that the sum is
actually finite (as required by the definition of divisor) since at all but
finitely many points of M , νp(f) = 0. Now K(M)∗ is a multiplicative
abelian group. Sending f → (f) yields a homomorphism

(12.1.2) K(M)∗
(·)−→ Div(M)

of abelian groups, as you will show in an exercise below, which takes
multplication to addition: (fg) = (f) + (g), (f−1) = −(f).

With these definitions, the composition of (12.1.2) with (12.1.1)
takes f to

∑
p∈M νp(f), which by Exercise 3.2 is zero. That is, deg ◦(·) =

0. Note that one can define meromorphic functions and divisors more
generally on complex 1-manifolds, but it is only in the compact case
(Riemann surfaces) that the divisors of meromorphic functions are al-
ways of degree 0.

Example 12.1.1. On P1, the easiest meromorphic function around
is z = Z1

Z0
∈ K(P1)∗. Writing simply 0,∞ for the points [1 : 0], [0 : 1],

its divisor is (z) = [0]− [∞], obviously of degree 0.

12.2. Intersection multiplicities

For a polynomial in one variable f(x) with f(0) = 0, deg(f) is
the exponent of the highest degree term, while the order of vanishing
ord0(f) := ν0(f) is the exponent of the term of lowest degree. Order
(unlike degree) also makes sense for power series in 1 variable.

How does all this generalize to two variables? First, a polynomial
F (x, y) can be written as a sum of homogeneous terms. If this is
F = Fk+Fk+1+· · ·+Fd−1+Fd, then deg(F ) := d (highest homogeneous
degree) while ord(0,0)(F ) := k (lowest homogeneous degree). From §6.4,
k is also the order of singularity of the curve C = {F = 0} at (0, 0), i.e.
the number of tangent lines to C counted with multiplicity. When we
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don’t want to refer to the polynomial, we will write ord(0,0)C; remember
this is 1 when C is smooth at (0, 0), 2 when C has an ODP (normal
crossing) there, and so on. Finally, ord(0,0) also makes sense for 2-
variable power series.

Now suppose V = {f(x, y) = 0}, W = {h(x, y) = 0} are reduced
affine algebraic curves that intersect properly — i.e. have no common
irreducible components. Then V ∪W has no repeated components, so
is itself reduced. For p ∈ V ∩W ,

(
∂

∂x
(fh))(p) = fx(p)h(p) + hx(p)f(p) = fx(p).0 + hx(p).0 = 0

and similarly ( ∂
∂y

(fh))(p) = 0. Therefore V ∩W ⊂ sing(V ∪W ), and
Prop. 8.1.6 yields

(12.2.1) #{V ∩W} ≤ #{sing(V ∪W )} <∞.

Definition 12.2.1. Assume V and W are irreducible (and dis-
tinct), and let p ∈ V ∩ W . Let U ⊂ C2 be a neighborhood of p.
Writing the local decomposition of V into irreducibles (uniquely)

V ∩ U = V ∆
1 + · · ·+ V ∆

k ,

with local normalizations (again, essentially unique)

gi : ∆→ V ∆
i (⊂ C2)

ti 7→ (xi(t), yi(t)),

we define the (local) intersection multiplicity at p

(V ·W )p :=
k∑
i=1

ord0(h(gi(t))).

The (global) intersection number is then defined by

(V ·W ) :=
∑

p∈V ∩W

(V ·W )p,

in which the sum is finite by (12.2.1).

Remark 12.2.2. (a) If either V or W is smooth, the intersection
number is actually the degree of a divisor,

V ·W :=
∑

p∈V ∩W

(V ·W )p[p].
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This is because we can regard the smooth one (say, W ) as a Riemann
surface and then V · W ∈ Div(W ). Alternatively, you can think of
V ·W as a formal sum of points of P2, known as a zero-cycle1 on P2.
The degree is defined in the same way as for divisors.

(b) The composition h◦gi appearing in Defn. 12.2.1 will frequently
be written g∗i (h) – that is, we are pulling the function h back by the
local normalization g∗i .

The local intersection multiplicities are well-defined essentially by
the uniqueness of local normalizations. They also have some reasonable
properties:

Proposition 12.2.3. (V ·W )p = (W · V )p.

Proposition 12.2.4. (V ·W )p ≥ ordp(V ) · ordp(W ), with equality
precisely when none of V ’s tangents at p coincide with the tangents of
W at p.

We will postpone proof of these results in §12.4−5, since the proofs
get a bit technical.

Example 12.2.5. Here are two pictures of smooth curves meeting
at a point p:

distinct tangents

(II)(I)

In each case, ordpV · ordpW = 1 because the curves are smooth. But
in the first case, (V ·W ) = 2, while in the second (which has distinct
tangents) (V ·W ) = 1.

1“zero” refers to the fact that we are taking a formal sum of zero-dimensional sub-
varieties (i.e. points) in P2
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Example 12.2.6. Let a, b,m, n ∈ N with

gcd(n, a) = gcd(m, b) = 1.

Then by Prop. 12.2.4, we should have2(
{yn = xa} · {ym = xb}

)
(0,0)
≥ min(n, a) ·min(m, b).

Let’s check this by actually computing the left-hand side. The normal-
ization of {yn = xa} is just t g7−→ (tn, ta) by Example 11.5.1. Writing
h = ym − xb, we have

g∗(h) = g∗(ym − xb) = (ta)m − (tn)b = tam − tbn

and the order of this at (0, 0) is the least of am and bn:

(
{yn = xa} · {ym = xb}

)
(0,0)

= min(am, bn).

This clearly satisfies the inequality, and it is easy to cook up an example
where equality doesn’t hold: with n = 3, a = 4, m = 2, b = 9 it
becomes 8 ≥ 6.

To extend (V ·W )p to the more general setting where V =
∑
mjVj

and W =
∑
nkWk with {Vj} and {Wk} irreducibles, we simply put

(V ·W )p :=
∑
j,k

mjnk(Vj ·Wk).

Remark 12.2.7. Here are two other approaches to local intersection
multiplicity which give the same numbers.

(a) The commutative algebra approach makes use of localization.
Recall that C(x, y) denotes the fraction field of C[x, y]. Let p = (a, b) ∈
C2. The local ring at p, denoted Op, is the subset of C(x, y) consisting
of rational functions G1

G2
(here G1, G2 ∈ C[x, y]) with G2(p) 6= 0. You

can easily check that this is a ring, and it obviously contains C[x, y].
It has a unique maximal ideal mp consisting of functions which vanish
at p.

Now let V = {f = 0}, W = {h = 0} be as above, and assume
p ∈ V ∩W . Writing (f, h)p for the ideal in Op generated by f and h,
we define

(V ·W )p := dimC (Op/(f, h)p)

2for instance, the polynomial yn − xa has order given by the smallest of n and a.
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by viewing the quotient Op/(f, h)p as a vector space. (Note that from
this definition, invariance of (V · W )p under projectivities is imme-
diately clear.) As a simple example, we know that the intersection
multiplicity at p = (0, 0) of {x = 0} and {y2 − x = 0} should be 2.
The quotient vector space, indeed, has basis 1, y. See Chapter 4 of [L.
Flatto, Poncelet’s Theorem] for more on this approach.

(b) For an approach via resultants, it is convenient to work with
homogeneous polynomials. Write V̄ = {F = 0},W̄ = {H = 0}, P =

[P0 : P1 : P2] ∈ V̄ ∩ W̄ (in homogeneous coordinates [Z : X : Y ] on
P2). Assume that [0 : 0 : 1] neither belongs to (i) C ∪D, nor (ii) any
line joining points of C ∩D, nor (iii) any line tangent to C or D at a
point of C ∩D. Then we may define

(V̄ · W̄ )P := ord[P0:P1](RY (F,H)).

Here we are thinking of F,H as elements of C[Z,X][Y ] and RY (F,H),
which eliminates Y ,3 is a polynomial in Z and X; it is in fact homoge-
neous and of degree deg(F ) · deg(H). Its order at [P0 : P1] is just the
highest power of (P0X − P1Z) dividing it.

Justifying this definition takes a bit of work, but it leads immedi-
ately to a proof of Bezout since the intersection multiplicities have to
add up to degRY (F,H) = deg V̄ · deg W̄ by construction. This is the
point of view taken in [F. Kirwan, Complex Algebraic Curves].

12.3. Bezout’s theorem

We first do a quick recap of Prop. 2.1.8:

Proposition 12.3.1. Let C = {F (Z,X, Y ) = 0} ⊂ P2 be a degree
d curve, L (∼= P1) ⊂ P2 a line not contained in C. Then (L · C) = d.

Proof. By a change of coordinates, we may assume L = {Y = 0}
and [0 : 1 : 0] /∈ C. Then by the Fundamental Theorem of Algebra,

F (Z,X, 0) =
k∏
i=1

(X − αiZ)di ,

where
∑k

i=1 di = d since F has is homogeneous of degree d. Hence
C ∩ L = {[1 : αi : 0]}ki=1.
3as usual you can think about this resultant in terms of a projection onto the x-
(or rather, [Z : X]-) axis.
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Passing to affine coordiantes (f =
∏

(x−αi)di) and locally normal-
izing L at (αi, 0) by t gi7−→ αi + t, we have

(L · C)(αi,0) := ord0(g∗i f) = di.

We conclude that (L · C) =
∑
di = d. �

Theorem 12.3.2. [E. Bezout, 1779] Let C,E ⊂ P2 be properly
intersecting projective algebraic curves. Then (C · E) = degC · degE.

Proof. Assume C is irreducible. Let k = degE, and choose lines
L1, . . . , Lk avoiding the points of C ∩E. Write E = {H(Z,X, Y ) = 0},
Lj = {Λj(Z,X, Y ) = 0}. Then by Propositions 12.2.3 and 12.3.1,

(C · Lj) = (Lj · C) = degC,

and

(C · (∪kj=1Lj)) =
k∑
j=1

(C · Lj) = degC · degE.

Now by Example 7.3.5, the quotient of two homogeneous polyno-
mials of the same degree gives a meromorphic function on projective
space. H is of degree k and each Λj is of degree 1, so we may define

ϕ :=
H

Λ1 · · · · · Λk

∈ K(P2).

Writing σ : C̃ → P2 (with σ(C̃) = C) for the normalization, we have
by Example 7.3.6 σ∗ϕ ∈ K(C̃). We can compute the divisor of this
meromorphic function if we notice that locally about each point of
C ∩ E [resp. C ∩ (∪Lj)], ϕ [resp. 1

ϕ
] gives a defining equation for E

[resp. ∪Lj]. So by Defn. 12.2.1,

(σ∗ϕ) =
∑

p∈C∩E

νp(σ
∗ϕ)[p] +

∑
q∈C∩(∪Lj)

νq(σ
∗ϕ)[q]

=
∑

p∈C∩E

ordp(σ∗ϕ)[p]−
∑

q∈C∩(∪Lj)

ordq(σ∗
1

ϕ
)[q]

=
∑

p∈C∩E

(C · E)p[p]−
∑

q∈C∩(∪Lj)

(C · (∪Lj))q[q].

But as divisors of meromorphic functions on Riemann surfaces have
degree 0,

0 = deg((σ∗ϕ)) =
∑

p∈C∩E

(C · E)p −
∑

q∈C∩(∪Lj)

(C · (∪Lj))q
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= (C · E)− degC · degE.

Finally, if C is reducible, break it into irreducible components and
sum the results! �

Remark 12.3.3. In terms of zero-cycles (cf. Remark 12.2.2(a)),
Bézout is saying that C · E has degree degC · degE.

12.4. Proof of Prop. 12.2.3

We now show the symmetry of intersection numbers. Write V =

{f = 0}, W = {h = 0}, p ∈ V ∩ W . For simplicity assume that
p = (0, 0), V and W are irreducible, and the defining (polynomial)
equations are in the form

f = ym+B1(x)ym−1 + · · ·+Bm(x) , h = yn+b1(x)yn−1 + · · ·+bn(x).

We decompose these according to (10.2.1): viz.,

f = u1 · v1 · · · vr , h = u2 · w1 · · ·ws

where the vj, wk are irreducible Weierstrass polynomials. For the roots
of vj [resp. wk] on a slit disk {|x| < ρ, x /∈ R>0} we shall write y(j)

µ (x)

(µ = 1, . . . ,mj) [resp. z(k)
ν (x) (ν = 1, . . . , nk)]. On the non-slit x-disk

these become multivalued, and we will assume that counterclockwise
analytic continuation sends yµ 7→ yµ+1 to keep the numbering simple.
As in §11.2 the ỹ(j)

µ (tmj) [resp. z̃
(k)
ν (tnk)] are well-defined on a small

t-disk {|t| < ρ0}, and we have4

ỹ
(j)
µ+µ0

(tmj) = ỹ(j)
µ ((ζµ0

mj
t)mj)

for some primitive mth
j root of unity ζmj . (This changes the branch you

start at when arg(t) = 0.) Write gj(t) := (tmj , ỹ
(j)
µ (tmj)) and Gk(t) :=

(tnk , z̃
(k)
ν (tnk)) for the parametrizations of {vj = 0} and {wk = 0}.

We then have the key identity

(12.4.1) ±
mj∏
µ0=1

wk

(
tnkmj , ỹ

(j)
µ+µ0

(tnkmj)
)

4Warning: you cannot write (ζµ0
mj t)

mj = (ζmj )
µ0mj tmj = tmj inside the argument

of ỹ(j)µ , since this assumes ỹ(j)µ is well-defined on an entire disk (whereas only its
composition with the mth

j -power map is!).
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=

mj∏
µ0=1

nk∏
ν0=1

{
ỹ

(j)
µ+µ0

(tnkmj)− z̃(k)
ν+ν0

(tnkmj)
}

(12.4.2)
nk∏
ν0=1

vj

(
tnkmj , z̃

(k)
ν+ν0

(tnkmj)
)
,

which uses the factorization of each Weierstrass polynomial into a prod-
uct (for each fixed x) of linear factors. Bearing in mind that rotation
of a disk by 2π/mj does not change the order of a function at 0, we
compute

ord0((12.4.1)) = nk

mj∑
µ0=1

ord0

(
wk(t

mj , ỹ
(j)
µ+µ0

(tmj))
)

= nkmjord0

(
wk(t

mj , ỹ(j)
µ (tmj))

)
= nkmjord0(g∗jwk).

Dividing this by mjnk and applying
∑r

j=1

∑s
k=1 gives

∑
j

ord0

(
g∗j
∏
k

wk

)
=
∑
j

ord0(g∗jh) = (V ·W )p.

Similarly
ord0((12.4.2)) = nkmjord0(G∗kvj),

and dividing out mjnk and summing yields (W · V )p. Q.E.D.

12.5. Proof of prop. 12.2.4

With the same notation as in the last section, we also write out the
irreducible Weierstrass polynomials

vj = ymj + a
(j)
mj−1(x)ymj−1 + · · ·+ a

(j)
0 (x).

Note that a(j)
0 (x) is the product of the multivalued roots y(j)

µ (x). We
have ord(0,0)vj ≤ mj,

∑
j ord(0,0)vj = ord(0,0)f , and

ord(0,0)(vj(x, y)) ≤ ord0(a
(j)
0 (x)) =

1

mj

ord0(a
(j)
0 (tmj))

=
1

mj

ord0

(
mj∏
µ0=1

ỹ
(j)
µ+µ0

(tmj)

)
= ord0(ỹ(j)

µ (tmj)).
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Therefore

(V ·W )p =
r∑
j=1

ord0

(
h(tmj , ỹ(j)

µ (tmj))
)

≥
r∑
j=1

(ord(0,0)h) ·min
{
ord0(tmj), ord0(ỹ(j)

µ (tmj))
}

≥ (ord(0,0)h) ·
r∑
j=1

min
{
ord0(tmj), ord(0,0)(vj(x, y))

}
= ord(0,0)h ·

r∑
j=1

ord(0,0)vj

= ord(0,0)h · ord(0,0)f

= ordpV · ordpW ,

Q.E.D.

Exercises
(1) Let M be a Riemann surface. Show that the divisor map (·) :

K(M)∗ → Div(M) is a homomorphism of (abelian) groups. [Hint:
use local coordinates.]

(2) Compute the intersection multiplicity (V ·W )
(0,0)

for V = {y−λx =

0} and W = {y2 − x3 = 0}. (This will depend on λ ∈ C.)
(3) Let C ⊂ P2 be an algebraic curve of degree n > 1 and L a (pro-

jective) line containing
⌊
n
2

⌋
+ 1 singular points of C. (Note: b·c

is the “greatest integer” function, which takes the greatest integer
less than a given real number.) Use Bezout’s theorem to prove
that C ⊃ L hence cannot be irreducible. [Hint: prove first that the
intersection multiplicity of L and C at each singular point through
which L passes, is at least 2.]

(4) Let C ⊂ P2 be an algebraic curve of degree 4 with 4 singular points.
Using Bezout’s theorem and Prop. 12.2.4, prove that C cannot be
irreducible. [Hint: use the Hint from (3) together with a conic Q
through the following 5 points: the 4 singularities of C plus one
more point of C.]

(5) A degree d algebraic curve C ⊂ P2 can be taken to go through
any (d+1)(d+2)

2
− 1 distinct points. (This is just because dim(Sd3) =

(d+1)(d+2)
2

.) Prove that if all of these points are taken to lie in a
single curve E of degree e < d

2
+ 1, then C is reducible.
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(6) Compute the intersection multiplicity (V ·W )(0,0) for V = {y2−x3 =

0} and (a)W = {x3−x2 +y2 = 0} or (b)W = {(y−x)3−4
√

2xy =

0}.





CHAPTER 13

Meromorphic 1-forms on a Riemann surface

In the next chapter we will see one more application of the normal-
ization business, via intersection numbers: the degree-genus formula.
As more will be needed for its proof, presently we make a detour to
define and study differential forms (with poles) on manifolds – how to
patch them together via local coordinates, how to pull them back under
a morphism, and so forth. Like meromorphic functions, 1-forms have
an associated divisor. In contrast to the function case, the degree of
this divisor is not zero: it tells you the genus of the Riemann surface,
via the so-called Poincaré-Hopf theorem. This result will be key to
proving the Riemann-Hurwitz and genus formulae.

13.1. Differential 1-forms

These are the expressions you integrate over paths in calculus and
complex analysis. For example, on R2

η = F (x, y)dx+G(x, y)dy

is a 1-form. Given a differentiable map

Φ : R2 → R2

given by
(u, v) 7→ (x(u, v), y(u, v)),

the pullback of η by Φ is
(13.1.1)
Φ∗η := F (x(u, v), y(u, v)) d(x(u, v)) +G(x(u, v), y(u, v))d(y(u, v))

=
{
F (x(u, v), y(u, v))∂x

∂u
(u, v) +G(x(u, v), y(u, v)) ∂y

∂u
(u, v)

}
du

+
{
F (x(u, v), y(u, v))∂x

∂v
(u, v) +G(x(u, v), y(u, v))∂y

∂v
(u, v)

}
dv.

A “0-form” is just a function f(x, y), and

Φ∗f := f ◦ Φ = f (x(u, v), y(u, v))

143
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is nothing but precomposing with Φ. (13.1.1) is simply the analogue
for 1-forms of “precomposition with Φ” . This is exactly what you are
doing when you change variables in an integral.

We want to generalize 1-forms from R2 to real 2-manifolds (and then
to complex 1-manifolds), which seems to call for a bit of motivation.

Let M be a differentiable real 2-manifold, f : M → R a differen-
tiable function, and p ∈ M a point. If M ⊂ R3, then the notion of
“taking partial derivatives of f at p in directions tangent to M ” makes
immediate sense – you just precompose f with a (differentiable) path
in M having a given tangent at p, and differentiate with respect to the
variable parametrizing this path.

In abstract differential topology, one has no embedding in R3. Rather,
the differentiability of M is arranged by requiring the transition func-
tions Φαβ relative to local coordinates on an open cover, to be smooth:

R
2

R
2

(x  ,y  )(x  ,y  )

Uαβ UU
β α

α α

Φ

V V

αβ

β

β α

β

Vβ
α

V
β
α

(This was discussed at the beginning of §2.2.) One then defines the
tangent spaces

TpM := vector space of linear differential operators (at p)

∼= R

〈
∂

∂xα

∣∣∣∣
p

,
∂

∂yα

∣∣∣∣
p

〉
and tangent bundle

TM := ∪p∈MTpM.
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One has a projection map π : TM → M with π−1(p) = TpM . A
global section of TM , that is, is a smooth1 map σ : M → TM with
π ◦ σ = idM , is called a vector field on M . (Typically one writes ~v,
with the understanding that ~v(p) ∈ TpM .)

Now integration is dual to differentiation, so differentials are dual
to tangent vectors. For ∂

∂xα
, ∂
∂yα

a dual basis (for the dual vector space)
is dxα, dyα: we write

dx

(
∂

∂x

)
= 1 , dy

(
∂

∂x

)
= 0 ,

dx

(
∂

∂y

)
= 0 , dy

(
∂

∂y

)
= 1.

The cotangent spaces are then

T ∗pM
∼= R

〈
dxα|p , dyα|p

〉
.

Global sections of the cotangent bundle T ∗M = ∪p∈MT ∗pM are then
the differential 1-forms onM . In local coordinates a differential 1-form
η looks like:

(13.1.2) ηα = Fα(xα, yα)dxα +Gα(xα, yα)dyα.

Just as a function on M given locally by {gα : Vα → R} must satisfy

gβ|V αβ =
(
gα|V βα

)
◦ Φαβ

(
= Φ∗αβ

(
gα|V βα

))
,

the {ηα} are subject to compatibility conditions

ηβ|V αβ = Φ∗αβ

(
ηα|V βα

)
.

Now since M (hence each Φαβ) is smooth, smoothness of ηα (i.e. of Fα
and Gα in (13.1.2)) is preserved under pullback, and it makes sense to
define

A1
R(M) := smooth, real-valued 1-forms on M

= collections {ηα} with {Fα, Gα} infinitely differentiable.

For a complex 1-manifold, which we recall from is a special kind
of smooth real 2-manifold (the Φαβ are conformal), the labels on the
diagram change:

1to define smoothness one has to put a manifold structure on TM , which I won’t
do here.
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Uαβ UU
β α

Φ

V V

C C

z z

αβ

αβ

β α
Vβ

α
V

β
α

Omitting subscript α’s for the moment, and writing a subscript C to
indicate ⊗RC, one has

TC,pM = C

〈
∂

∂x

∣∣∣∣
p

,
∂

∂y

∣∣∣∣
p

〉
∼= C

〈
∂

∂z

∣∣∣∣
p

,
∂

∂z̄

∣∣∣∣
p

〉

T ∗C,pM ⊗ C = C
〈
dx|p , dy|p

〉
∼= C

〈
dz|p , dz̄|p

〉
,

where ∂
∂z

:= 1
2

(
∂
∂x
−
√
−1 ∂

∂y

)
, ∂
∂z̄

:= 1
2

(
∂
∂x

+
√
−1 ∂

∂y

)
, dz := dx +

√
−1dy, dz̄ := dx −

√
−1dy. (This makes dz( ∂

∂z
) = 1, dz( ∂

∂z̄
) = 0,

dz̄( ∂
∂z

) = 0, dz̄( ∂
∂z̄

) = 1 so that the bases are dual.) A smooth section
of the complexified cotangent bundle T ∗CM thus looks locally like

F (x, y)dz +G(x, y)dz̄

= (F +G)dx+
√
−1(F −G)dy,

for F andG smooth (infinitely differentiable) complex-valued functions.
The 1-forms we are after are substantially more restricted:

Definition 13.1.1. A holomorphic [resp. meromorphic] 1-form
ω ∈ Ω1(M) [resp. K1(M)]2 is a collection of expressions

ωα = fα(zα)dzα , with fα : Vα → C holomorphic [resp. meromorphic],

satisfying

(13.1.3) ωβ|V αβ = Φ∗αβ

(
ωα|V βα

)
∀α, β.

2recall the notation K(M) for meromorphic functions; this is short for K0(M), as
one can think of such functions as meromorphic 0-forms.
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Explicitly, (13.1.3) says that

fβ(zβ)dzβ = fα(Φαβ(zβ))d(Φαβ(zβ))

= fα(Φαβ(zβ))Φ′αβ(zβ)dzβ,

and is thus equivalent to

(13.1.4) fβ(zβ) = fα(Φαβ(zβ))Φ′αβ(zβ).

Given ω1, ω2 ∈ K1(M), we can consider their quotient as a mero-
morphic function ω1

ω2
∈ K(M). This is because in local coordinates, one

can “cancel the dz’s” – viz., fα(zα)dzα
gα(zα)dzα

= fα(zα)
gα(zα)

– and the compatibility
condition (13.1.4) implies that such quotients do patch together (the
Φ′αβ(zβ) factors cancel). Conversely, a meromorphic function times a
meromorphic 1-form gives a new meromorphic 1-form.

Example 13.1.2. OnM = P1, let ω1 = ω be arbitrary and ω2 = dz.
Here z = Z1

Z0
on P1 as usual, and dz looks as if it should be not just

meromorphic but holomorphic. But in the “coordinate at ∞” w = Z0

Z1
,

dz becomes d( 1
w

) = −dw
w2 . So dz in fact has a pole of order 2 at [0 : 1].

Now consider F (z) := ω1

ω2
= ω

dz
∈ K(P1)(∼= C(z) by Thm. 3.1.5(a));

we have then ω = F (z)dz. Therefore

K1(P1) =

{
P (z)

Q(z)
dz

∣∣∣∣ P ∈ C[z], Q ∈ C[z] \ {0}
}
.

Example 13.1.3. For M = C/Λ a complex 1-torus, write u for the
coordinate on C. Since each transition function Φαβ sends u 7→ u + λ

(for some λ ∈ Λ), their derivatives Φ′αβ are all identically 1. Hence, du
gives a well-defined global holomorphic 1-form on M (i.e. belongs to
Ω1(C/Λ)).

So take ω1 = ω arbitrary, ω2 = du. The same argument as above,
using Thm. 3.1.5(b), gives

K1(C/Λ) ∼= {f(u)du | f = Λ-periodic meromorphic function on C} .

Example 13.1.4. Let f ∈ K(M) be a meromorphic function. We
can represent f as a collection of maps fα : Vα → P1. The 1-forms
dfα := dfα

dzα
dzα are then compatible (via pullback) with the transition
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functions, as in (13.1.3); hence, they patch together to give a global
meromorphic 1-form df ∈ K1(M). We will refer to this as the differen-
tial of f .

Let ω ∈ K1(M) be given by a collection {fα(zα)dzα}; we would like
to define its order νp(ω) at a point p ∈ Uα ⊂M . We simply set

νp(ω) := νzα(p)(fα);

if this is negative ω has a pole at p. As a well-definedness check, suppose
p ∈ Uβ also. Then (using (13.1.4))

νp(fβ) = νp
(
fα · Φ′αβ(zβ)

)
= νp(fα)

since, as a biholomorphism, Φαβ must have nonvanishing derivative at
every point. If ω has a pole at p ∈ Uα, then its residue is

Resp(ω) := Reszα(p)(fα) =
1

2π
√
−1

˛
Cε(p)

fα(zα)dzα

where Cε(p) is a small circle (in Vα) about zα(p). The well-definedness
check boils down to change of variable in the integral.

Let ω = {fα(zα)dzα} ∈ K1(M) be a form, and γ = ∪γα ⊂ M be a
smooth real closed curve.3 Then we defineˆ

γ

ω :=
∑
α

ˆ
γα

fα(zα)dzα,

where we observe that 1-forms have been set up so that the right-hand
side is independent of choices of local coordinates and the partition of
γ into local pieces. The following can be viewed as a version of either
Stokes’s theorem or Cauchy’s theorem.

Proposition 13.1.5. Let Γ ⊂M be a closed region4 with piecewise
smooth boundary ∂Γ = γ.

3A “real curve” means something 1-dimensional over R (not C), so you should think
of a closed path on the Riemann surface; and γα ⊂ Uα are the segments from which
the path is pieced together.
4the technical term here is 2-chain, though we won’t get into this here
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M

U

γΓ

Assume that the meromorphic form ω is holomorphic on some open set
U containing Γ. Then ˆ

γ

ω = 0.

Proposition 13.1.6. Again let ∂Γ = γ, but assume that ω is only
holomorphic on an open set containing γ (so that Γ may contain poles
of ω).

M

p
ν (ω)<0p

γ

Γ

(a) Then we have the residue formula

1

2π
√
−1

ˆ
γ

ω =
∑
p ∈ Γ

νp(ω) < 0

Resp(ω).

(b) In general for ω ∈ K1(M),
∑

p∈M Resp(ω) = 0.

Proof. For the residue formula (a), take γ0 be a sum of circular
paths about those p ∈ Γ where ω has poles. Let Γ0 be the complement
in M of the union of disks containing these {p}, with ∂Γ0 = γ0. Apply
Prop. 13.1.5 to the pair Γ− Γ0, γ − γ0.

Applying the residue formula to the case Γ = M , γ = ∅ gives
(b). �

Corollary 13.1.7. Consider a nonconstant meromorphic function
f ∈ K(M). Then
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(a)
∑

p∈M νp(f) = 0, i.e. the number of zeroes (counted with mult-
plicity) equals to number of poles (counted with multplicity); and

(b) #{f−1(α)} (counted with multplicity) is independent of α ∈ P1.

Proof. (a) is Prop. 13.1.6(b) applied to ω = df
f
. Replacing f by

f − α, and noting that the number of poles doesn’t change, by (a) the
number of zeroes can’t change either, giving (b). �

Definition 13.1.8. The degree of f , deg(f), is defined to be the
number in Cor. 13.1.7(b). Thinking of f as a covering map from
M → P1, deg(f) can be visualized as the number of branches (or
“sheets”).5

Remark 13.1.9. We have said nothing about
´
γ
ω when γ is not a

boundary:

M

γ

Indeed, there is nothing we can say yet – this is the study of periods,
which depend on the complex analytic structure of M . We will be able
to compute some periods of holomorphic forms on algebraic curves later
in the course.

13.2. Poincaré-Hopf theorem

The usual statement of this theorem is that the sum of indices of
any6 vector field ~v on a compact oriented smooth manifold M is equal
to the Euler characteristic χM ; we’ll only worry about the case where
the real dimension of M is 2. In that case, the index Indp(~v) of ~v at
p ∈ M is the number of counterclockwise rotations done by (the head
of) ~v as one goes once counterclockwise on a small circle about p. It
can only be nonzero if ~v(p) = 0.

5you may wish to refer back to Remark 3.1.7
6technical point: ~v should have only finitely many zeroes
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I’ll give a heuristic proof of the italicized statement, which is prob-
ably more illuminating than a formal one. Subdivide a given compact
smooth oriented real 2-manifold M into triangles:

etc.

Then put one marked point on each edge, vertex, and face of the tri-
angulation:

Next draw the following vector field on each triangle:

These match up to give a global vector field onM . Evidently the index
of this ~v is −1 at the marked points on the edges, and +1 at the marked
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points on the faces and vertices. Hence,

(13.2.1)
∑
p∈M

Indp(~v) = #F −#E + #V = χM = 2− 2g

where g is the genus of M . That (13.2.1) holds for any vector field ~v
on M is the version of the theorem proved by Poincaré. It still holds
if we allow ~v to have singularities at a finite set of points {p1, . . . , pn}
(i.e. it is just a section over M\{p1, . . . , pn}), provided one adds the
indices of ~v at the pi to the sum.

In fact, (13.2.1) even holds if ~v is replaced by a smooth 1-form
η ∈ A1

R(M\{p1, . . . , pn}). The idea is to use a metric on M , i.e. a
nonvanishing section of Sym2(T ∗M), to smoothly identify TM with
T ∗M . The corresponding notion of index, if (in local coordinates at p)
η takes the form Fdx+Gdy, is

(13.2.2) Indpη :=
1

2π

‰
d arctan

(
G

F

)
,

and once again the sum in (13.2.1) must be over all zeroes of η and the
{pi}.

Now letM be a compact complex 1-manifold, and write ω ∈ K1(M)

be locally in the form f.dx + g.dy where f, g are complex-valued. To
get in the above setting, we may of course view M as a smooth real
2-manifold, and take the real part of ω:

η := <(ω)
loc
= <(f)dx+ <(g)dy.

Let p be a zero or pole of ω, and put ν = νp(ω). Of course, in a local
holomorphic coordinate z about p with z(p) = 0, we have7

ω
loc
≈ zνdz = rν

(
cos(νθ) +

√
−1 sin(νθ)

)
(dx+

√
−1dy)

= rν
(
cos(−νθ)−

√
−1 sin(−νθ)

)
dx+rν

(
sin(−νθ) +

√
−1 cos(−νθ)

)
dy.

So locally we have for the real part
η

rν
≈ cos(−νθ)dx+ sin(−νθ)dy,

and thus by (13.2.2)

Indp(η) =
1

2π

˛
d[−νθ] = −ν = −νp(ω)

7up to multiplication by a locally nonvanishing holomorphic function (which will
not affect index)
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=⇒
∑
p

νp(ω) = 2g − 2.

We have arrived at the following corollary of (13.2.1), which will hence-
forth be the meaning of “Poincaré-Hopf” for us:

Theorem 13.2.1. Let ω ∈ K1(M)∗ be a nonvanishing meromorphic
1-form on a Riemann surface of genus g. Then

(# of zeroes − # of poles︸ ︷︷ ︸)
counted with multiplicity

of ω = 2g − 2.

Remark 13.2.2. Just as for meromorphic functions we can consider
the divisor

(ω) :=
∑
p∈M

νp(ω)[p]

of a meromorphic 1-form. In this context, the Theorem says that

deg((ω)) = 2g − 2.

Exercises
(1) Let E = {y2 − 4x3 − 4x = 0}, ω = dx

y

∣∣∣
E
∈ Ω1(E). (We can

talk about holomorphic 1-forms on a smooth algebraic curve now,
because they are Riemann surfaces by the “smooth normalization”
Prop. 7.1.) Consider the complex analytic automorphism A : E →
E sending (x, y) 7→ (−x, iy), and “apply” this to the 1-form: com-
pute the pullback A∗(ω).

(2) (a) In Example 13.1.2, dz defines a meromorphic differential 1-form
on P1. Compute its divisor (dz). Explain why Ω1(P1) = {0}. (b)
What is the divisor of du on C/Λ, from Example 13.1.3? Explain
why it is the unique holomorphic 1-form on C/Λ up to scale.

(3) Practice with pullbacks: for the map Φ : R2 → R2 that sends
(x, y) 7→ (u(x, y), v(x, y)) := (x2−3xy, y3+x), compute Φ∗ω where
ω = udv + vdu. Write it in the form f(x, y)dx+ g(x, y)dy.

(4) Continuing from Exercise 5 of Chapter 3, compute the pullback of
dx
y

under ϕ : P1 → C. [Hint: simply plug in your final x(z) and
y(z) from that exercise. After simplification, your answer should
be very simple indeed.]





CHAPTER 14

The genus formula

We are ready to prove two formulas for the genus of a Riemann
surface (RS) which are especially useful in algebraic geometry. For
the first result (the Riemann-Hurwitz formula), the RS will arise as a
finite branched cover of another RS whose genus is known. The proof
makes essential use of Poincaré-Hopf and a ramification divisor which
we introduce below. For the second result, which is an application
of the first (and of the intersection theory from Chap. 12), the RS
will arise as the normalization of an irreducible algebraic curve in P2

with only ordinary double point (ODP) singularities. (In fact, the 4H
people will, in their reading material, learn how to deal with worse
singularities later.) This is a very concrete payoff for the preceding
hard work: now we can compute the genus of [the desingularization of]
a projective algebraic curve!

14.1. Order and multiplicity for maps of Riemann surfaces

Consider a nonconstant morphism f : M → M ′ of Riemann sur-
faces with f(p) = q. In Exercise 4 of Chapter 3, the following was
established: there exist

• neighborhoods U 3 p, V 3 q with f(U) ⊂ V , and
• local holomorphic coordinates z : U → C and w : V → C with
z(p) = 0 = w(q),

such that w ◦ f = zν for some unique ν ∈ N. More informally, in
these local coordinates f “takes the form” (w =)f(z) = zν . We write
νp(f) := ν. This is the ramification index, and f ramifies at p precisely
when it exceeds 1.

For any q ∈M ′, consider the sum

d(q) :=
∑

p∈M with f(p)=q

νp(f).

155
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If a ramification point p of index d lies over q, then over a nearby point
q0, p is replaced by d points with ramification index 1. This is by virtue
of the local form w = zν , as is the fact that the ramification points are
isolated hence finite in number (M is compact!). Evidently then, d(q)

is constant in q; we will call this constant d ∈ N the degree deg(f) of
the morphism f .1

Here is a more gentrified way to define this. We can think of a point
q ∈M ′ as a divisor [q] ∈ Div(M), and “pull it back” to a divisor on M
by the formula2

f−1([q]) :=
∑
f(p)=q

νp(f)[p] ∈ Div(M).

We then put (for any q ∈M ′, it doesn’t matter)

deg(f) := deg
(
f−1([q])

) =
∑
f(p)=q

νp(f)

 .

Associated to f : M →M ′, finally, is the ramification divisor

Rf :=
∑
p∈M

(νp(f)− 1) [p] ∈ Div(M).

By the above remarks, the sum is clearly finite.

14.2. Riemann-Hurwitz formula

Again take f : M → M ′ to be a nonconstant morphism, write
d := deg(f), and put

r := deg(Rf ).

In the following g resp. g′ will refer to the genus of M resp. M ′.

Theorem 14.2.1. r = 2 {g + d− dg′ − 1}.

Remark 14.2.2. Some alternative ways to write this result are:
(i) g = (g′ − 1)d+ r

2
+ 1

(ii) χM = deg(f)χM ′ − deg(Rf )

These better represent the way you want to think of it: as a formula

1when f is a nonconstant map from M to P1, you can think of it as a meromorphic
function and take the degree of its divisor, deg((f)), which is always 0. Or, you
can think of it as a morphism of Riemann surfaces and take deg(f), which is never
0. So that extra parenthesis matters!
2This extends linearly to define f−1(D) for any D ∈ Div(M).
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for the genus (or Euler characteristic) of M , if you know that of M ′

and data about how M “sits over” M ′.

Proof. For p ∈ M with a = νp(f), we choose local coordinates
z, w as in §14.1 so that z f7→ za(= w).

We shall need to assume the existence of a nonzero meromorphic
1-form ω ∈ K1(M ′). This is obvious if M ′ arises as the normaliza-
tion of an algebraic curve in P2, as you can just pull back any non-
constant meromorphic function (say, Z1/Z0) and take its differential.
Every Riemann surface arises in this way, but to see that you need
the Riemann-Roch theorem. We proceed with the proof modulo this
detail.

Locally writing ω = g(w)dw, we have

f ∗ω
loc
= g(za)d(za) = a.g(za)za−1dz ,

hence

νp(f
∗ω) = a.ν0(g) + (a− 1) = νp(f).νf(p)(ω) + (νp(f)− 1).

In Div(M) we have therefore

(f ∗ω) :=
∑
p∈M

νp(f
∗ω)[p] =

∑
p

νp(f).νf(p)(ω)[p] +
∑
p

(νp(f)− 1) [p]︸ ︷︷ ︸
Rf

=
∑
q∈M ′

νq(ω)
∑
f(p)=q

νp(f)[p] + Rf

=
∑
q∈M ′

νq(ω)f−1([q]) + Rf

= f−1

(∑
q

νq(ω)[q]

)
+ Rf

= f−1((ω)) +Rf ,

where (ω) ∈ Div(M ′).
Now f ∗ω ∈ K1(M), so Poincaré-Hopf on M tells us that

2g − 2 = deg ((f ∗ω))

which by the computation just done

= deg
(
f−1((ω))

)
+ degRf
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=
∑
q

νq(ω)
∑
f(p)=q

νp(f)︸ ︷︷ ︸
deg(f)

+ r

= deg(f)
∑

νq(ω)︸ ︷︷ ︸
deg((ω))

+ r.

Applying Poincaré-Hopf once more (but on M ′), we get that this

= d(2g′ − 2) + r.

So we have shown 2− 2g = d(2− 2g′)− r, which is the version of R-H
stated in Remark 14.2.2(ii). �

We turn to some examples.

Example 14.2.3. Let C = {y2 =
∏2m

i=1(x−αi)} ⊂ C2, and letM be
the normalization of its projective closure C̄ ⊂ P2. The original curve
had a projection map to the x-axis ((x, y) 7→ x), and this extends to

f : M → P1 =: M ′,

as depicted below:

f

ramification points

Clearly g′ = 0, d = 2, and

r =
∑

(νp(f)− 1) = 2m

since νp(f) − 1 = 1 at each of the ramification points. So by Remark
14.2.2(i)

g = (0− 1).2 +
2m

2
+ 1 = m− 1.

Example 14.2.4. Let M = M ′ = C/Λ be a complex 1-torus; as
usual Λ = {m1λ1 +m2λ2 | m1,m2 ∈ Z}, where λ1, λ2 ∈ C are inde-
pendent over R. Now assume αΛ ⊆ Λ for some α ∈ C∗. Then we have
a “complex multiplication” map

M
f−→M ′
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z 7−→ αz

which has Rf = 0. You will treat this setting in an exercise below.

14.3. The genus of a projective algebraic curve

Let C = {F (Z,X, Y ) = 0} ⊂ P2 be an irreducible algebraic curve
of degree d with S = sing(C) its set of singular points. We assume that
these are all ordinary double points, and that there are exactly |S| = δ

of these; write S = {p1, . . . , pδ}. Of course, δ = 0 ⇐⇒ S = ∅ ⇐⇒
C is smooth.

Denoting by σ : C̃ � C its normalization, we shall deduce from
Theorem 14.2.1 the formula:

Theorem 14.3.1. C̃ has genus

g =
(d− 1)(d− 2)

2
− δ.

To get a feel for this before launching into the proof, for C smooth
we have

d = 1 =⇒ g = 0,

d = 2 =⇒ g = 0,

d = 3 =⇒ g = 1,

d = 4 =⇒ g = 3,

and so on. For degree 3 with one ODP, we get

g =
(3− 1)(3− 2)

2
− 1 = 0,

as we found using stereographic projection. Indeed, we know how to
parametrize all three genus 0 cases (smooth d = 1, 2; singular d = 3)
by a Riemann sphere.

The rest of this section is devoted to the proof. Begin by choosing
coordinates on P2 so that

• L∞ ∩ C consists of d distinct points,
• none of the tangents to C at its ODP’s are vertical (i.e. of the
form X = aZ), and
• C does not contain [0 : 0 : 1].

The latter requirement allows us to project from [0 : 0 : 1]: that is, the
map

C
x−→ P1 =: M ′
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given by
[Z : X : Y ] 7→ [Z : X],

roughly speaking the “projection of C to the x-axis”, is well-defined.
Writing M := C̃, the main idea of the proof of to apply Riemann-
Hurwitz to the composition f = x ◦ σ : M → M ′. In a picture, where
“VT” refers to a point with vertical tangent:

P
1

C

Cσ

x

ODP

VT
VT

Now for M ′ = P1, g′ = 0 so that Thm. 14.2.1 gives

(14.3.1) rf = 2(genus(M) + deg(x)− 1) = 2(g + d− 1).

In particular, the degree of the map x is d because the projection is
done along vertical lines, all but finitely many such lines meet C in d
points by Bezout, and σ is 1-to-1 off finitely many such points. So we
see that if we can compute the degree of the ramification divisor Rf

then we are done.
To do this, let

E := {FY = 0}

where FY is the partial derivative. Obviously deg(E) = d − 1, and so
by Bézout,

(14.3.2) (E · C) = (d− 1)d.
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Denoting by
∑′

p the sum over points where C has a vertical tangent,
and by

∑δ
j=1 the sum over ODP’s, we have

(E · C) =
∑
p

′
(E · C)p +

δ∑
j=1

(E · C)pj .

We will show

(14.3.3) Rf =
∑
p

′
(E · C)p[p̃]

where p̃ = σ−1(p) ∈ C̃. (Recall that by our choice of coordinates, a
point with vertical tangent cannot be a singular point, and so has a
unique preimage point under normalization.) Taking degrees of both
sides of (14.3.3) gives

(14.3.4) rf =
∑
p

′
(E · C)p = (E · C)−

δ∑
j=1

(E · C)pj .

Further, we will deduce that

(14.3.5) (E · C)pj = 2 (∀j);

together with (14.3.2) and (14.3.3), this yields

rf = d(d− 1)− 2δ.

Now put this together with (14.3.1) to get

2g + 2(d− 1) = d(d− 1)− 2δ,

2g = (d− 2)(d− 1)− 2δ,

and divide the last line by 2 to get Theorem 14.3.1. It remains only to
check (14.3.3) and (14.3.5).

If C has a VT at p, then F (p) = FY (p) = 0; this implies p ∈ C ∩E.
By assumption, p is a smooth point, so that3 FX(p) 6= 0. By the
holomorphic implicit function theorem, we can parametrize C locally
by writing x = X/Z as an implicit function of y = Y/Z, viz.

0 = F (1, x(y), y).

3if FX(p) = 0 then FZ(p) = 0 too by the Euler formula, contradicting smoothness
at p
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Now, differentiating gives

0 =
d

dy
F (1, x(y), y) = FX(1, x(y), y) · x′(y) + FY (1, x(y), y).

For the two functions on the right-hand side to sum to zero, they must
have the same order to y(p):

ordy(p)FY (1, x(y), y) = ordy(p)x
′(y),

in other words
(E · C)p = {ordy(p)x(y) − 1}

= {νp(x)− 1}

= {νp̃(f)− 1}.

As the only ramification points of f are (σ−1 of) vertical tangent points,

Rf :=
∑
q∈C̃

(νq(f)− 1)[q] =
∑
p

′
(E · C)p[p̃]

as claimed.
Finally, to see (14.3.5), assume for simplicity (for some j) pj =

(0, 0). The local affine equation about an ODP is of the form

F (1, x, y) = ax2 + 2bxy + cy2 + {higher-order terms}.

To find the tangent lines, recall that one solves

0 = ax2 + 2bxy + cy2 =
(
x y

)( a b

c d

)
︸ ︷︷ ︸

B

(
x

y

)

in P1 (for their “slopes”). That the solution Q consists of two distinct
points (as pj is an ODP) =⇒ Q is “smooth” =⇒ detB 6= 0 =⇒
ac − b2 6= 0. That there is no vertical tangent =⇒ [x : y] = [0 : 1] is
not a solution =⇒ c 6= 0. Consider the partial

FY (1, x, y) = 2bx+ 2cy + {higher-order terms}

whose vanishing defines E; evidently E can be locally parametrized
about pj by

y = y(x) = −b
c
x+ {higher-order terms}.
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To compute its intersection number against C, we pull the defining
equation of C back along this parametrization and take the order at 0:

(E · C)(0,0) = ord0(F (1, x, y(x)))

= ord0

(
ax2 + 2bx · y(x) + c(y(x))2 + {higher-order terms}

)
= ord0

(
ac− b2

c
x2 + {higher-order terms}

)
= 2 ,

Q.E.D.

14.4. Beyond stereographic projection

The genus formula is very nice, but needs to pass a smell test: if it
says that a curve C ∈ P2 has genus zero normalization, then we should
be able to parametrize C by the unique genus zero Riemann surface
P1. We know that this can be done for a smooth conic and a nodal
cubic (i.e. a cubic with one ODP); the first new case predicted by the
formula is that of an irreducible4 quartic curve (d = 4) with 3 ODP’s
(δ = 3):

g =
(4− 1)(4− 2)

2
− 3 = 0.

Let’s give this a try. Write {pi}i=0,1,2 for the ODP’s, and suppose
another curveD passes through one of these: then by 12.2.4, (C ·D)pi ≥
2. If D is a line, then it cannot pass through all 3 pi, as then we would
have

4 = degC · degL = (C · L) ≥
2∑
i=0

(C · L)pi ≥ 6,

a contradiction. So the ODP’s are not collinear, and by a similar argu-
ment5 if p3 is any fixed smooth point of C, then no three of p0, p1, p2, p3

are collinear. We may therefore move C (and the pi) by a projectivity
of P2, to have p0 = [1 : 0 : 0], p1 = [0 : 1 : 0], p2 = [0 : 0 : 1],
p3 = [1 : 1 : 1]. (We’ll do so for this abstract analysis but not for the
concrete example that follows.)

The general conic in P2 is of the form

aXY + bY Z + cXZ + dX2 + eY 2 + fZ2 = 0.

4We have to say C is irreducible explicitly, because the union of a smooth cubic
and a general line is a quartic with 3 ODP’s.
5the 6 gets replaced by a 5 in the inequality above
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By substitution, we find that the general conic through the above four
points is of the form

Q[a:b] = {aXY + bY Z − (a+ b)XZ = 0}.

This is a 1-parameter family parametrized by [a : b] ∈ P1.
The zero-cycle (cf. Remark 12.2.2(a)) Q[a:b] · C has degree 8 by

Bézout, and is of the form 2[p0] + 2[p1] + 2[p2] + [p3] + more. This
“more” can only be one more point q[a:b] with multiplicity one, since
what is already written has degree 7 (and by construction, one doesn’t
have negative intersection numbers). Naturally, q could be one of the
pi: if it is p3, then this would say that Q is tangent to C there. Define
a map

σ : P1 → C

by

[a : b] 7→ q[a:b] (:= Q[a:b] · C − {2[p0] + 2[p1] + 2[p2] + [p3]}).

In fact, this is a morphism of complex manifolds from P1 → P2 (I
won’t prove this carefully). Also, since C is irreducible, that σ is onto
essentially follows from the open mapping theorem and compactness of
P1.

We claim that σ is 1-to-1 off the singular points of C. Take q ∈ C
distinct from the pi; since no three of the pi are collinear, no four of
q, p0, p1, p2, p3 are collinear, so there exists a unique conic Q through
all five. (The uniqueness when q = p3 then essentially follows from
continuity of σ.)

Example 14.4.1. So what does such a normalization look like?
Take the very concrete quartic curve

C = {X2Z2 + Y 2Z2 + 2X2Y 2 = 0}.

Irreducibility can be checked by putting the polynomial in affine form
y2(1+2x2)+x2 and showing it doesn’t factor into terms of lower degree
in y. I will let you check that the only singularities are p0 = [1 : 0 : 0],
p1 = [0 : 1 : 0], p2 = [0 : 0 : 1]; pick p3 := [i : 1 : 1] (i =

√
−1). The

general conic through these 4 points is

Q[α:β] := {αXZ + βY Z = i(α + β)XY }.
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Substituting this into α2 times the equation of C gives

0 = (i(α + β)XY − βY Z)2 + α2Y 2Z2 + 2α2X2Y 2 = · · ·

= (β2 + α2)Y 2(Z − iX)

(
Z − i2αβ + β2 − α2

β2 + α2
X

)
,

in which the last factor gives us the x
(
= X

Z

)
-coordinate of the point

q[α:β]. The y-coordinate is obtained by substituting into the equation
of Q, and we find σ([α : β]) =[

i(2αβ + α2 − β2)(2αβ + β2 − α2) : (α2 + β2)(2αβ + α2 − β2)

: (α2 + β2)(2αβ + β2 − α2)
]
.

Or, in affine coordinates (t = β
α
in particular),

σ(t) =

(
−i 1 + t2

t2 + 2t− 1
, i

1 + t2

t2 − 2t− 1

)
.

Exercises
(1) Recall the setup of Riemann-Hurwitz: C, C ′ compact RS with g =

genus(C), g′ = genus(C ′), f : C → C ′ nonconstant holomorphic
map of degree d. Show that for any d ≥ 1, g ≥ g′. (The covering
surface “has at least as many handles”.)

(2) Let z = Z1

Z0
(where [Z0 : Z1] are the homogeneous coordinates) be

the “canonical coordinate” on P1. If a holomorphic map f : P1 → P1

takes the form f(z) = zn + a1z
n−1 + . . .+ an, then

(a) What is deg(f)?
(b) What can you say about the ramification divisor Rf? (at least,
what is its degree?)
(c) Use Riemann-Hurwitz to check your answers.

(3) Let C = C/Λ where Λ = {mλ1 + nλ2 |m,n ∈ Z} is a lattice in
C. (In particular, λ1 and λ2 are independent over R.) Suppose
that α ∈ C∗ satisfies αΛ ⊆ Λ. [Remark: if α /∈ Z this places a
strong condition on Λ; we say Λ, or C, “has complex multiplication
(or CM ).”] The multiplication by α induces a holomorphic map
µα : C → C, i.e. an automorphism of the RS C.
(a) Show that the ramification divisor R ∈ Div(C) for this map is
zero.
(b) Prove that the degree of µα equals the index [Λ : αΛ] of the
image lattice α · Λ ⊆ Λ.
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(4) Find the genus of the normalization C̃ of the irreducible curve C
given by taking the closure of x2 + x2y2 + y2 = 0 in P2. (First
convert to homogeneous coordinates and check for singularities.
Then apply the genus formula. This is very similar to something
above...)

(5) This problem complements (3) above, but you won’t use anything
from this chapter in doing it. A (holomorphic) map f : C

Λ
→ C

Λ
of

Riemann surfaces is nothing but an analytic map f̃ : C → C (i.e.
an entire function) such that for all λ ∈ Λ, z ∈ C,

(∗) f̃(z + λ)− f̃(z) ∈ Λ,

i.e. z1 ≡ z2 mod Λ =⇒ f̃(z1) ≡ f̃(z2) mod Λ (this is just the well-
definedness condition for f). Show that such a map is necessarily
affine, i.e. of the form

f̃(z) = αz + β.

[If α other than α ∈ Z works, then we are of course in the CM
case described above. So a non-CM complex 1-torus, which is the
“generic” case, has endomorphisms of the form z 7→ nz + β, n ∈ Z,
and that’s all.] Hint: consider f̃ ′(z), and use (∗).



CHAPTER 15

Some applications of Bézout

We have already put Bézout’s theorem to use in proving the genus
formula (and in several interesting exercises at the end of Chapter
12). Now we shall use it to prove a general result on curves through
configurations of points, which in particular will yield a short (and
rigorous) proof of Pascal’s theorem from Chapter 1. We shall also
deduce some results on cubics will will come in handy in studying the
group law on elliptic curves.

Throughout this Chapter we shall use the following dictionary:

algebraic curve ⊂ P2 degree
defining equation

(homogeneous polynomial)

C d F ∈ Sd3
D d G ∈ Sd3
E e H ∈ Se3

Recall the theorem we are wanting to apply:

Bézout. C∩E is 0-dimensional (consists of points) =⇒ (C ·E) =

de.

Part of the content of the (equivalent) contrapositive statement is:

tuozéB. The number of points |C ∩ E| exceeds de =⇒ E and C
have a common component.

From Chapter 9, we have:

Study. E irreducible and E ⊂ C =⇒ H divides F .

Putting tuozéB and Study together gives:

BS. E irreducible and |C ∩ E| > de =⇒ H |F .

We’ll make use of this statement below.
167



168 15. SOME APPLICATIONS OF BÉZOUT

15.1. Cayley-Bacharach theorem

Let p1, . . . , pn ∈ P2 be distinct points, and define

Sd(p1, . . . , pn) :=
homogeneous polynomials (of degree d)
in [Z : X : Y ] vanishing at p1, . . . , pn.

Lemma 15.1.1. Suppose E is irreducible and p1, . . . , pa ∈ E for
some a > ed, while pa+1, . . . , pn /∈ E. Then

Sd(p1, . . . , pn) = H · Sd−e(pa+1, . . . , pn).

Proof. The inclusion of the RHS into the LHS is easy, since it is
just saying that the product of a polynomial vanishing at the last n−a
points by a polynomial vanishing at the first a points, vanishes at all
of them. So we turn to the reverse inclusion.

Assuming Sd(p1, . . . , pn) is nonzero, take a nonzero element F ; this
defines a degree d curve C containing p1, . . . , pn. Clearly p1, . . . , pa ∈
C ∩ E, so |C ∩ E| > ed, and by “BS”, H |F . We can therefore write
F = F0 ·H with F0 ∈ Sd−e. Since F = 0 but H 6= 0 at pa+1, . . . , pn, F0

must vanish at these points. It follows that F0 ∈ Sd−e(pa+1, . . . , pn) as
desired. �

Theorem 15.1.2. Let E be irreducible, |C ∩ D| = d2 with d > e,
and assume exactly1 ed of the points of C ∩ D lie on E. Then the
remaining d(d − e) points lie on a (not necessarily irreducible!) curve
of degree ≤ d− e.

Proof. Let [A : B : C] ∈ E\{(C ∩ D) ∩ E}, and set λ =

F (A,B,C), µ = −G(A,B,C). Define P := λG + µF ∈ Sd; this van-
ishes on C ∩D and at [A : B : C]. Label (C ∩D)∩E =: {p1, . . . , ped},
[A : B : C] =: ped+1, and (C ∩D)\{(C ∩D) ∩E} = {ped+2, . . . , pd2+1};
set a := ed+ 1 and n = d2 + 1.

Since a > ed, Lemma 15.1.1 tells us that Sd(p1, . . . , pd2+1) = H ·
Sd−e(ped+2, . . . , pd2+1). But then, since P ∈ Sd(p1, . . . , pd2+1), we have
P = HP0 for some P0 ∈ Sd−e(ped+2, . . . , pd2+1). This P0 defines the
required curve. �

Here is the nice application to Pascal:
1it is enough to check, in applying this, that ed of the points (not “exactly ed of the
points”) lie on E. This is because by Bézout, more than ed of these points simply
can’t lie on E.
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Corollary 15.1.3. The (three) intercepts of opposite sides of a
hexagon inscribed in a conic are collinear.

Proof. Referring to the picture

1
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Q

we put C := L1 ∪ L3 ∪ L5, D = L2 ∪ L4 ∪ L6, and E = Q. Clearly this
means d = 3 and e = 2, and we do indeed see that de = 6 points of
C ∩D = {p1, . . . , p6} ∪ {q1, q2, q3} lie on E. So the last three points of
C ∩D, which are the intercepts, lie on a curve of degree d− e = 1 by
the Theorem. �

Remark 15.1.4. If one wanted instead to plug the technical gap in
the proof of Pascal suggested in Chapter 1, part of what one needs is the
statement: if p1, . . . , p8 ∈ P2 are distinct and in “general position” in the
sense that no 4 are collinear and no 7 conconic (lying on an irreducible
conic), then dimS3(p1, . . . , p8) = 2. This is proved in Reid’s book.

15.2. Intersections of cubics

The results of §15.1 dealt with the case where all intersections of
curves have multplicity one (the “transversal” case), since we required
|C ∩ D| = d2 = (C · E). To deal with the general case, at least
assuming E is smooth and irreducible (so that we may view it as a
Riemann surface), write

C · E :=
∑

p∈E∩C

(E · C)p[p] ∈ Div(E).

If E is irreducible but singular, with an unique ODP p̂, the same defi-
nition gives a divisor C · E ∈ Div(Ẽ) (on the normalization) provided
p̂ /∈ E ∩ C.
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Theorem 15.2.1. Let C,D,E be distinct cubics, with E irreducible.
(If E is singular, assume moreover that p̂ /∈ E ∩ C, E ∩D.) Writing
by Bézout

D · E =
9∑
i=1

[qi] ∈ Div(E)

where the qi need not be distinct, and assuming

C · E =
8∑
i=1

[qi] + [q] ∈ Div(E),

we have q = q9.

In the intersection multiplicity one case, the Theorem gives imme-
diately:

Corollary 15.2.2. Let C,D,E be distinct cubics, E irreducible. If
D ∩E = {q1, . . . , q9} (distinct points) and C passes through q1, . . . , q8,
then it passes through q9.

Actually this is true without assuming E irreducible (provided E

doesn’t share any components with D or C), but we won’t prove that.

Proof. (of Theorem) First assume E is smooth. Recall that the
quotient of two homogeneous polynomials — say, F/G — yields a
meromorphic function on P2. By Example 7.3.6, since E intersects
D = {G = 0} in points, we may pull this back to E:

f :=
F

G

∣∣∣∣
E

∈ K(E)∗.

Suppose (for a contradiction) that q 6= q9. Since C = {F = 0} and
D = {G = 0}, the divisor of f is evidently

(f) = C · E −D · E = [q]− [q9] ∈ Div(E).

This says that f has one zero (at q) and one pole (at q9); hence, as a
holomorphic map of Riemann surfaces E → P1, f has mapping degree
1. That is, f is 1-to-1; and since (using the open mapping theorem) its
image must be open and closed (and P1 is connected), f is surjective. So
f gives an isomorphism E ∼= P1. Trouble is, this is total rubbish. Since
E is a smooth cubic, its genus is 1 by the genus formula, whereas the
genus of P1 is zero. So they can’t be isomorphic for purely topological
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reasons. This contradication tells us that, indeed, our assumption q 6=
q9 was wrong, and so they are equal.

To extend this argument to the case where E is singular with ODP
p̂, first pull back F

G
along the normalization σ : Ẽ → P2 (of E) to

obtain f ∈ K(Ẽ). We regard f as a map from Ẽ → P1. As before,
assuming q 6= q9 leads to deg(f) = 1. However, a different objection
to “deg(f) = 1” will be required as there is no topological obstruction:
indeed, Ẽ ∼= P1 by the genus formula (a nodal cubic has genus zero
normalization). So argue as follows: since p̂ /∈ C,D, we find that
F
G
∈ K(P2) is well-defined at p̂, so its pullback via σ cannot “separate”

the two branches of E there. That is, at the two points of Ẽ mapping
to p̂ (under σ), f will take the same value. But then, the mapping
degree of f cannot be 1.

The other possibility is that p̂ is a cusp.2 We may assume p̂ = [1 :

0 : 0] and the equation is of the form x3 = y2. Again we need to show
that f = σ∗ F

G
, if nonconstant, cannot have mapping degree 1. Let

p̃ = σ−1(p̂), and write R(x, y) := F (1,x,y)
G(1,x,y)

− F (1,0,0)
G(1,0,0)

. Then f(t)− f(0) =

(σ∗R)(t) = R(t2, t3), and

deg(f) = deg f−1([f(0)])

≥ ord0(R(t2, t3))

≥ ord(0,0)(R(x, y))︸ ︷︷ ︸
≥1

·min{ord0(t2, t3)}︸ ︷︷ ︸
=2

≥ 2.

�

Exercises
(1) Let C, D, and E be as above (defined by F = 0, G = 0, H = 0),

of respective degrees d, d, e with 3 ≤ e ≤ d. Suppose C and D

intersect in d2 distinct points, and assume that E is smooth (hence
irreducible). Show that if E passes through ed − 1 of these, it
passes through ed of them. (Imitate the argument from the proof
of Theorem 15.2.1.)

2see the paragraph immediately preceding §16.1 below.
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Cubic curves





CHAPTER 16

The singular cubic

Recall that a singular cubic curve1 D ⊂ P2 is normalized via stere-
ographic projection through its singular point p̂; that is, we get a nor-
malization morphism

σ : P1 → P2

with image D. In particular, all singular cubics have normalization of
genus zero. Moreover, they are all projectively equivalent to one of two
examples.

The nodal cubic. A “node” is just an ordinary double point. Let
D = {Y 2Z = X2(Z −X)}; the affine equation is y2 = x2(1− x) and a
schematic picture is

p

where I have denoted points with real coordinates in blue and points
with only x-coordinate real in red. (How these sit inside the full set
of complex points will be pictured below; the dotted stuff will connect
up.) By Exercise 5 of Chapter 3, this is parametrized by

ϕ : P1/{0,∞}
∼=−→ D

1D is for “degenerate”

175
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t 7−→
(
−4t

(1− t)2
,
−t(1 + t)

(1− t)3

)
=: (x(t), y(t)).

The “P1/{0,∞}” means the Riemann sphere with the top and bottom
points identified.2

The cuspidal cubic. Take D = {Y 2Z = X3}, affine equation
y2 = x3, schematic picture

p

where I have only drawn real points. To do stereographic projection
through the cusp (0, 0), write y = 1

t
x and substitute to get 1

t2
x2 = x3

=⇒ x = 1
t2
. Hence we get a normalization

ϕ : P1 → D

defined by

t 7→
[
1 :

1

t2
:

1

t3

]
.

One of our overarching themes in the next few chapters will be the
study of algebro-geometrically defined group laws on cubics. In this
chapter, we focus on the above two singular examples, as the smooth
case is more difficult. For the nodal cubic, the law will turn out to
be equivalent (via ϕ) to multiplication on C∗ = P1\{0,∞}; while in
the cuspidal case, it identifies with addition on C = P1\{∞}. In both
cases, these sets are the preimages under normalization of the smooth
points of D, which is where the group laws will be defined.

2Note that one can homogenize the formula for ϕ by [T0 : T1] 7−→ [(T0 − T1)3 :
−4T1T0(T0 − T1) : −T1T0(T0 + T1)], and then it is clear that ϕ(1) = ϕ([1 : 1]) =
[0 : 0 : 1].
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In the course of studying such laws as well as addition theorems on
these curves, we will pull back rational functions on P2 (quotients of
homogeneous polynomials of equal degree, or equivalently elements of
C(x, y)) to get meromorphic functions on P1 (the normalization of our
curve). So in illustrating the simplicity of the group law, hence

Principle 1: Singularities make curves of a given degree more triv-
ial and easier to study,

we will be seeing a concrete example of the following

Principle 2: Given C ⊂ P2 an irreducible algebraic curve with
normalization σ : C̃ → P2, every f ∈ K(C̃) is of the form σ∗F ,
F ∈ C(x, y).

In other words, writing C0 := C ∩ (P2\{Z = 0}) for the affine part
of C and gC0(x, y) for its defining equation, if we define

C[C0] :=
C[x, y]

(gC0)
, C(C) := fraction field of C[C0]

∼=

{
σ∗F

∣∣∣∣∣ F ∈ C(x, y)

F /≡ ∞ on C

}
,

then Principle 2 says that

K(C̃) ∼= C(C).

analytic algebraic

Since C was projective, C̃ is compact, and that turns out to be of
fundamental importance: e.g., C[C0] is only a subring of, rather than
equal to, the ring of holomorphic functions on (the desingularization
of) C0.

Before continuing on, we should address one point: why should
the only possible singularities of an irreducible cubic C be an ODP
or cusp, and why must it have only one? First of all, if it had two
singular points, then we could take a line L through those two points.
Both intersection multiplicities (of C with L at these two points) would
have to be ≥ 2, and so (C · L) ≥ 4 in violation of Bézout. (See what
a useful theorem this is?) So C can only have one singular point,
and as its equation is of degree 3 that point can only be of order 2

or 3. If it is of order 3, then by the result of Chapter 6 Exercise 5,
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C is a union of 3 lines, contradicting irreducibility. Finally, the local
equation about a non-ordinary double point of C can only be of the
form x2 + f3(x, y) = 0, with f3 homogeneous of degree 3. An explicit
local analytic transformation puts this in the form (x̃)2 + (ỹ)3 = 0. So
it is a cusp. Alternately, anything which looks like x2 + yn = 0 has
intersection multiplicity n with the line x = 0, again violating Bézout
(in the context of our cubic curve) if n > 3.

16.1. Warm-up: Functions on a nonsingular conic

Our smooth conic is named C. Any F ∈ K(C) can be viewed as
a map C → P1. Composing this with the stereographically produced
normalization σ : P1

∼=→ C, yields

P1
∼=
σ
//

σ∗F

<<
C

F
// P1,

that is, a meromorphic function on P1. Since K(P1) = C(t) (here
t := T1/T0), σ∗F must be of the form

g(t)

h(t)
=
G(T0, T1)

H(T0, T1)

where g, h,G,H are polynomials and G,H are homogeneous of the
same degree. By the fundamental theorem of algebra, we can write
this as

γ · TN0
∏

i(T1 − αiT0)mi∏
j(T1 − βjT0)nj

,

for some γ, αi, βj ∈ C. As degG = degH =⇒ N +
∑
mi−

∑
nj = 0,

the expression simplifies to

γ

∏
(t− αi)mi∏
(t− βj)nj

(= (σ∗F )(t)).

Note that

(16.1.1) (σ∗F )(∞) 6= 0,∞ ⇐⇒
∑

mi =
∑

nj.

16.2. Functions on a nonsingular cubic (nodal case)

Let F : D → P1 be

(16.2.1)
the restriction to D of a rational function on P2

which is well-defined and 6= 0,∞
at the singular point p̂ ∈ D.
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Since the normalization P1 → D sends 0,∞ 7→ p̂ but is otherwise
1-to-1, we get

(P1/{0,∞})
ϕ

∼=
//

ϕ∗F

::D
F // P1

with F (0) = F (∞) ∈ C∗. Henceforth we shall, by abuse of notation,
refer to this composition as F .

Thinking of F as a meromorphic function on P1, (16.1.1) applies
and we get

F (t) = γ

∏
(t− αi)mi∏
(t− βj)nj

with
∑

mi =
∑

nj.

Furthermore,

γ = F (∞) = F (0) = γ

∏
αmii∏
β
nj
j

so that

(16.2.2)
∏

αmii =
∏

β
nj
j ,

relating the z-coordinates of the zeroes and poles of F .
Now introduce the multivalued function

u :=

ˆ ∗
1

dt

t
= log(t)

on P1, which takes well-defined values in C/2π
√
−1Z. We can restate

(16.2.2) in terms of u: viz.,∑
p∈D

νp(F ) · u(p) ≡ 0 mod 2π
√
−1Z.

This leads to Abel’s theorem for the singular cubic:

Proposition 16.2.1. Given P ,Z ∈ Div(D\p̂) effective3 divisors of
the same degree,ˆ Z

P

dz

z
≡ 0 mod 2π

√
−1Z ⇐⇒

P = poles
Z = zeroes

}
of some F as in (16.2.1).

3recall divisors are formal sums of points on a complex manifold with integer coef-
ficients. A divisor is effective if none of those coefficients are negative.
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Explicitly, if P =
∑
nj[βj] and Z =

∑
mi[αi] are of the same degree

(d =
∑
nj =

∑
mi), then we may write Z − P =

∑d
k=1([zk] − [pk])

and
´ Z
P :=

∑ ´ zk
pk

by some choice of paths. Also, in the statement
“poles” and “zeroes” are as usual meant with multiplicity. This is a
first “baby” case of a general statement for algebraic curves (Abel’s
theorem) connecting integrals of 1-forms to the question of when a
divisor is the divisor of a meromorphic function.

16.3. Group law on the nodal cubic

Fix a normalization4

ϕ :
(
P1/{0,∞}

) ∼=−→ D

t 7−→ (x(t), y(t))

1 7−→ ϕ(1) =: e.

Let p, q ∈ D be arbitrary nonsingular points, and Lpq be the line
through p and q. (If they are the same, then take L to be the tan-
gent line TpD.) By Bézout, (Lpq ·D) = 3 and so Lpq meets D in a third
point which we call p ∗ q. More precisely, everything is counted with
multiplicity (p ∗ q need not be distinct from p or q) so we really mean

[p ∗ q] := Lpq ·D − [p]− [q].

Now let L′ be the line through p ∗ q and e (or TeD if they coincide),
and put

[p+ q] := L′ ·D − [p ∗ q]− [e].

That is, p + q is the “extra” intersection point of this line with D

guaranteed by Bézout. Here’s a useful picture of the construction:

4when we need to use homogemeous coordinates, ϕ(t) = [Z(t) : X(t) : Y (t)]
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p 0 8,

p

e p

q

p+q

p*q

0

t(p+q)=t(p)t(q)

t(p)

t(q)

t(p*q)=1/(t(p)t(q))

1=t(e)

8

Now writing fL for the equation of a line L, observe that

F :=
fLpq
fL′

∣∣∣∣
D

: D −→ P1

satisfies (16.2.1). In terms of the t-coordinate on P1, i.e. pulling F
back along ϕ, we must have:

F (t) = γ
(t− t(p))(t− t(q))(t− t(p ∗ q))

(t− t(p+ q))(t− 1)(t− t(p ∗ q))
= γ

(t− t(p))(t− t(q))
(t− t(p+ q))(t− 1)

.

But since F (0) = F (∞), by (16.2.2)∏
{locations of zeroes} =

∏
{locations of poles}

=⇒ t(p) · t(q) = t(p+ q) · t(e)︸︷︷︸
1

= t(p+ q).

This identifies the group law (multiplication) on C∗ = P1\{0,∞} with
the one just defined on D\p̂. Alternately, taking log gives

u(p) + u(q) ≡ u(p+ q) mod 2π
√
−1Z,

identifying addition on D\p̂ with addition in C/2π
√
−1Z. This may

be rewritten

(16.3.1)
ˆ t(p)

1

dt

t
+

ˆ t(q)

1

dt

t
≡
ˆ t(p+q)

1

dt

t
mod 2π

√
−1Z.

16.4. Addition theorems for the nodal cubic

Let’s unwind the “equivalence of group laws” in the nodal cubic
example from the beginning of the chapter. Noting that e := ϕ(1) =

[0 : 0 : 1], here is a picture of how the group law works:
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p

e

p*q

p+q

x
=

co
n
st.

q
p

In particular, the x-coordinates of p + q and p ∗ q are the same, while
the y-coordinates are ± of each other.

Just to clarify the topology of the situation, here is what the pro-
jection of the normalization of D onto the x-axis looks like:

P
1

8

10

γ

1

−1

0

8

"schematic" picture topological picture

(real axis in bold)

x

0

8

−1
1

t−values

x−values

γ

It is a 2-sheeted cover with 2 branch points, with the closed path γ

indicating the “equator” (or unit circle |t| = 1) on the upper P1 (i.e.
D̃).

Now we get to work. Start by “inverting” the equivalence t(p)·t(q) =

t(p+ q):
ϕ(t1)︸ ︷︷ ︸
p

+ ϕ(t2)︸ ︷︷ ︸
q

= ϕ(t1 · t2)︸ ︷︷ ︸
p+q

.
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Since p, q, and p ∗ q are collinear by construction,

0 = det

 Z(p) Z(q) Z(p ∗ q)
X(p) X(q) X(p ∗ q)
Y (p) Y (q) Y (p ∗ q)

 .

Assuming none of them is e, Z(p)Z(q)Z(p ∗ q)) 6= 0 and we get the

1st addition theorem:

0 = det

 1 1 1

x(t1) x(t2) x(t1 · t2)

y(t1) y(t2) −y(t1 · t2)

 .

This allows you to compute x(t1 · t2) from x(t1) and x(t2), using the
equation of D to write y(t) = ±x(t)

√
1− x(t).

Next, ϕ∗
(
dx
y

∣∣∣
D

)
= d(x(t))

y(t)
= · · · [use Exercise 4 from Chap. 13]· · · =

dt
t
, while dx

y

∣∣∣
D

= dx
±x
√

1−x ; so (16.3.1) may be expressed

ˆ x(p)

x(e)(=∞)

dx

x
√

1− x
+

ˆ x(q)

x(e)

dx

x
√

1− x
≡
ˆ x(p+q)

x(e)

dx

x
√

1− x
.

(Note that 2π
√
−1 =

¸
|t|=1

dt
t

=
´
γ
dx
y
. Going modulo its integer multi-

ples, which is what “≡” means here, is necessary not to have the equa-
tion’s correctness depend upon the choice of paths from ∞ to x(p), to
x(q), and to x(p+ q).) Solving

det

 1 1 1

x(p) x(q) x(p+ q)

x(p)
√

1− x(p) x(q)
√

1− x(q) −x(p+ q)
√

1− x(p+ q)

 = 0

for x(p+ q) yields

x(p+ q) =
−x(p)x(q)(√

1− x(p) +
√

1− x(q)
)2 .

Forgetting the association with p, q, p+ q∈ D we get the

2nd addition theorem:
ˆ x1

∞

dx

x
√

1− x
+

ˆ x2

∞

dx

x
√

1− x
≡
ˆ −x1x2

(
√

1−x1+
√

1−x2)2

∞

dx

x
√

1− x
mod 2π

√
−1Z.

Note that
´ x
∞

dx
x
√

1−x = log
(√

1−x−1√
1−x+1

)
by explicit computation of the
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integral. (One way to view this function is log(t) (= u) viewed as a
multivalued function of x.) So we have discovered a functional equation
for log

(√
1−x−1√
1−x+1

)
, which is ugly to check by hand.

One aspect of the game we have just played here is: start with
a “natural” choice of differential 1-form on the curve (if possible, one
which is smooth away from any singularities of the curve). In the above,
this was dx

y
|D. You can think of this as a multivalued 1-form on the

x-axis, and then D is the “existence domain of the 1-form” over P1
x.

Then you integrate this 1-form, which gives a transcendental function
which is multivalued even on D (you have to go to its universal cover
to make it well-defined), and try to produce a functional equation for
it (as a function of x). In the last section we’ll summarize this story
for a couple of other curves.

16.5. Other addition theorems (conic, cuspidal cubic)

Consider the example C = {y2 + x2 = 1}, parametrized by P1 via

t
ϕ7−→
(
−2t

t2 + 1
,
t2 − 1

t2 + 1

)
as in §3.3. We compute

ϕ∗
(
dx

y

∣∣∣∣
C

)
=

2dt

t2 + 1
= 2d(arctan(t)),

dx

y

∣∣∣∣
C

=
dx√

1− x2
= d(arcsin(x)).

On the universal cover of P1
x\{±1} let θ = arcsin(x) (starting at x =

0 ↔ t = 0 ↔ θ = 0).5 Its role is similar to that of u = log t

above, as the integral of our chosen differential 1-form on the curve; θ
takes well-defined values in C/2πZ. Writing x(θ1) =: x1, x(θ2) =: x2,
x(θ1 + θ2) =: x12, the standard trigonometry relations give

x12 = x1

√
1− x2

2 + x2

√
1− x2

1.

5Note: t 7→ −2t
t2+1 = x is a degree-2 map (from C to the x-axis) with ramification

points t = ±1 over x = ±1. On the complements of these points, we have a 2-to-1
map C∗ → C∗. The universal cover of C∗ is C, and so we have maps C→ C∗t → C∗x
sending θ to t to x. So our setup encodes the relation −2 tan θ

2

(tan θ
2 )

2+1
= x(t(θ)) = x(θ) =

sin(θ).
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The “second addition formula” for the conic then readsˆ x1

0

dx√
1− x2

+

ˆ x2

0

dx√
1− x2

≡
ˆ x12

0

dx√
1− x2

mod 2πZ,

which is a functional equation for arcsin. More simply put, it is just
the inverse of the trigonometric identity.

Next, look back to the cuspidal example from the beginning of the
chapter. We have

ϕ∗
(
dx

y

∣∣∣∣
D

)
=
d(x(t))

y(t)
=
d
(

1
t2

)
1
t3

= −2dt,

while
dx

y

∣∣∣∣
D

=
dx

x
3
2

.

(Note that this time, the integral of dx
y
|D is just −2t and is not multi-

valued on D.) Clearly if t12 = t1 + t2, thenˆ t1

0

dt+

ˆ t2

0

dt =

ˆ t12

0

dt

=⇒
ˆ 1

t21
(=x(t1))

∞

dx

x
3
2

+

ˆ 1

t22
(=x(t2))

∞

dx

x
3
2

=

ˆ 1

t212
(=x(t1+t2))

∞

dx

x
3
2

.

So we get a functional equation for 1√
x
, which is unfortunately rather

stupid: it says
1(

1
t21

) 1
2

+
1(

1
t22

) 1
2

=
1(

1
(t1+t2)2

) 1
2

.

In an exercise below, you will show a less trivial addition theorem for
the cuspidal cubic, to the effect that

P,Q,R ∈ (D\p̂) are collinear ⇐⇒ t(P ) + t(Q) + t(R) = 0.

Exercises
(1) Consider the cuspidal cubic curve D = {Y 2Z = X3} ⊆ P2 and

normalize it as above, with ϕ : P1 → D given by t 7→ [1 : 1
t2

: 1
t3

] =

[Z : X : Y ]. (The singular point is p̂ = [1 : 0 : 0].) Prove directly
that the group law given by addition on (P1\{∞}) ∼= C (namely,
t1, t2 7→ t1 + t2) corresponds to the following process on (D\{p̂}):
take the line L through ϕ(t1) and ϕ(t2), then a line L′ through
the third intersection point ϕ(t1) ∗ ϕ(t2) (of L with D) and the
“neutral” point [0 : 0 : 1], and finally locate the third intersection
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point of this L′ with D to get “ϕ(t1)+ϕ(t2)” (also as above, for the
nodal cubic). Do this simply by showing that P,Q,R ∈ (D\{p̂})
are collinear if and only if t(P ) + t(Q) + t(R) = 0. (Here P,Q,R
are distinct.) Hint: use the determinant of the matrix a3 a 1

b3 b 1

c3 c 1

 ,

and rewrite [1 : 1
t2

: 1
t3

] = [t3 : t : 1].



CHAPTER 17

Putting a nonsingular cubic in standard form

An irreducible algebraic curve E ⊂ P2 is an elliptic curve if the
genus of its normalization Ẽ is 1 (topologically it looks like a donut).
By the genus formula, all smooth cubic curves are elliptic. In the next
two chapters we will show not only that such a curve is isomorphic to
C/Λ for some lattice Λ, but will get a description of Λ which shows
its dependence on E. This is important, since for two different lattices
Λ = Z 〈α, β〉 and Λ′ = Z 〈α′, β′〉, the complex 1-tori C/Λ and C/Λ′

need not be isomorphic as Riemann surfaces. (More precisely, they are
isomorphic if and only if [α : β] is carried to [α′ : β′] by an integral
projectivity, i.e. a transformation of P1 induced by A ∈ PSL2(Z).)

Even more significant is how we do this: by putting E in Weierstrass
form, integrating a holomorphic form on it to get a map to a complex
torus, and showing that the Weierstrass ℘-function and its derivative
invert this map. To put E in this form, a choice of flex is required.
What is that?

17.1. Flexes

Let C = {F (Z,X, Y ) = 0} ⊂ P2 be an irreducible algebraic curve of
degree d ≥ 3. One way of thinking of the tangent line at a nonsingular
point p ∈ C is as the unique line satisfying (C · TpC) ≥ 2.

Definition 17.1.1. A smooth point p ∈ C is called a flex if the
intersection multiplicity

(C · TpC) ≥ 3.

C

T Cp
p

Intuitively these are the inflection points of C, and can be seen to
correspond to cusps of the dual curve Č (see §4.4). Since Č has finitely

187
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many singularities, this gives one proof that there are finitely many
flexes; we will however take a different approach.

Denoting partial derivatives by subscript, e.g. FZX := ∂2F
∂Z∂X

, the
Hessian of F is the polynomial matrix

HessF =

 FZZ FZX FZY

FXZ FXX FXY

FY Z FY X FY Y

 .

Its determinant
H := det(HessF )

is clearly a homogeneous polynomial of degree 3(d − 2). Call HC :=

{H(Z,X, Y ) = 0} ⊂ P2 the Hessian curve associated to C.

Lemma 17.1.2. Let p ∈ C be a smooth point. Then p is a flex ⇐⇒
p ∈ HC.

Proof. Since intersection numbers are invariant under projectiv-
ities, we may assume p = [1 : 0 : 0], TpC = {Y = 0}. In affine
coordinates, writing f(x, y) := F (1, x, y), this means that the curve
{f(x, y) = 0} ⊂ C2 contains (0, 0) and is tangent to {y = 0}. So
f(0, 0) = 0 and (fx(0, 0), fy(0, 0)) = (λ, 0) where λ 6= 0, so that

f(x, y) = λy + (ax2 + 2bxy + cy2) + higher-order terms.

Parametrizing TpC by t 7→ (t, 0), we have

(C · TpC)p = ord0 (f(t, 0)) = ord0(at2 + h.o.t.),

which is ≥ 3 (yielding a flex) if and only if a = 0.
Now the above form of f implies

F (Z,X, Y ) = λY Zd−1 + (aX2 + 2bXY + cY 2)Zd−2 + · · ·

so that

HessF (1, 0, 0) =

 0 0 (d− 1)λ

0 2a 2b

(d− 1)λ 2b 2c

 .

Taking the determinant,

H(p) = det(HessF (p)) = −2(d− 1)2λ2a.

This is clearly zero (i.e. p ∈ HC) if and only if a = 0. �
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Now Bezout guarantees intersections of C and HC . If C is singular
then these might all be at singular points, so that there might be no
flexes (though this isn’t typical: see the exercises). On the other hand,
if C is smooth then by Lemma 17.1.2 we do have flexes. Refining this
observation:

Proposition 17.1.3. On a nonsingular curve C of degree d ≥ 3,
there exists at least one and at most 3d(d− 2) flexes.

Proof. By Bezout,∑
p∈C∩HC

(C · HC)p = (C · HC) = deg(C) · deg(HC) = d · 3(d− 2).

So the number of points in C ∩ HC is between 1 and 3d(d − 2), all
points are smooth points, and we apply Lemma 17.1.2. �

Remark 17.1.4. Since HessF is just the multivariable derivative
(Jacobian matrix) of DC : P2 → P2 (§4.4), the intersections of C and
HC may be viewed as degeneracies of the map DC |C : C � Č. This is
what gives rise to the cusps in Č referred to above.

Definition 17.1.5. The multiplicity of a flex p ∈ C is defined to
be (C · HC)p.

Now take C = E to be a smooth elliptic curve (d = 3). Then
in the proof of Lemma 17.1.2, the precise form of the homogeneous
polynomial is
(17.1.1)
F (Z,X, Y ) = λY Z2+(aX2+2bXY+cY 2)Z+αX3+βX2Y+γXY 2+δY 3.

Assume a = 0 so that we have a flex at [1 : 0 : 0]. (Note that α must
then be nonzero, in order that Y not divide F — which would make E
reducible hence singular.) Then a short computation gives

HessF (1, x, y) =

 2λy 2by 2λ+ 2bx

2by 6αx+ 2βy 2βx+ 2γy + 2b

2λ+ 2bx 2βx+ 2γy + 2b 6δy + 2γx+ 2c

 .

Pull this back to TpE = {y = 0} by making the substitution

HessF (1, t, 0) =

 0 0 2λ+ 2bt

0 6αt 0

2λ+ 2bt 0 2γt+ 2c

 ;



190 17. PUTTING A NONSINGULAR CUBIC IN STANDARD FORM

this has determinant

H(1, t, 0) = −(2λ+ 2bt)26αt,

and since α, λ 6= 0

(TpE · HE)p = ord0(H(1, t, 0)) = 1.

So HE is smooth at p and TpE is not its tangent line. But then it
intersects E transversely (since they have distinct tangent lines), so
that (E · HE)p = 1. This computation is valid at any flex of E (after a
projective change of coordinates, of course), and so proves:

Proposition 17.1.6. Any smooth cubic has 9 flexes, each of mul-
tiplicity one.

Proof. Since deg(HE) = 3(d − 2) = 3, Bezout gives us 9 inter-
section points of HE and E, counted with multiplicity; and we have
demonstrated that the multiplicities are all 1. �

17.2. Weierstrass form

Consider an arbitrary smooth cubic curve

E = {F (Z,X, Y ) = 0} ⊂ P2.

In this section we will show that there exists a choice of projective
coordinates putting E uniquely into a convenient form. (Alternately,
you can view this as the existence of a projectivity putting E into this
form, in the same coordinates.)

We know E has a flex, and first of all we can choose coordinates so
that this is at [0 : 0 : 1] =: O with TOE = {Z = 0}. To get the general
equation of such a cuve: take (17.1.1), set a = 0 (for a flex), swap Z
and Y , and (without loss of generality since λ 6= 0) normalize λ to 1;
this gives

F (Z,X, Y ) = ZY 2 + (2bXZ + cZ2)Y + αX3 + βX2Z + γXZ2 + δZ3,

with affine form

f(x, y) := F (1, x, y) = y2 + yf2(x) + f3(x).

Now the discriminant

Dy(f(x, y)) = Ry(y
2 + yf2(x) + f3(x), 2y + f2(x))



17.2. WEIERSTRASS FORM 191

= det

 1 f2 f3

2 f2 0

0 2 f2

 = det

 1 f2 f3

−f2 −2f3

2 f2


= −f 2

2 + 4f3 = −(2bx+ c)2 + 4(αx3 + βx2 + γx+ δ)

is a polynomial in x of degree 3 since α 6= 0. Roots of (Dy(f))(x)

correspond to vertical lines x = x0 which are tangent to (the affine part
of) E at some point. Bezout tells us that the intersection number there
can only be 2, since deg(E) = 3 and {X = x0Z} already meets E at O.
Such “first order” tangencies mean the roots each have multiplicity one.
Therefore E has three vertical tangents (apart from L∞ = {Z = 0}),
at p1, p2, p3.

Lemma 17.2.1. The {pi}3
i=1 are collinear.

Proof. In the picture

T E

q

p

p

p

3

2

1

pE

Lp p
1 2

define p to be the third intersection point of Lp1p2 and E, and q the third
intersection point of LOp with E. Consider the cubic curves C1 = E,
C2 = LOp1 + LOp2 + LOp3 , and C3 = TOE + 2Lp1p2 . We have

C1 · C2 = 3O + 2p1 + 2p22 + p+ q

and
C1 · C3 = 3O + 2p1 + 2p2 + 2p.

Arguing as in §15.2, the ratio of the homogeneous polynomials defining
C2 and C3 gives a degree 1 map E → P1 (which is impossible) if p 6= q.
So p = q, and LOp is tangent to E at p. It follows that p is p1, p2, or
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p3. The first two are impossible since the tangent to p1 doesn’t pass
through p2 and vice versa; so p = p3. Hence p1, p2, p3 ∈ Lp1p2 . �

Now stereographic projection from O to Lp1p2(∼= P1) presents E as
a 2 : 1 cover of P1 branched over p1, p2, p3, and the image TOE∩Lp1p2 of
O. Furthermore Lp1p2 , LOp1 , TOE form a triangle, and so we can choose
new projective coordinates X ′, Y ′, Z ′ in order that Lp1p2 = {Y ′ = 0},
LOp1 = {X ′ = 0}, and TOE = {Z ′ = 0}. For simplicity I’ll drop the
primes and just write X, Y, Z for this new coordinate system. The
following picture summarizes what we know:

2p p
1

p
3

O

T E

L

E

p p

L
Op O

21

where (on Y = 0) p1 is at X
Z

= 0. Write α1 (resp. α2) for the value of
X
Z

at p2 (resp. p3).
We would like an equation to correspond to this picture. Now, in

the new coordinate system, the equation of E is still of the form

F (Z,X, Y ) = ZY 2 + (2bXZ + cZ2)Y + αX3 + βX2Z + γXZ2 + δZ3,

because we still have a flex at [0 : 0 : 1] with tangent line Z = 0.
But now (referring to the picture) also [1 : 0 : 0] ∈ E, which implies
δ = 0. Moreover, FY (= 2Y Z + 2bXZ + cZ2) = 0 at p1 = [1 : 0 : 0],
p2 = [1 : α1 : 0], and p3 = [1 : α2 : 0] since the tangents are vertical
there. This yields c = 0, then 2bα1 = 2bα2 = 0. As the {pi} are distinct
(so αi 6= 0), we have , and

F (Z,X, Y ) = Y 2Z +X(αX2 + βXZ + γZ2)

= Y 2Z + αX(X − α1Z)(X − α2Z).
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Now define new coordinates by the projective transformation

X =
3

√
4

α
X0 +

α1 + α2

3
Z0 , Y = iY0 , Z = Z0 ,

which makes the equation

F̃ (Z0, X0, Y0) = F

(
3

√
4

α
X0 +

α1 + α2

3
Z0, iY0, Z0

)
= −Y 2

0 Z0 + 4X3
0 − g2X0Z

2
0 − g3Z

3
0 .

Dropping the subscript 0’s and taking the affine equation, we have put
E in Weierstrass form:

Proposition 17.2.2. (a) Any smooth cubic E ⊂ P2 is projectively
equivalent to a curve with affine equation of the form1

y2 = 4x3 − g2x− g3.

(b) This form is unique (given E) up to a change of the form (g2, g3) 7→
(ξ4g2, ξ

6g3) where ξ ∈ C∗; in particular,

j :=
g3

2

g3
2 − 27g2

3

∈ C

is an invariant of E.

Proof. We have just seen (a). To see (b), write the projective
equation Y 2Z = 4X3 − g2XZ

2 − g3Z
3. It is not difficult to see that

any linear transformation preserving the form of this equation (up to
rescaling) has the form X = εX0, Y = ηY0, Z = ε3

η2Z0. Taking β := ε
η

gives exactly the claimed effect on (g2, g3), and j is unchanged by this
transformation. �

Exercises
(1) Show that the cubic curve C = {0 = X3 +Y 3−XY (X+Y +Z)} ⊂

P2 has one (ODP) singular point and exactly three collinear flexes.
[Hint: start by computing the Hessian, then find the Hessian curve
and determine its intersections with C.]

1note that the vanishing of the x2 term of the right-hand side indicates that its
roots sum to zero





CHAPTER 18

Canonical normalization of the Weierstrass cubic

This chapter will focus on the precise relationship betweenWeierstrass-
form elliptic curves and complex 1-tori (or equivalently, 2-lattices in C).
We will begin by associating to a Weierstrass cubic E a “period lattice”
ΛE, and to a (full) lattice Λ a Weierstrass cubic EΛ. These will ulti-
mately be shown to be bijections of sets and mutual inverses. The key
step is the inversion of the Weierstrass ℘-function and its derivative
(embedding a 1-torus in P2) by the Abel map u : E → C/ΛE. This
map is closely related to the elliptic integralˆ ∗

∞

dx

±
√

4x3 − g2x− g3

,

a variant of which will be studied in the exercises.

18.1. Holomorphic forms on an elliptic curve

Let E be a Weierstrass cubic, viz., the projective closure of

f(x, y) := y2 −Q(x) = 0

in P2, where

Q(x) = (x− e1)(x− e2)(x− e3) , e1 + e2 + e3 = 0.

Claim 18.1.1. ω := dx
y

∣∣∣
E
∈ Ω1(E) is nowhere vanishing.

Remark 18.1.2. This statement perhaps requires clarification. You
may interpret dx

y

∣∣∣
E
in either of two equivalent ways:

(a) any algebraic differential form (such as dx
y
) on C2 extends to a mero-

morphic form on P2, and you can think of |E as shorthand for pullback
to E (rather than introducing σ : E ↪→ P2 just to write σ∗ dx

y
);

(b) alternatively, writing x = X
Z

and y = Y
Z

exhibits x and y as mero-
morphic functions on P2 (and hence, via pullback, on E), and Example

13.1.4 tells us that
d(x|E)
y|E

is a meromorphic 1-form.
Either way, we have ω ∈ K1(E); and part of the content of the Claim is

195
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that ω is actually holomorphic: νp(ω) ≥ 0 for all p ∈ E. The “nowhere
vanishing” statement says that actually νp(ω) = 0 for all p.

Proof. Look at the affine part E\O. Wherever fy 6= 0, so that
x gives a local coordinate, dx

y

∣∣∣
E
is holomorphic and nonvanishing. We

have f = 0 and fy = 0 precisely at the three points {(ei, 0)}i=1,2,3,
where fx = Q′(ei) 6= 0 so that y is a local coordinate. On E we have
0 = df = 2ydy −Q′(x)dx so that dx

y

∣∣∣
E
=

2
dy

Q′(x)

∣∣∣∣
E

,

which is evidently nonvanishing and holomorphic in a neighborhood of
each (ei, 0).

What about the (flex) point at infinity O = [0 : 0 : 1]? By Poincaré-
Hopf, g = 1 =⇒

∑
p∈E νp(ω) = 2g− 2 = 0, so that if νp(ω) = 0 for all

p ∈ E\O, there can be no contribution from O either. �

Corollary 18.1.3. Ω1(E) ∼= C 〈ω〉. That is, every holomorphic
1-form on E is a multiple of ω.

Proof. For any ω0 ∈ Ω1(E), the discussion preceding Example
13.1.2 tells us ω0

ω
∈ K(E). But since ω is nowhere vanishing, ω0

ω
is

actually a holomorphic function. Now use Liouville’s theorem (O(E) ∼=
C). �

Amongst the standard topological invariants of a 1-manifold M is
its first homology group. An ad hoc definition is

H1(M,Z) :=

{
free abelian group generated by
closed piecewise-C∞ paths on M

}
{

subgroup generated by
boundaries of finitely triangulable regions

} ,
or simply “cycles modulo boundaries”. From the picture
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α

β

it isn’t hard to convince yourself that

H1(E,Z) ∼= Z 〈α, β〉 .

That is, for any closed C∞ path γ ⊂ E, there exists a closed set Γ ⊂ E

(with boundary ∂Γ) such that

γ = mα + nβ + ∂Γ.

The integers m,n are uniquely determined by γ. One then hasˆ
γ

ω =

ˆ
∂Γ

ω +m

ˆ
α

ω + n

ˆ
β

ω

= m

ˆ
α

ω + n

ˆ
β

ω

by Cauchy’s theorem (Prop. 13.1.5). The values of the integrals
´
γ
ω

over cycles are called the periods of ω, and we define the period lattice

ΛE := Z
〈ˆ

α

ω,

ˆ
β

ω

〉
⊂ C.

This furnishes an invariant of the complex structure1 on E which, unlike
the topological invariant, actually distinguishes elliptic curves which
are non-isomorphic as complex manifolds (or algebraic curves).

Remark 18.1.4. Given a lattice of the form Z 〈λ1, λ2〉 =: Λ ⊂ C,
we have a Weierstrass P-map

C/Λ P−→ P2

u 7−→ [1 : ℘(u) : ℘′(u)]

whose image (by Exercise 5 of Chapter 7) is a Weierstrass cubic! Define

EΛ := P(C/Λ),

which we henceforth consider to be the range of the map P . Obviously
it is of interest to find out whether all Weierstrass cubics arise in this
fashion (as EΛ’s).

1algebraic geometers call this a transcendental invariant
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Before moving on we should note that P is injective. Its composi-
tion with (the x-coordinate projection) x : EΛ → P1 has degree 2 since
℘ has a unique pole on C/Λ (at 0), which is a double pole. But since
mapping degrees of Riemann surfaces multiply under composition, and
the degree of x itself is 2, that of P : C/Λ→ EΛ must be 1.

18.2. The Abel map

Let
E = {y2 = 4x3 − g2x− g3︸ ︷︷ ︸

Q(x)

} ⊂ P2

be a Weierstrass cubic with ω = dx
y

∣∣∣
E
∈ Ω1(E). Integrating this gives

a (holomorphic) map of Riemann surfaces

u : E −→ C/ΛE

p 7−→
ˆ p

O
ω

where the integration is over any C∞ path from 0 to p. This Abel
map is well-defined: if γ′, γ′′ are two such paths, then their difference
is closed and so

γ′ − γ′′ = ∂Γ +mα + nβ.

Integrating, we haveˆ
γ′
ω −
ˆ
γ′′
ω = m

ˆ
α

ω + n

ˆ
β

ω ∈ ΛE.

Remark 18.2.1. It is now easy to see that ΛE has rank 2 (something
we haven’t yet addressed). Otherwise, C/ΛE is isomorphic to C or2 C∗,
both of which are noncompact. Since E is compact and u is continuous,
its image must be a compact submanifold of C/ΛE. If the latter is
noncompact then the image is therefore a point, meaning u is constant,
clearly false since ω 6= 0.

A “baby” version of Abel’s theorem for elliptic curves3 is then:

Theorem 18.2.2. The Abel map is injective.

2ΛE ∼= Z (rank 1) =⇒ C/ΛE ∼= C/2πiZ
∼=→ C∗ (by taking exp).

3The real theorem, which we will deal with later, has to be phrased in terms of
divisors.
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Proof. (Sketch) Suppose u(p) ≡ u(q) mod ΛE for p 6= q points of
E; then ˆ p

q

ω =

ˆ p

O
ω −
ˆ q

O
ω = u(p)− u(q) ∈ ΛE.

Modifying the path from q to p by mα + nβ (for some m,n ∈ Z), we
get ˆ q

p

ω = 0.

Dirichlet’s existence theorem (which we won’t prove) guarantees the
existence of η0 ∈ K1(E) with only simple poles, only at p and q, with
Resp(η0) = −Resq(η0) = 1. This is true for any two (distinct) points p
and q, and has nothing to do with our assumption (that u(p) = u(q)).
Now referring to the picture

α

β
O

p

γ

q

E

we have

(18.2.1) H1 (E\({p} ∪ {q}), Z) ∼= Z 〈α, β, γ〉

where ˆ
γ

η0 = 2πi.

Next, “normalize” η0, putting

η := η0 −
(´

α
η0´

α
ω

)
ω,

which has the same residues as η0. Observe thatˆ
γ

η = 2πi,

while ˆ
α

η = 0.

Cutting open the above figure along α and β yields the fundamental
domain F (the yellow region):4

4In order to accomodate the path from q to p, it may be necessary to “dilate” F
by an integer factor M . (You can think of this as the fundamental domain of a
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β−β

α

−α

O

q

ppat
h

On the interior of F, U :=
´ ∗
O ω gives a holomorphic function which is

continuous on the boundary. Now

0 =

ˆ q

p

ω = U(p)− U(q)

which by the Residue theorem

=
1

2πi

ˆ
∂F

U · η.

Noting that
´
α
ω (resp.

´
β
ω) is the change in U from “−β” to “β” (resp.

“−α” to “α”), this

=
1

2πi

{ˆ
β

η

ˆ
α

ω −
ˆ
α

η

ˆ
β

ω

}
=

1

2πi

(ˆ
β

η

)(ˆ
α

ω

)
,

where
´
α
ω 6= 0. Hence, ˆ

β

η = 0.

By (18.2.1), any closed path on E\({p}∪{q}) is, up to boundaries,
of the form nα+mβ + `γ; and so the integral of η over such a path is
`
´
γ
ω = 2πi`. Consequently,

F := exp

(ˆ ∗
O
η

)
is a well-defined function on E which is holomorphic off {p}∪{q}. Let
z (resp. w) be a local coordinate about p (resp. q) with z(p) = 0

(resp. w(q) = 0). We know that the leading term of η at p is dz
z
, and

at q is −dw
w
. This makes F locally at p (resp. q) the product of a

holomorphic function by e
´
dz
z = elog z = z (resp. e−

´
dw
w = 1

w
), so that

finite unbranched covering of E.) This doesn’t really affect the proof, except for
replacing ∂F by Mα+Mβ −Mα−Mβ.
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F is meromorphic on E with divisor

(F ) = [p]− [q].

Therefore deg(F ) = 1, making F : E → P1 an isomorphism, which is
impossible.

We conclude from this contradiction that p and q cannot have been
distinct. �

Abel’s theorem is usually paired with something called “Jacobi in-
version”, the baby version of which is:

Proposition 18.2.3. The Abel map u is surjective (and thus an
isomorphism).

Proof. This is trivial: u is a closed mapping (since continuous),
and an open mapping (since holomorphic and not constant). The image
is therefore open and closed in C/ΛE; since the latter is connected,
we’re done. �

Essentially all of the foregoing (with the exception of Remark 18.1.4)
works for any nonsingular cubic. There is a unique holomorphic 1-form
up to scale; it vanishes nowhere; and integrating it from a base point
gives an isomorphism from the cubic to a complex 1-torus. This follows
from the last 2 sections by applying the projective transformation of
Chapter 17 to put the cubic in Weierstrass form (which has just been
slightly more convenient for writing down ω). For the next section,
however, the Weierstrass form will be crucial.

18.3. Abel inverts Weierstrass

We now make the Big Claim that
(18.3.1)
a Weierstrass cubic is always the image EΛ of a Weierstrass P-map

(cf. Remark 18.1.4), and we have

(18.3.2) u ◦ P = idC/Λ

and

(18.3.3) P ◦ u = idE.
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First we study the case where E is (by assumption) the image of a
P-map.

Proposition 18.3.1. Let Λ = Z 〈λ1, λ2〉 ⊂ C be a lattice. The
composition

C/Λ
(∼=)

−→
P

EΛ

(∼=)

−→
u

C/ΛEΛ

is the identity.

Proof. Obviously part of the claim is that

(18.3.4) ΛEΛ

(
:=

{ˆ
γ

ω

∣∣∣∣ γ ∈ H1(EΛ,Z)

})
= Λ.

For EΛ, not a lot is lost by working in affine (x, y) coordinates, since
there is only O at ∞ and we know that corresponds to u ≡ 0 on the
complex 1-tori. (Note also that “u” is used both as the Abel map and
as the coordinate on C; which one will be clear from the context.)

Since P(u) = (℘(u), ℘′(u)),

P∗ω = P∗
(
dx

y

∣∣∣∣
EΛ

)
=
d(℘(u))

℘′(u)
=
℘′(u)du

℘′(u)
= du.

Moreover, that P is an isomorphism means any cycle γ on EΛ is the
image of some γ̃ ∈ H1(C/Λ,Z)

C

Λ
γ

so that ˆ
γ

ω =

ˆ
P∗(γ̃)

ω =

ˆ
γ̃

P∗ω =

ˆ
γ̃

du

gives a bijection between ΛEΛ
and Λ, hence (18.3.1). So then taking

u0 ∈ C/Λ,

u(P(u0)) =

ˆ P(u0)

O

dx

y
=

ˆ P(u0)

P(0)

ω =

ˆ u

0

P∗ω =

ˆ u0

0

du = u0
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proves the Proposition. �

Now let E be any Weierstrass cubic.

Proposition 18.3.2. The composition

E

(∼=)

−→
u

C/ΛE

(∼=)

−→
P

EΛE ⊂ P2

is the identity. In fact,

(18.3.5) E = EΛE

exactly as subsets of P2.

Proof. Here is what the composition looks like, where (x, y) ∈ E:

(x, y)
u7−→
ˆ x

∞

dx

±
√
Q(x)

P7−→

(
℘

(ˆ x

∞

dx

±
√
Q(x)

)
, ℘′

(ˆ x

∞

dx

±
√
Q(x)

))
,

where the ± is determined by y. We must show that the right-hand side
recovers (x, y), or equivalently that the inverse (x(u), y(u)) : C/ΛE →
E of the Abel map u identifies with (℘(u), ℘′(u)).

Let’s start with x, and compare the elliptic functions x(u) and P(u)

on C/ΛE. First I claim that both have double poles at u = 0: you
already know that ℘(u) = 1

u2 + higher-order terms. For x, it suffices to
check this on E, using

x =
X

Z

∣∣∣∣
E

∈ K(E)∗

E

O

X=0

{Z=0}=T E
O

. . . which is easy:

νO(x) = (E · {X = 0})O − (E · {Z = 0})O = 1− 3 = −2.
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Now x(u) = A
u2 + h.o.t., with A =

lim
u→0

x(u) · u2 =
(

lim
x→∞

√
x · u(x)

)2

=

 lim
x→∞

´ x
∞

dw√
Q(w)

1/
√
x

2

=

(
lim
x→∞

1/
√
Q(x)

−1/2x
3
2

)2

= lim
x→∞

4x3

Q(x)
= 1.

Define an involution
 : E → E

by
(x, y) 7→ (x,−y);

this fixes O. For p ∈ E,

u((p)) =

ˆ (p)

O=(O)

dx

y
=

ˆ p

O
∗
dx

y
= −
ˆ p

O

dx

y
= −u(p),

and so
x(−u) = x(u) , y(−u) = −y(u).

All told, we now have that x(u) and ℘(u) are both even Λ-periodic
functions locally of the form 1

u2 + h.o.t., and so their difference has no
poles and must (by Liouville) be constant: x− ℘ = c.

Next, differentiating u =
´ x
∞

dx
y

gives du
dx

= 1
y
, or

x′(u) =
dx

du
= y(u);

and then
0 =

d

du
(c) = x′(u)− ℘′(u) = y(u)− ℘′(u).

All that is left is to check that c = 0.
The fixed points of the involution u 7→ −u are the 2-torsion points,

i.e. those u ∈ C/ΛE with 2u ≡ 0

O u

uu

1

23

since we must have u ≡ −u mod ΛE. These are, of course, the images
(by u) of the fixed points of  in E, since u ◦  = −u. They also
must map (by P) to the fixed points of (x, y) 7→ (x,−y) in EΛE , since
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(℘(−u), ℘′(−u)) = (℘(u),−℘′(u)). Writing

y2 = 4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3)

for the equation of E,

2e
1

3

O

E

e e

x (2-torsion points) = e1, e2, e3,∞.

Similarly, if EΛE = {y2 = 4x3 − g̃2x− g̃3 = 4(x− ẽ1)(x− ẽ2)(x− ẽ3)}
then

℘(2-torsion points) = ẽ1, ẽ2, ẽ3,∞;

and clearly
e1 + e2 + e3 = ẽ1 + ẽ2 + ẽ3 = 0.

Since ℘(u) = x(u) + c,

℘(u1) + ℘(u2) + ℘(u3) = x(u1) + x(u2) + x(u3) + 3c

which becomes
0 = 0 + 3c

so c = 0.
We conclude that ℘(u(x, y)) = x and ℘′(u(x, y)) = y. �

Exercises
(1) [Adapted from Silverman-Tate.]

Let 0 < β ≤ α, and consider the ellipse E defined by

x2

α2
+
y2

β2
= 1.

Show that the arc-length of E is given by the integral

4α

ˆ π
2

0

√
1− k2 sin2 θdθ
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for an appropriate choice of constant k depending on α and β.
Then prove that this is equal to

4α

ˆ 1

0

1− k2t2√
(1− t2)(1− k2t2)

dt.

hence the problem of determining arc-length comes down to eval-
uating the integral ˆ 1

0

1− k2t2

u
dt

“on” the elliptic curve u2 = (1− t2)(1− k2t2).

Remark: this curve obviously isn’t cubic but is still of genus 1
because of the singularity at infinity. You can think of this as what
you get if instead of writing an elliptic curve as 2 : 1 over P1 with
branching at (i.e. order 2 ramification over) 3 finite points plus
infinity, you take the branching to be over 4 finite points. So it’s
very close to a Weierstrass cubic, even though it’s quartic.

The integral in this problem is of course related to the Abel map/abelian
integral above, and is meant to demonstrate why such integrals
(and hence these curves) are called “elliptic”.



CHAPTER 19

Group law on the nonsingular cubic

It is now high time for the “smooth” version of Chapter 16: group
laws and addition theorems for elliptic curves. We start by introducing
an algebro-geometrically defined binary operation on the points of a
cubic curve, and prove it coincides with addition on C/ΛE under the
Abel isomorphism. This gives one proof that the operation defines an
abelian group, and we give another more natural one as well. From
the fact that it makes Abel’s map into a homomorphism we will then
derive functional equations for elliptic integrals.

19.1. Definition of the group law

Let E ⊂ P2 be a nonsingular cubic, which we shall not require to
be in Weierstrass form, and fix a flex O. Let p and q be points of E.

Step 1: Draw the line L1 through p and q:

p

q

p*q

O

L1

By Bezout, there is a third intersection point, which we shall denote
p ∗ q, so that

L1 · E = [p] + [q] + [p ∗ q].

Note that the three points need not be distinct — any two, or all three,
may coincide. This has the usual interpretation: double-intersection

207
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means L1 is tangent to E at that point; triple-intersection means you
have a flex.

Step 2: Draw the line L2 through O and p ∗ q:

p

q

p*q

O

L

p+q

2

The third intersection point is denoted p + q, with the same interpre-
tations as above.

In the special case where E is in Weierstrass form, L2 is a vertical
line {X = x0Z}. So the map sending p∗q to p+q is just the involution
 : E → E taking (x, y) 7→ (x,−y):

2e
1

3

O

E

e e

j

We have therefore constructed a binary operation

E × E → E

(p, q) 7→ p+ q

on the (set consisting of the) points of E. It is not yet clear that this
defines a group. It is clear that it is commutative, so that if it defines
a group, then that group is abelian.
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19.2. Relation to the group structure on the 1-torus

Let T : P2 → P2 be the projective transformation putting E into
Weierstrass form (and taking O to O′ := [0 : 0 : 1]). Denote the
binary operation defined on points of E ′ := T (E) (via the method just
described, with O′ replacing O) by +′. Since projectivities preserve
lines, intersection multiplicities, and so forth, it is clear that T (p) +′

T (q) = T (p+q). So to show that “+” defines a group law for arbitrary
E, it suffices to check this for Weierstrass cubics.

Hence we may assume E is in Weierstrass form (and O = [0 : 0 : 1]).
Take the Abel map

u : E → C/ΛE

to be as in Chapter 18, with inverse P . We know that “addition mod
ΛE” defines a group law on C/ΛE. The next result implies not only that
our operation on E defines a group law, it says that u is an isomorphism
of groups.

Theorem 19.2.1. The Abel map respects binary operations. That
is, the equivalent formulas

(19.2.1) P(u1) + P(u2) = P(u1 + u2)

(19.2.2) u(p) + u(q) ≡ u(p+ q) mod ΛE

hold.

Proof. We will prove (19.2.2), in a manner reminiscent of the
proof of Theorem 18.2.1. Writing FLi for the degree-1 homogeneous
polynomial defining Li, consider the meromorphic function

f :=
FL2

FL1

∣∣∣∣
E

∈ K(E)∗.

Reading its divisor off from the intersection points of the {Li} and E,

(f) = [p+ q] + [p ∗ q] + [O]− ([p] + [q] + [p ∗ q])

= [p+ q]− [p]− [q] + [O].

So for its pullback P∗f = f ◦ P to C/ΛE,

(P∗f) = [u(p+ q)]− [u(p)]− [u(q)] + [0].
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Cut open C/ΛE and put U :=
´ ∗

0
du on the resulting fundamental

region F:

β−β

α

−α

O

u(p+q)

u(p)u(q)

F

Write U(p) for U(u(p)) (and so on) for simplicity. By the residue theo-
rem,

U(p+ q)− U(p)− U(q) (+0)

=
1

2πi

‰
∂F

U · d(P∗f)

P∗f

=

{
− 1

2πi

ˆ
α

dlog(P∗f)

}ˆ
β

du +

{
1

2πi

ˆ
β

dlog(P∗f)

}ˆ
α

du.

Since both terms in braces are integers, the whole thing belongs to

Z
〈ˆ

α

du,

ˆ
β

du

〉
= ΛE.

Since U(p), U(q), U(p + q) are lifts to C of u(p), u(q), u(p + q), going
modulo ΛE we see that u(p+ q)− u(p)− u(q) ≡ 0. �

We will generalize this argument in the next chapter to get Abel’s
theorem for E.

Remark 19.2.2. For an arbitrary smooth cubic C, one still has (up
to scale) a unique ω ∈ Ω1(C), which gives rise to an Abel isomorphism
u : C → C/Λ(C,ω). (19.2.2) still holds in this setting by more or less
the same proof; this avoids passing through Weierstrass form.

19.3. A more algebro-geometric approach

Returning to the setup of §19.1, let us suppose that the coefficients
of the homogeneous cubic polynomial defining E belong to some sub-
field k ⊂ C. We shall say E is defined over k. If K ⊂ C is a field
extension of k (e.g. k itself, or C), then we can consider the K-points
of E

E(K) := {[Z : X : Y ] ∈ E | Z,X, Y ∈ K}.

Proposition 19.3.1. E(K) is closed under “+”, and is conse-
quently a subgroup of E.
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Proof. If p, q ∈ E(K) then the line L1 = Lpq is defined over K,
and so can be parametrized P1

∼=→ Lpq over K. (This means that the
formulas expressing [Z : X : Y ] as functions of [T0 : T1] ∈ P1 involve co-
efficients in K.) So the pullback of the homogeneous polynomial defin-
ing E is defined over K. Now this can be written

∑3
j=0 βjZ

3−j
0 Zj

1 =∏3
i=1(Z1−αiZ0), assuming without loss of generality that there are no

Z0 factors; and what we know is that the βj ∈ K. This is no guarantee
that the αi ∈ K. But in this case we know that two of them — say,
α1, α2— correspond to p, q and so must belong to K. Consequently
α3 ∈ K as well, and its image point p∗q is also defined over K. Repeat
the argument for L2 and the claim follows. �

Remark 19.3.2. (a) In light of the above definition, the “correct”
notation for the set of complex points of E, which we have heretofore
denoted simply “E”, is E(C).

(b) As a C-module, E(C) ∼= C/ΛE has rank 1, but as an abelian
group (i.e. “Z-module”), its rank is infinite. (Consider a bunch of Q-
linearly independent complex numbers modulo ΛE — there is no bound
on the size of the Q-vector space you can generate in this fashionl.) On
the other hand, for the subgroup E(Q), a famous theorem of Mordell
(1922) asserts that the rank (as an abelian group) is always finite. In
problem (6) below, you will show computationally that the rank of
E(Q) in one example is at least 1.

Now the Abel map u is non-algebraic (i.e., transcendental); it should
be seen as providing a link between the complex algebraic and the com-
plex analytic. Such maps, which include multivariate abelian functions,
modular and automorphic forms, are very important in arithmetic al-
gebraic geometry. While they do not preserve the field of definition,
they have nonetheless been essential to the study of things like class
field theory, the proof of Fermat’s last theorem, and so on. Still, in
light of the subgroup structures E(K) ⊂ E(C), it is a bit sloppy to
prove that “+” is a group law in a manner that only works over C.

So we will now give the “fully algebraic” approach to this proof, by
checking

(19.3.1) O + p = p (∀ p ∈ E),
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(19.3.2) (p ∗ q) + (p+ q) = O (∀ p, q ∈ E), and

(19.3.3) + is associative.

Notice that (19.3.2) implies (p ∗ O) + (p + O) = O, and thus that
p ∗ O = −p, so we indeed have inverses. (19.3.1) and (19.3.3) are the
other two group axioms.

To verify (19.3.1), we have the pictorial depiction of the two-step
process for adding O and p:

E

Step IIStep I

O O

O*p

p

O*p

L L
1 2

O+p

in which L1 = LOp and L2 = LO,O∗p = L1!! Consequently the third
intersection point O + p of L2 with E, is none other than p. (19.3.2)
isn’t much harder; again, a picture:

p

q

O

L1

p+q

p*q

=(p*q)*(p+q) O

L2

where L1 = Lp∗q, p+q. Since the line through O and p ∗ q intersects
E in (and defines) p + q, it follows that L1’s third intersection point
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(p ∗ q) ∗ (p+ q) with E is just O. Then

L2 := LO,(p∗q)∗(p+q) = LO,O = TOE,

and since O is a flex ((TOE · E)O = 3), the third intersection point is
again O.

Finally we come to the associativity issue (19.3.3). Here I won’t
break the two steps up into two pictures. Instead, here is a depiction
of (p + q) + r, where the blue lines compute p + q and the green ones
the addition of r to the result:

O

r

p

(p+q)*r
p*q

q
p+q

L

L2

1

(p+q)+r

L’

L’
1

2

. . . and here is what p + (q + r) looks like (blue lines for q + r, green
for adding result to p):

O

r

p

q

q*r

q+r

p*(q+r)

1
1

l’
2

2

l
l’

l

p+(q+r)

We have to show (p+ q) + r = p+ (q + r), or equivalently

(p+ q) ∗ r = p ∗ (q + r).
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Now look at the three cubics E, C = L1∪ `2∪L′1, and D = `1∪L2∪ `′1,
with intersections

E ·C = [O]+[p]+[q]+[r]+[p∗q]+[p+q]+[q∗r]+[q+r]+[(p+q)∗r]

and

E ·D = [O]+[p]+[q]+[r]+[p∗q]+[p+q]+[q∗r]+[q+r]+[p∗(q+r)].

Argue à la §15.2: the ratio of the homogeneous polynomials defining C
and D induces a meromorphic function on E with divisor

E · C − E ·D = [(p+ q) ∗ r]− [p ∗ (q + r)],

leading as usual to a contradiction unless these two points are the same.

19.4. Addition theorems

Now assume E = {y2 = Q(x)} (with Q(x) = 4x3 − g2x − g3) is in
Weierstrass form; we would like to unwind the statements (19.2.1) and
(19.2.2) that P and u are group homomorphisms (hence isomorphisms),
to produce something more computationally explicit.

We do this first for the Weierstrass map. Writing p = P(u1) =

(℘(u1), ℘′(u1)), q = P(u2) = (℘(u2), ℘′(u2)), we have p ∗ q

= (p+q) = (P(u1)+P(u2)) = (P(u1+u2)) = (℘(u1+u2), ℘′(u1+u2))

= (℘(u1 + u2),−℘′(u1 + u2)).

Now p, q, and p ∗ q are collinear by construction — they lie on L1

in the group law “process” for E. We may express this in projective
coordinates by saying that

0 = det

 1 1 1

℘(u1) ℘(u2) ℘(u1 + u2)

℘′(u1) ℘′(u2) −℘′(u1 + u2)

 .

This is the first addition theorem, and is the analogue for bi-periodic
functions of the standard trigonometric angle-addition formulas. It
really does express ℘(u1+u2) in terms of ℘(u1) and ℘(u2), since ℘′(α) =

±
√
Q(℘(α)).
Let’s actually compute the group law on E. Start by writing y =

ax+ b for L1 and substituting this into the equation of E to “intersect”
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them. This gives

0 = 4x3 − g2x− g3 − (ax+ b)2 = 4(x− x(p))(x− x(q))(x− x(p+ q))

since L1 and E meet in p, q, p ∗ q. (Note that x(p + q) = x(p ∗ q).)1

From expanding these two expressions and comparing coefficients of
x2, one finds that

a2 = 4(x(p) + x(q) + x(p+ q));

and since a is the slope of L1 it is obvious that

a =
y(q)− y(p)

x(q)− x(p)
.

Therefore we have

x(p+ q) =
1

4

(
y(q)− y(p)

x(q)− x(p)

)2

− x(p)− x(q).

Now u(p) =
´ p
O
dx
y

=
´ x(p)

∞
dx√
Q(x)

, similarly u(q) =
´ x(q)

∞
dx√
Q(x)

and

u(p+ q) =
´ x(p+q)

∞
dx√
Q(x)

. Re-expressing

u(p) + u(q) ≡ u(p+ q) mod ΛE

using all these formulas yields the second addition theorem:

ˆ x1

∞

dx√
Q(x)

+

ˆ x2

∞

dx√
Q(x)

≡
ΛE

ˆ {
1
4

(√
Q(x2)−

√
Q(x1)

x2−x1

)2

−x2−x1

}

∞

dx√
Q(x)

which is a nontrivial functional equation for the elliptic integral
´ ∗
∞

dx√
Q(x)

.

∗ ∗ ∗

The problems below (with the exception of the last one) take place on a
nonsingular cubic E := {y2 = 4x3−g2x−g3} ⊂ P2 in Weierstrass form,
with base point O = [0 : 0 : 1], holomorphic form ω = dx

y
|E ∈ Ω1(E),

and Abel map u : E → C/ΛE, u(p) =
´ p
O ω (recall this is an iso-

morphism), with inverse P(u) = [1 : ℘(u) : ℘′(u)]. I have written

1the dictionary we have in mind is: x(p) = ℘(u1), y(p) = ℘′(u1); x(q) = ℘(u2),
y(q) = ℘′(u2); x(p+ q) = ℘(u1 + u2), y(p+ q) = ℘′(u1 + u2).
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everything in affine form, which you can convert to projective coordi-
nates if needed.

Exercises
(1) Show that the 2-torsion points on C/ΛE correspond to the x-

intercepts {(ei, 0)}3
i=1 and the point O.

(2) Assume g2, g3 ∈ Q. Given p, q ∈ E(Q) (i.e. the x, y coordinates are
rational), give another proof that p+ q ∈ E(Q), using the addition
theorems.

(3) For this and the following three problems take g2 = −4, g3 = 0.
Consider the complex analytic automorphism A : E → E sending
(x, y) 7→ (−x, iy). In Ch. 13 Exercise (1), you showed that A∗ω =

iω.
(a) Find A∗u (i.e. compute u ◦ A).
(b) Prove that iΛE = ΛE. (In fact, ΛE is a “square” lattice — so
this is a very special elliptic curve!)

(4) “Special case” of the 2nd addition theorem (or rather, what we did
in §19.4 above doesn’t exactly work in the case we’ll do here, so
you’ll have to work it out from scratch): write ℘(2u) in terms of
℘(u), for E as in exercise (3), i.e. with equation y2 = 4x3 + 4x.
[Hint: write ℘′(u) and then the slope a of E at (℘(u), ℘′(u)), in
terms of ℘(u). Write y = ax + b for the line tangent to E at this
point. Then factor 4x3 +4x−(ax+b)2 into linear factors (what are
the roots?), multiply out both expressions, and compare coefficients
of x2.]

(5) Continuing the last problem, show that (1, 2
√

2) is a 4-torsion
point. Use the “CM” recalled in exercise (3) to get three more
4-torsion points. Can you use the group law to find them all? (If
not, why?)

(6) This problem also depends on (4). Consider a point P of E with
rational x-coordinate x0 = p

2aq
, where the fraction is written in

lowest terms, a is an odd natural number and p and q are odd
integers. Show that P is of infinite order (in the group). [Hint:
write (x0, y0) for this point, and let (x1, y1) := 2(x0, y0) under the
group law; if x0 = ℘(u), then x1 = ℘(2u). So rewriting your
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formula from (4) as a formula for x1 in terms of x0 and simplifying,
show that x1 is of the same form, but with larger a. Then suppose
the starting point was an N -torsion point for some N and produce
a contradiction via the pigeonhole principle.]

(7) This problem takes place on an arbitrary nonsingular cubic E ⊂
P2, with base point O = choice of flex in E, holomorphic form
ω ∈ Ω1(E) with periods generating a lattice ΛE, and Abel map
u : E

∼=→ C/ΛE, u(p) =
´ p
O ω.

Prove that the 3-torsion points on C/Λ correspond (under u) to
the flexes on E.





CHAPTER 20

Abel’s theorem for elliptic curves

Given a divisorD =
∑
ni[pi] on an elliptic curve E, we can formally

compute the sum in the group law, ending up with a single point on
E. It seems of interest to ask if anything special is true if this point
is the origin O. In fact, assuming

∑
ni = 0, it will turn out that this

is true precisely if D is the divisor of a meromorphic function on the
curve. We begin by describing the statement of Abel’s theorem for a
curve of arbitrary genus (which does not have a group law), to place
the statement for genus one in a broader context. Then we prove the
genus-one case, introducing theta functions along the way.

20.1. The Jacobian of an algebraic curve

Let M be a Riemann surface of genus g. We will need to accept
some facts in order to state Abel’s theorem for M . (These will be
returned to in later chapters, along with the proof of Abel.) It turns
out that the space of holomorphic 1-forms has dimension g, whilst the
abelian group of 1-cycles modulo boundaries (cf. §18.1 for definitions)
has rank 2g. In terms of bases,

H1(M,Z) ∼= Z 〈γ1, . . . , γ2g〉 ,

Ω1(M) ∼= C 〈ω1, . . . , ωg〉 .

Remark 20.1.1. A visual “explanation” of the statement about ho-
mology groups may be the best one:

γ

γ
γ

γ

γ

g+1 g+2
γ

2g

1
2

g

Chapter 3 of Griffiths’s “Introduction to Algebraic Curves” gives one
219
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approach to computing the holomorphic forms of M , provided one be-
lieves that any Riemann surface is the normalization of an algebraic
curve C in P2 with only ordinary double point (if any) singularities.
(This statement relies on the existence of nonconstant meromorphic
functions on M , which is nontrivial.) Since the genus g of M is
(d−1)(d−2)

2
− δ (d = deg(C), δ =# of ODPs), it is enough to show

that all meromorphic 1-forms are rational (cf. §24.1) and furthermore
that holomorphic pullbacks of rational 1-forms from P2 span a space of
dimension

(
d−1

2

)
− δ. This is done in Griffiths, and will be discussed a

little more in §24.2.
Just to get an idea of how this works, suppose C = {F (Z,X, Y ) =

0} is smooth of degree d, and recall Sm3 denotes degree-m homogeneous
polynomials in 3 variables, with dimension

(
m+2

2

)
. If G is a homoge-

neous polynomial of degree n, write g(x, y) = G(1, x, y) (and similarly
f(x, y) = F (1, x, y)). Then the meromorphic 1-form on P2 which in
affine coordinates takes the form g·dx

fy
, restricts to a holomorphic 1-form

on C precisely if1 n = d − 3. (This is equivalent to saying deg(g) ≤
d− 3.) Hence,2 Ω1(C) has dimension

(
(d−3)+2

2

)
=
(
d−1

2

)
= (d−1)(d−2)

2
.

Anyhow, let γj ∈ H1(M,Z) be a basis element; associated to it is a
period vector

πj :=


´
γj
ω1

...´
γj
ωg

 ∈ Cg.

Together these form a g × 2g period matrix Π with R-linearly inde-
pendent columns. (This isn’t obvious, and will be addressed in §24.2.)
Hence their columns generate (over Z) a 2g-lattice ΛM ⊂ Cg(∼= R2g).

Recall that if V is a vector space (say, over C) then the dual space
is the space of linear functions V ∨ := Hom(V,C).

Definition 20.1.2. The Jacobian of M is the abelian group

J(M) :=
(Ω1(M))

∨

image {H1(M,Z)}
,

1the computation in Griffiths proving this is “ugly” but straightforward; Poincaré
residues facilitate a conceptual and essentially 1-line proof (but at the cost of more
sophisticated machinery).
2putting off to §24.2 that this formula encompasses all rational holomorphic forms
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where the denominator means the linear functions on Ω1(M) obtained
by integrating ω ∈ Ω1(M) over 1-cycles. Evaluation of linear functions
against the basis {ω1, . . . , ωg} induces an isomorphism

J(M)
∼=−→ Cg

ΛM

;

that is, the Jacobian is a complex g-torus.

Lemma 20.1.3. Any morphism of complex manifolds ϕ : P1 →
Cg/ΛM is constant.

Proof. Cg/ΛM has g independent holomorphic 1-forms: du1, . . . , dug

(where u1, . . . , ug are just the coordinates on Cg). Since ϕ∗(dui) ∈
Ω1(P1) and Ω1(P1) = {0}, we have

0 = ϕ∗(dui) =
locally

d(ϕ∗ui)

which implies ϕ∗ui = ui ◦ ϕ (well-defined only locally) is constant for
each i = 1, . . . , g. �

20.2. The Abel-Jacobi map

When is D ∈ Div(M) of the form (f), for some nontrivial mero-
morphic function f on M? Since deg((f)) = 0 for any f ∈ K(M)∗, it
is clear that D must be of degree 0 — i.e. in the kernel of

deg : Div(M) −→ Z∑
ni[pi] 7−→

∑
ni.

So consider a divisor D in

Div0(M) := ker(deg).

We may write

D =
∑
j

([qj]− [rj]) = ∂

(∑
j

−−→rjqj

)
︸ ︷︷ ︸

=:Γ

where “∂” means topological boundary and −−→rjqj is a C∞ path from rj

to qj.

Definition 20.2.1. The Abel-Jacobi map

AJ : Div0(M)→ J(M)
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sends D (= ∂Γ) to ˆ
Γ

=
∑
j

ˆ qj

rj

viewed as a functional on Ω1(M).

The first question that arises is whether this is even well-defined,
which in this case means independent of the choice of “1-chain” (sum
of paths) Γ. To check this, let ∂Γ = D = ∂Γ′. Then ∂(Γ − Γ′) = 0,
meaning that Γ− Γ′ is a 1-cycle hence represents a class in H1(M,Z).
Consequently, ˆ

Γ−Γ′
=

ˆ
Γ

−
ˆ

Γ′

“belongs to the denominator of J(M)”. It’s even easier to check that
AJ is a homomorphism (of abelian groups), which is left to you.

Now suppose D = (f), and consider the family of divisors

Dt := f−1(t) ∈ Div(M),

parametrized by t ∈ P1. Then D = D0 −D∞, and the composition

P1 −→ Div0(M)
AJ−→ J(M)

sending
t 7−→ D0 −Dt 7−→ AJ(D0 −Dt)

is constant by Lemma 20.1.3, and zero at t = 0. Thus AJ(D) = 0, and
we observe that

AJ factors through Pic0(M) :=
Div0(M)

(K(M)∗)

in a well-defined fashion. (The denominator means “divisors of mero-
morphic functions”, and the statement is simply that AJ kills these.)
Pic0(M) is called the Picard group of M .

Theorem 20.2.2. [Abel’s Theorem] AJ : Pic0(M) → J(M) is
an isomorphism.

Leaving aside the surjectivity part of this, the meaning of the “well-
definedness + injectivity” of this map is that for D ∈ Div0(M),

D = (f)

(for some f ∈ K(M)∗)

⇐⇒ AJ(D) ≡ 0 mod ΛM ,
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completely answering the question we asked at the outset. (Note that
the forward implication [ =⇒ ] is just well-definedness, which is com-
pletely proved. What is nontrivial is the injectivity/backward implica-
tion, since you actually have to find some f having D as its divisor.)

Example 20.2.3. We consider what this means in the genus-1 case,
i.e. for M = E (the normalization of) an elliptic curve. Let ω ∈ Ω1(E)

be nonzero, and consider D ∈ Div0(E). We can write D =
∑
ni[pi]

with
∑
ni = 0, and

AJ
(∑

ni[pi]
)

= AJ
(∑

ni([pi]− [O])
)

=
∑

ni

ˆ pi

O
ω =

∑
niu(pi)

where u is the Abel map. Here the right-hand sum is taking place in
C/ΛE, and we see right away that

AJ
(∑

ni[pi]
)

= 0 ⇐⇒
∑

niu(pi) ≡
ΛE

0.

By Abel’s theorem (on the left) and the fact that u : (E,+) →
(C/ΛE,+) is a group-isomorphism (on the right), we have that

(20.2.1)
∑
ni[pi] = (f)

for some f ∈ K(E)∗
⇐⇒

∑
ni · pi = O

in the group law on E(C).

As above, the forward implication has been proved.

20.3. Direct proof of Abel for genus one

In this section we will deduce a result equivalent to the backward
implication in (20.2.1), recasting it as an existence theorem for elliptic
functions. For simplicity take Λ = Z 〈1, τ〉, τ ∈ H (upper half-plane):

0 1

τ 1+τ

τ+1

2

Theorem 20.3.1. Suppose
∑
mj = 0 and

∑
mjuj ≡ 0 mod Λ.

Then, writing D :=
∑
mj[uj] ∈ Div(C/Λ), there exists g ∈ K(C/Λ)

such that (g) = D. (You may think of g as a Λ-periodic meromorphic
function on C.)
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Proof. Introduce the theta function (on C)

θ(u) :=
∑
n∈Z

eπi{n
2τ+2nu}.

While it is not Λ-periodic, it has the properties
(a) θ(−u) = θ(u)

(b) θ(u+ 1) = θ(u) [cf. Exercises]
(c) θ(u+ τ) = e−2πi( τ2 +u)θ(u). To check this, write θ(τ + u)

=
∑
n∈Z

eπi{n
2τ+2nu+2nτ} =

∑
n∈Z

eπi{(n+1)2τ+2(n+1)u−τ−2u}

which becomes, reindexing by m = n+ 1,

= e−πiτ−2πiu
∑
m∈Z

eπi(m
2τ+2mu)

as required.
(d) θ has a simple (order 1) zero at τ+1

2
and no-where else in the

fundamental domain bounded by vertices 0, 1, τ, 1 + τ .
Now consider

f(u) :=
∏
j

θ

(
u− uj +

τ + 1

2

)mj
;

clearly f(u+ 1) = f(u) by property (b); but also (using property (c))

f(u+ τ)

f(u)
=
∏
j

(
θ
({
u− uj +

(
τ+1

2

)}
+ τ
)

θ
(
u− uj + τ+1

2

) )mj

=
∏
j

(
e−2πi(τ+ 1

2
+u−uj)

)mj
= e−2πi(τ+ 1

2
+u)

∑
mj · e2πi

∑
mjuj .

By asssumption,
∑
mj = 0 and

∑
mjuj = M + Nτ , so the last ex-

pression equals e2πiNτ . The function

g(u) := e−2πiNuf(u)

will therefore satisfy g(u + τ) = g(u) = g(u + 1). So it is Λ-periodic,
and the definition of f together with property (d) makes it clear that
(g) =

∑
mj[uj]. �

Exercises
(1) Verify property (b) for the theta function above (§20.3).



CHAPTER 21

The Poncelet problem

First let’s recall the most elementary statement of the “porism”
from Chapter 1. One starts with two conics CR, DR in R2, which
for simplicity we can take to be two ellipses cut out by polynomials
fC , fD ∈ P2 with real coefficients:

C

D
R

R

We asked in §1.3 whether there exists a closed polygon inscribed in CR

and circumscribed about DR. The result stated there, Theorem 1.3.1,
said that if there is one then there is an infinite family. Our goal in
this chapter is not just to flesh out the sketch of proof given there of
this “porism”, but to actually provide a way of deciding for which pairs
there does exist a circuminscribed polygon.

A slight reformulation of the theorem is this: starting from some
point x0 on CR, draw a line segment tangent to DR, continue until it
hits CR again. Begin again at this new point, by drawing the other line
segment through it and tangent to DR:

x

x

x

L

L

1

0

1

2

0

C

D

etc.

R

R

Iterating this construction, we may ask whether it ever closes up —
i.e. returns to its starting point. (We will not care whether the path
crosses itself.) What we will show is that the answer is independent of
the choice of starting point x0.

225
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21.1. Proof of Theorem 1.3.1

This Theorem has nothing to do with C and D being ellipses, fC
and fD being real polynomials, and so forth — it makes sense more
generally for pairs of conics in the complex projective plane P2, and
that is the context in which we view it for the proof. Namely, let
C = {FC(Z,X, Y ) = 0}, D = {FD(Z,X, Y ) = 0} be the conics cut
out by homogeneous degree-2 polynomials FC , FD ∈ S2. If the latter
have coefficients in R (not essential for what follows), then the real
points C(R), D(R) make sense and then CR, DR above are just their
intersections with affine space. Now, these affine real points need not
meet (as in the above picture), but by Bezout C and D must meet
in four points counted with multiplicity. We will carry out our proof
under the assumption that the multiplicities are all one, i.e. C and D
meet transversely and so |C ∩D| = 4.

Consider the incidence correspondence

E := {(x, L) |x ∈ L} ⊂ C × Ď

where Ď ⊂ P̌2 is the dual curve consisting of lines tangent to D (at any
point). In §1.3 we defined pictorially two involutions ι1 : E → E and
ι2 : E → E . The idea is that each L ∈ Ď meets C in two points (counted
with multiplicity), and swapping those points gives ι1; whereas each
x ∈ C is in two lines tangent to D (“counted with multiplicity”), and
swapping those lines gives ι2. Composing involutions gives  := ι2 ◦ ι1,
which is no longer an involution and is the complex geometry analogue
of the iteration described just above. If we pick a starting “point”
(x0, L0) ∈ E , then we are interested in whether

n(x0, L0) = (x0, L0)

for some n ∈ N.
The projection

π : E → C(∼= P1)

(x, L) 7→ x

has
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• mapping degree 2: there exist two lines L,L′ tangent to D

through a general point x ∈ C

C

D

x

• 4 ramification points (each of order two): namely, the points
of E fixed by the involution ι2

π

x

ι2

C

In particular, the ramification points of π identify with the points of
C ∩ D, since through each of these there is a unique tangent to D

(rather than two):

C

D

L

x

By the Riemann-Hurwitz formula (for π), χE = d·χC−r = 2·2−4 = 0.
This implies E is elliptic, and so has an Abel map u mapping it isomor-
phically to a 1-torus C/Λ (where Λ depends on1 E hence ultimately on
C and D).

1to define the Abel map you also have to choose a holomorphic 1-form on E ; this
affects the scaling of the lattice but not its isomorphism class
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We could have carried out this same computation using ′π : E → Ď

(sends (x, L) 7→ L), whose ramification points (in E) are the fixed
points of ι1 and hence identify with bitangents:

C

D

x

L

There are four of these since Č and Ď are conics in P̌2 hence have
|Č ∩ Ď| = 4.

Now consider an arbitrary involution I of C/Λ, where the coordi-
nate on C is denoted u. Any automorphism of C/Λ (in particular I)
takes the form u 7→ au + b by Ch. 14 Exercise (5), and squaring this
gives

u 7−→ au+ b 7−→ a(au+ b) + b = a2u+ b(a+ 1).

If this is to be the identity, we must either have (i) a = 1 and b ∈ Λ/2,
or (ii) a = −1 and b ∈ C arbitrary. Case (i) has no fixed points as it is
a translation by a 2-torsion point.

By abuse of notation2 we will think of ι1, ι2,  as automorphisms of
C/Λ. Since ι1 and ι2 are involutions of C/Λ with fixed points, they
belong to case (ii):

ι1(u) ≡ b1 − u , ι2(u) ≡ b2 − u (mod Λ).

Therefore

(u) = ι2(ι1(u)) ≡ b2 − (b1 − u) = u+ (b2 − b1)︸ ︷︷ ︸
=:β

,

i.e.  is a translation on C/Λ.
Write u0 for the image of (x0, L0) under the Abel map. Clearly

n(x0, L0) = (x0, L0) iff n(u0) ≡ u0 (mod Λ). But n(u0) = u0 + nβ,
which ≡ u0 iff nβ ≡ 0, i.e. nβ ∈ Λ. We conclude that the Poncelet

2strictly speaking one should write u◦ι1◦u−1 for the involution of C/Λ correspond-
ing to ι1 on E
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construction (starting from (x0, L0)) closes up at the nth iteration if
and only if β is n-torsion relative to the lattice. Since β depends only
on , this has nothing to do with the choice of (x0, L0). Q.E.D.

21.2. Explicit solution of the Poncelet problem

The flexes are the preferred choices of origin for the group law on
a cubic plane curve. On the incidence-correspondence elliptic curve E ,
it turns out that the best choice for O is one of the fixed points of ι2
(the four (x, L) with x ∈ C ∩D). Writing C ∩D = {p1, p2, p3, p∞}, we
set O := (p∞, L∞) ∈ E .

L

C

e

eL

p8

8

p

p

p

D

3

2

1

Here (e, Le) is the first point in the “Poncelet iteration”, i.e. (O);
clearly β = u((e, Le)), with u : E → C/Λ the usual Abel isomorphism.
The question of whether n is the identity can be restated in terms of
the (unique) group law on E with origin O:

(21.2.1) Is (e, Le) an N -torsion point?

The approach we take to its solution in this section is work of Cayley
as presented in the nice expository article [P. Griffiths and J. Harris, On
Cayley’s explicit solution to Poncelet’s porism, L’Enseignement Math.
24 (1978), 31-40.].

A family of conics. Consider the collection of conics depending
on t ∈ P1:

Dt :=
{
p ∈ P2 | tFC(p) + FD(p) = 0

}
,

where D∞ = C and D0 = D. Each Dt passes through p1, p2, p3, p∞.



230 21. THE PONCELET PROBLEM

Recall that the equation of a conic may always be written

tp.M.p = 0 , M a symmetric 3x3 matrix;

the conic is singular if and only if detM = 0. Write MC , MD for the
matrices corresponding to C, D, so that tMC +MD corresponds to Dt.
Those t for which Dt is singular, are then just the ti in

(21.2.2) det (tMC +MD) = κ(t− t1)(t− t2)(t− t3).

There are three singular conics through the {pi}i=1,2,3,∞:

p p

pp

1

2 3

8

Dt

p p

pp

1

2 3

8

Dt

p p

pp

1

2 3

8

Dt
1

2 3

1
t

t t
2 3

For any t ∈ P1, let

`t := tangent line (through p∞) to Dt

`t ∩ C =: p∞ + qt (defines qt).

From the pictures above, we see that

qti = pi (i = 1, 2, 3),

q∞ = p∞ (double intersection),

q0 = e.

So stereographic projection through p∞gives an isomorphism (normal-
ization)

P1 ∼=−→ C

sending
t 7−→ qt,

in particular
ti 7−→ pi (i = 1, 2, 3),

∞ 7−→ p∞,
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0 7−→ e.

This makes E a double-cover3 of P1 branched at t1, t2, t3,∞ — i.e. the
“existence domain” (cf. §2.3) of

√
(21.2.2), which is to say the Riemann

surface

(21.2.3)
{
s2 = det(tMC +MD)

}
=: E.

The point (e, Le) on E corresponds to a point over t = 0 on E; call this
ε. (Moreover, O ∈ E corresponds to [0 : 0 : 1] =: O ∈ E, as it should.)
Summarizing everything in a picture:

t
1

t
2

t
3

0=(0,s )

1
P

1
P

t gives local

holo. coord.

with t(  )=0ε

(   ,0) (   ,0) (   ,0)

ε

E

π

Ε

C

π π

t ,t ,t ,t p ,p ,p ,p = C  D4 1 2 3 4321

(e,L  )

(p  ,L  )

e

8 8

ε

O
O

Our main question (21.2.1) becomes:

Is ε N -torsion on E?

Now t1 + t2 + t3 may not be zero and we are lacking a factor of 4, so
E is not quite in Weierstrass form. But it is easy to see that we have
a normalization

P : C/Λ
∼=−→ E

given by

u 7−→
(
℘(u) +

∑
ti

3
,
℘′(u)

2κ−
1
2

)
.

Clearly this sends 0 7→ O; define u0 ∈ C/Λ to be the point sent to ε.
The question is now:

Is u0 N -torsion on C/Λ?

3remember, E was already (via π) a double-cover of C branched over p1, p2, p3, p∞
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“Normal” elliptic curves and a “multiple addition” theorem.
Put uj := u0 + ∆j, where ∆j ∈ C. Abel’s theorem implies

Proposition 21.2.1. There exists a Λ-periodic meromorphic func-
tion F with order-N pole at 0 and simple zeroes at u1, . . . , uN , if and
only if u1 + · · ·+ uN ≡ 0 (mod Λ).

What we are really after here is the vector space V of meromorphic
functions on E with at worst an order-N pole atO (and no other poles).
There are N − 1 degrees of freedom coming from pushing around the
{uj} (while keeping

∑
uj ≡ 0) and one degree of freedom from multi-

plying the function by a constant. So dimV = N ; let {f1, f2, . . . , fN}
(with f1 constant) be a basis, and define

ϕN : E −→ PN−1
[w1:···:wN ]

by
([1 : t : s] =:) z 7−→ [f1(z) : · · · : fN(z)].

Definition 21.2.2. The image of ϕN , denoted EN , is called a nor-
mal elliptic curve of degree N . (Note that E3is essentially E — take
f1, f2, f3 to be 1, t, s.)

For
∑
uj ≡ 0, there exists a function F on EN with zeroes at

ϕN(P(uj)), and order N pole at ϕN(O). Now the “hyperplane at in-
finity” {w1 = 0} ⊂ PN1 intersects EN only at ϕN(O) (with multiplicity
N). If written as the pullback to EN of a rational function, it follows
that F has “denominator” w1; the numerator must then also be a ho-
mogeneous linear form H ∈ S1

N , i.e. F = H(w)
w1

∣∣∣
EN

. It follows that the

ϕN(P(uj)) all lie on {H = 0} ⊂ PN−1, and so

(21.2.4) 0 = det[

coords. of
ϕN (P(uj))︷ ︸︸ ︷
fi(P︸︷︷︸
=:Fi

(uj)) ].

Conversely if this is satisfied then the ϕN(P(uj)) lie on a hyperplane
{H = 0}; one writes down the function H(w)

w1

∣∣∣
EN

and computes its

divisor
∑N

j=1[uj]−N [0], and concludes (by Abel) that
∑
uj ≡ 0.
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We can push this computation further. Expand Fi(u0 + ∆j) =

Fi(u0) + F ′i (u0)∆j + · · ·+ F
(N−1)
i (u0)

(N − 1)!
∆N−1
j + ∆N

j ( · · · ) ,

then apply multilinearity of the determinant to expand the RHS of
(21.2.4):4

0 = const.×
∏
k>`

(∆k−∆`)×det
[
F

(j−1)
i (u0)

]
+

 terms of higher
homog. degree
in the {∆j}

 .

Dividing by
∏

k>`(∆k−∆`) and taking the limit as all ∆j → 0 (i.e. all
uj → u0), this becomes

(21.2.5) 0 = det
[
F

(j−1)
i (u0)

]
i = 1, . . . , N

j = 1, . . . , N

.

The determinant on the RHS of (21.2.5) is called the Wronskian of
ϕN ◦ P . Notice that in the limit

∑N
j=1 uj ≡ 0 becomes Nu0 ≡ 0; so

this last condition is equivalent to (21.2.5)!

Example 21.2.3. Here is what the above calculation (using mul-
tilinearity of the determinant) looks like for N = 2, ignoring terms of
degree higher than 1 in the {∆j}:∣∣∣∣∣ F1 + ∆1F

′
1 F1 + ∆2F

′
1

F2 + ∆1F
′
2 F2 + ∆2F

′
2

∣∣∣∣∣ =

∣∣∣∣∣ F1 + ∆1F
′
1 (∆2 −∆1)F ′1

F2 + ∆1F
′
2 (∆2 −∆1)F ′2

∣∣∣∣∣
=

∣∣∣∣∣ F1 (∆2 −∆1)F ′1
F2 (∆2 −∆1)F ′2

∣∣∣∣∣ = (∆2 −∆1)

∣∣∣∣∣ F1 F ′1
F2 F ′2

∣∣∣∣∣ .
Using the chain rule and again multilinearity of “det”, one finds

that the vanishing of the Wronskian is independent of the choice of
local coordinate on E. So we can replace u by t (and hence F by f),
which yields our “multiple addition theorem”:

Theorem 21.2.4. u0 is N-torsion in C/Λ (and the Poncelet itera-
tion closes up at the N th step) if and only if

(21.2.6) det
[
f

(j−1)
i (0)

]
i = 1, . . . , N

j = 1, . . . , N

= 0.

4note: “higher homogeneous degree in the {∆j}” means higher than
∏
k>`(∆k−∆`)
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Remark 21.2.5. The meaning of f (j−1)
i (0) probably requires expla-

nation: first, we are viewing f locally as a function of t (rather than
of [1 : s : t] =: z on E), and the (j − 1)st derivative is (total deriv-
ative) with respect to t. The “0” just means t is set to 0 at the end;
this is because we are evaluating at ε (i.e. u0), which has coordinates
[(s, t) =] (s0, 0).

Application in the case N odd. Obviously we can’t compute
the Wronskian (21.2.6) unless we know the fi.

Take N = 2m + 1. Then for f1, . . . , fm+1; fm+2, . . . , f2m we may
choose

1, t, . . . , tm; s, st, . . . , stm−1.

These have order of pole at 0

0, 2, . . . , 2m; 3, 5, . . . , 2m+ 1.

The determinant in (21.2.6) is then (using that dj−1ti−1

dtj−1

∣∣∣
0

= 0 unless
j = i) ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
. . . ... . . . ...

0 m! 0 · · · 0

· · · ∗ dm+1s
dtm+1

∣∣∣
ε

· · · d2ms
dt2m

∣∣∣
ε... . . . ...

... . . . ...

· · · ∗ dm+1(stm−1)
dtm+1

∣∣∣
ε
· · · d2m(stm−1)

dt2m

∣∣∣
ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Writing s = s(t) =
√

det(tMC +MD) = A0 + A1t + A2t
2 + · · · (here

A0 = s0), this becomes a nonzero constant times

(21.2.7)

∣∣∣∣∣∣∣
Am+1 · · · A2m

... . . . ...
A2 · · · Am+1

∣∣∣∣∣∣∣ .
We conclude that there is a circuminscribed (2m + 1)-gon (and hence
a family of such) for the pair C, D iff (21.2.7) vanishes.

Example 21.2.6. We work out the case N = 3, i.e m = 1. The
determinant (21.2.7) is just A2, so we can get a “Poncelet triangle”
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⇐⇒ A2 = 0. Writing Ti = 1
ti
, calculate

s =
√

det(tMC +MD) =

√√√√κ
3∏
i=1

(t− ti)

= C

3∏
i=1

√
1− t

ti
= C

3∏
i=1

(
1− Ti

2
t− T 2

i

8
t2 − · · ·

)

=⇒ A2

C
= −1

8

3∑
i=1

T 2
i +

1

4
(T1T2 + T2T3 + T1T3) .

If T1 = 1, solving a quadratic equation we find

A2 = 0 ⇐⇒ T2 =
(1 + T )2

4
, T3 =

(1− T )2

4
for some T

⇐⇒ equation of E reads s2 = κ(t−1)

(
t− 4

(1 + T )2

)(
t− 4

(1− T )2

)
.

If we take

MD =


−4

(1+T )2 0 0

0 −4
(1−T )2 0

0 0 1

 , MC =

 1 0 0

0 1 0

0 0 −1


corresponding to

C =

{
4x2

(1 + T )2
+

4y2

(1− T )2
= 1

}
, D =

{
x2 + y2 = 1

}
,

then κ = −1 and indeed

det (tMC +MD) =

(
t− 4

(1 + T )2

)(
t− 4

(1− T )2

)
(1− t) .

This recovers Example 1.3.2(b) from the beginning of the course! It’s
easy to draw one triangle, but seems quite nontrivial that you get one
independent of the starting point.

21.3. Elliptic billards

Returning to the “real” world, let CR ⊂ R2 be an ellipse with foci F1

and F2. (CR consists of all points in R2, the sum of whose distances from
F1 and F2 is a fixed constant.) We imagine that CR is the boundary of
a pool table (frictionless, of course!). A billiard trajectory for CR is a
sequence of pairs (xi, Li)i≥0 with xi, xi+1 ∈ C ∩ Li and where Li−1, Li

make equal angles with TxiCR
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x
i

L
i−1i

L

x

x
i+1

i−1

— i.e. one has “equality of angles of incidence and reflection”.
If DR is another conic (ellipse or hyperbola) then a (real) Poncelet

trajectory for (CR, DR) is a sequence of pairs (xi, Li)i≥0 with xi, xi+1 ∈
C ∩ Li and Li tangent to DR.

Theorem 21.3.1. [L. Flatto, 2003] (a) Assume DR is confocal
with5 CR. Then the (real) Poncelet trajectories are billiard trajectories
with respect to CR.

(b) Conversely, any billiard trajectory for CR not passing through
F1 or F2 and not along the minor axis, is a Poncelet trajectory for
CRand some DR confocal with CR.

We will prove only (a); Flatto does (b) in Appendix E of his book
[L. Flatto, “Poncelet’s Theorem,” AMS, 2009] (which is, by the way,
written for undergraduates). At any rate, the two proofs are very
similar.

Remark 21.3.2. It’s worth pointing out right away that given
(x0, L0) (L0 not containing F1 or F2 and not the minor axis), there
is a unique conic DR confocal with CR and tangent to L0. If L0 passes
between F1 and F2, DR is a hyperbola; otherwise, it’s an ellipse. One
determines this DR, and then from

√
det(tMC +MD) obtains infor-

mation (as in §21.2) on whether the Poncelet trajectory closes up. By
the Theorem, this is also the billiard trajectory! You’ll use this to do
a computation in Exercise (2) below. But I should emphasize that if
you change (x0, L0) (i.e. the choice of billiard trajectory), you have to
change the choice of DR accordingly.

5that is, F1 and F2 are the foci of DR. If DR is a hyperbola, this just means that
the difference of distances from its points to F1 and F2 must remain constant.
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Proof. (of (a)): We begin with a general principle, for a conic QR

with foci F1, F2. Given p0 ∈ QR, let L := Tp0QR

Q

F1 2
F

F’
2

p

R

0

L

and denote by F ′2 the reflection of F2 in L. Given points p, q write pq
for the segment and |pq| for its length. Set β := |F1p0| + |p0F2| and
note that by definition of ellipse,

|F1q|+ |qF2| = β (∀q ∈ QR).

If p ∈ L\{p0}, |F1p|+ |pF ′2| = |F1p|+ |pF2| visibly exceeds β, meaning
that taking p = p0 minimizes |F1p|+ |pF ′2|. It follows that

(21.3.1) F1p0 ∪ p0F
′
2 = F1F

′
2.

Now let CR, DR be confocal — assume that DR is an ellipse. Apply-
ing the principle that (21.3.1) holds for the above construction, leads
to a picture

D

F1 2

A
B

F

1

2

F’’

F’’

F’
2

C

ηη
η

η

1
1

2

2

θ

θ

1

2

θ +η1 1p

T Cp

R

R

Rα

in which the solid black lines are part of a Poncelet iteration and we
must show θ1 = θ2 (so that it is a billiard trajectory). reflection in
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TpCR (dotted black) is denoted by one prime, reflection in solid black
lines by two primes.

By definition of ellipse, F1A+ AF2 = F1B +BF2, which implies

|F ′′1 F2| = |F1F
′′
2 |.

From there it is clear that the triangles F ′′1 pF2 and F1pF
′′
2 are rotations

of each other (through p), so that α + 2η1 = α + 2η2 ( =⇒ η1 = η2).
It is obvious from the picture that θ1 + η1 = θ2 + η2, and so we indeed
conclude that θ1 = θ2. �

Exercises
(1) Consider the pair of conics C, D from Exercise (2) of Chapter 1

once more — but in the following form: write

MC =

 1 0 0

0 1 0

0 0 −1

 , MD =

 1 0 0

0 1 0

0 0 −r2


and use these to define quadratic forms by e.g.

QC(X, Y, Z) =
(
X Y Z

) 1 0 0

0 1 0

0 0 −1


 X

Y

Z

 = X2 +Y 2−Z2

So QC = 0 defines C and QD = 0 defines D as conics in P2.
Working in homogeneous coordinates [V : T : U ], define an elliptic
curve by

U2V = det (T ·MC + V ·MD) .

In affine coordinates, this is u2 = det(t ·MC + MD), where t = T
V
,

u = U
V
. This is the general prescription for the elliptic curve E

arising in the Poncelet construction, exactly as above. All you
have to show is that in the present situation, with MC and MD

as given, the elliptic curve is singular. It’s practically a one-line
problem, and you may use the affine setup. But now you are in
a position to see “why” the curve being singular should make the
Poncelet problem easier, and even to see “why” (from the abstract
perspective) the solution involved trig functions.
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(2) Let a > b > 0 and

CR =

{
x2

a2
+
y2

b2
= 1

}
;

it has foci (±
√
a2 − b2 , 0). We plan to shoot our pool ball vertically

along the line (L0 =) {x = c}, where 0 < c < a (and c 6=
√
a2 − b2).

For what value of c does the resulting billiard trajectory yield a
triangle? [Hint: the conics confocal with CR are all of the form{

x2

a2−λ + y2

b2−λ = 1
}
. Also: while straightforward, this is not a 1-

line computation!]





CHAPTER 22

Periods of families of elliptic curves

The periods of an elliptic curve E ⊂ P2 are simply elements of the
period lattice ΛE = Z

〈´
α
ω,
´
β
ω
〉

where α, β are 1-cycles generating
H1(E,Z) and ω ∈ Ω1(E) is some canonically chosen generator. (That
is, if E is defined over Q, then ω should be the restriction of a rational
differential 1-form on P2 defined over Q.) If E is taken to vary with
respect to a parameter t ∈ P1, the periods give interesting multival-
ued transcendental functions (e.g. hypergeometric functions) which are
related to modular forms.

In this Chapter we explore (via examples) two different approaches
to computing “period functions” of this sort — the “Euler integral”
method and the “Picard-Fuchs” method. The first of these is just a
way of computing the integral using Laurent polynomials; the second
derives a homogeneous linear ordinary differential equation satisfied by
the periods, which yields a recurrence relation for their power-series
coefficients. Actually, both methods yield power series at first but one
can sometimes recognize what functions they are the power series of.
This may sound like complex function theory, but in fact the power
series coefficients (esp. when related to modular forms) can have arith-
metic meaning, as we shall see in the next chapter; in the context of
mirror symmetry (one of several interfaces between algebraic geometry
and string theory), power series derived from periods are related to
counting curves on threefolds.

Sections §22.1 and §22.3 will have a bit of overlap with §18.1.

22.1. Holomorphic 1-forms on a smooth cubic ⊂ P2

Let F ∈ S3 define a smooth curve E = {F (Z0, Z1, Z2) = 0}; by the
genus formula g = (3−1)(3−2)

2
= 1, so that E is elliptic.

Example 22.1.1. F = Z0Z1Z2 − t(Z3
0 + Z3

1 + Z3
2), for any t ∈

P1\{0, 1
3
, ζ3

3
,
ζ2
3

3
} (ζ3 = e

2πi
3 ).

241
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For the affine forms of the equation we shall use the following no-
tation:

L
0

P
2

L
2

L
1

u

v

x

y

• on P2\L0, the coordinates are x = Z1

Z0
, y = Z2

Z0
, and equation is

f(x, y) := 1
Z3

0
F (Z0, Z1, Z2);

• on P2\L2, the coordinates are u = Z0

Z2
, v = Z1

Z2
, and equation is

g(u, v) := 1
Z3

2
F (Z0, Z1, Z2);

• the third neighborhood is left to you;
• on P2\L0 ∪ L2, we have u = 1

y
, v = x

y
; y = 1

u
, x = u

v
; and

f(x, y) = y3g
(

1
y
, x
y

)
.

Now define a form ω on E by

dx

fy

∣∣∣∣
E\(L0∪VT)

= −dy
fx

∣∣∣∣
E\(L0∪HT)

=
du

gv

∣∣∣∣
E\(L2∪HT)

= −dv
gu

∣∣∣∣
E\(L2∪VT)

= · · ·

where

• the notation E\(L0 ∪VT) means E minus those points where
E intersects L0 or has a vertical tangent line (similarly, HT
means “horizontal tangent”);
• equality of any two differentials above is meant in the sense of
“where both are defined”;
• for example: on E, f = 0 =⇒ 0 = df = fxdx + fydy =⇒

dx
fy

= −dy
fx

where (f = 0 and) fx, fy 6= 0;
• the “· · · ” means that the third neighborhood stuff is left to
you.

Now consider the domains of the first two expressions: since fx and fy
do not simultaneously vanish (E is smooth!), {E\(L0∩VT)}∪{E\(L0∩
HT)} is all of E\L0. So the 6 different domains of definition glue to give
(E\L0) ∪ (E\L1) ∪ (E\L2), which is all of E. Morover, dx

fy

∣∣∣
E\(L0∪VT)

etc. are all holomorphic where they are defined. We conclude that
ω ∈ Ω1(E).
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By Poincaré-Hopf, deg((ω)) = 2g − 2 = 2− 2 = 0, and so ω’s lack
of poles implies it has no zeroes either. Any other ω′ ∈ Ω1(E) has
ω′

ω
∈ O(E), and then by Liouville ω′ is a constant multiple of ω. So

Ω1(E) has dimension 1, and ω spans it.

22.2. Period of a family of cubic curves (Euler integral
method)

Now consider the Hesse family Et of elliptic curves, already given
in Example 22.1.1, with affine form

f(x, y) = xy − t(x3 + y3 + 1) = 0, t ∈ C.

(For the four values of t excluded in the example, Et is singular hence
not an elliptic curve. I won’t write ft because the subscript is reserved
here for partial derivatives.) An alternate form of the equation, valid
on C∗ × C∗, is

1− t
(
x3 + y3 + 1

xy

)
︸ ︷︷ ︸

=:ϕ(x,y)

= 0,

where ϕ belongs to the ring of Laurent polynomials C[x, x−1, y, y−1].
From the last section, we have the family of holomorphic 1-forms

ωt :=
dx

fy

∣∣∣∣
Et

∈ Ω1(Et).

We can obtain a family of 1-cycles by noticing that {|x| = |y| = 1}∩Et
is empty for |t| < 1

3
, since |ϕ(x, y)| < 3 for x, y in the unit circle.

Indeed,
γt := {|x| = 1, |y| ≤ 1} ∩ Et

has this empty set as its boundary ∂γt; and so we would like to compute
the period

P (t) :=

ˆ
γt

ωt

as a function of t, on the open disk |t| < 1
3
. Now since H1(Et,Z) has

rank 2, there is a complementary 1-cycle ηt on Et, and cooresponding
period

Q(t) :=

ˆ
ηt

ωt.
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Noticing from the homogeneous form of the equation that E0 = {Z0Z1Z2 =

0} is a union of 3 lines (∼= P1), we can easily visualize what happens to
Et, γt, and ηt as t tends to zero:

1

2

0

Z =0

Z =0

Z =0

degeneration

undergoes

E
0

E
t

γ

γ

0

t

η
ηt

0

(thin black cycles are

pinched to points)

From the fact that ωt tends (as t→ 0) to dx
x

on Z2 = 0, and η0 passes
through the poles of this form while γ0 traverses the unit circle around
them, we infer that Q(t)→∞ as t→ 0 but P (t)→ 2πi.

We now compute P (t) more precisely, by first noting that the area
integral ¨

|x|=|y|=1

dx ∧ dy
f(x, y)

=

¨
dx ∧ df
fy · f

(since df = fxdx+ fydy and dx ∧ dx = 0)

=

ˆ
|x|=1

(ˆ
|y|=1

df(x, y)

f(x, y)
· 1

fy(x, y)

)
dx

(where inside the parentheses x is a fixed constant). Now thinking
about the equation f(x, y) = 0 for |t| small (and x fixed with |x| = 1),
we have y3 + ay+ b = 0 where a = x

t
is big and b = x3 + 1 is not. This

means that two of the roots are big and one is small – in particular,
there is exactly one solution y(x) with modulus less than 1. Therefore,
by Cauchy’s residue theorem, the integral above

=

ˆ
|x|=1

(
2πi · 1

fy(x, y(x))

)
dx

= 2πi

ˆ
|x| = 1

y = y(x)

dx

fy
= 2πi

ˆ
γt

ωt.

So

P (t) =
1

2πi

¨
|x|=|y|=1

dx ∧ dy
f(x, y)

=
1

2πi

¨
|x|=|y|=1

dx
x
∧ dy

y

1− tϕ(x, y)

=
1

2πi

¨
|x|=|y|=1

∑
n≥0

tnϕndlogx ∧ dlogy
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where dlogx = dx
x
and ϕn means simply the nth power of ϕ(x, y). Using

Cauchy residue twice this

= 2πi
∑
n≥0

tnϕn(0, 0)

in which ϕn(0, 0) =: [ϕn]0 is the constant term of ϕn = (x2y−1+x−1y2+

x−1y−1)n.
We can make this more explicit. Given a product

(x2y−1 + x−1y2 + x−1y−1) · · · · · (x2y−1 + x−1y2 + x−1y−1)︸ ︷︷ ︸
n times

each contribution to the constant term comes from exponents sum-
ming to (0, 0) (i.e. multiplying to x0y0). But the only combina-
tions of (2,−1), (−1, 2), (−1,−1) summming to (0, 0) are: m(2,−1) +

m(−1, 2) + m(−1,−1). Hence, the only possibility for a nozero con-
stant term is to have n = 3m (i.e. 3|n), and the number of ways to
choose 

x2y−1 from m factors
x−1y2 from m factors
x−1y−1 from m factors

is
(

3m
m,m,m

)
:= (3m)!

m!m!m!
. That is,

P (t) = 2πi
∑
m≥0

t3m · (3m)!

(m!)3
= 2πi 2F1

(
1

3
,
2

3
; 1; (3t)3

)
where by definition (writing (a)m := a(a + 1) · · · (a + m − 1) for the
“Pochhammer symbol”)

2F1(a, b; c;u) := 1 +
∑
m≥1

(a)m(b)m
(c)mm!

um

is the Gauss hypergeometric function.
Notice that P (t) is “really” a function of (3t3) = u. This reflects

the symmetry in the family Et:

Et −→ Eζ3t

(x, y) 7−→ (ζ3x, y).
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The Gauss hypergeometric function satisfies a well-known ODE. In this
case (writing P0(u) = P (t) and Q0(u) = Q(t)){

u(1− u)
d2

du2
+ (1− 2u)

d

du
− 2

9

}
P0(u) = 0.

It turns out that the ODE satisfied by P0 must be satisfied by Q0 (the
other period), which turns out to have a term of the form log u

2πi
P0(u)

reflecting the fact that “following ηt around t = 0” yields ηt + 3γt in
H1(Et,Z).

22.3. Cohomology of an elliptic curve E

Let V be a finite-dimensional vector space over C, with basis {ek}nk=1.
The second tensor power of V , written V ⊗ V , is the n2-dimensional
vector space consisting of finite sums

∑
i vi ⊗ wi (vi, wi ∈ V ) subject

to bilinearity (e.g., on the left (αv + βw) ⊗ u = αv ⊗ u + βw ⊗ u); it
has basis {ek ⊗ e`}nk,`=1. The second exterior power

∧2 V consists of
finite sums

∑
vi∧wi satisfying bilinearity and also v∧w = −w∧ v (so

that v∧ v = 0); it may be viewed as a quotient- or sub-space of V ⊗V ,
and has basis {ek ∧ e`}1≤k<`≤n hence dimension

(
n
2

)
. In particular, if

dimV = 2, then dim(
∧2 V ) = 1; this is essentially the only case we

shall use.
Dualizing the homology groups1

H1(E,Z) =
Z 〈closed paths on E〉

Z 〈boundaries of regions in E〉

from §18.1, we define cohomology groups (with complex coefficients)
by

H1(E,C) := Hom (H1(E,Z),C) (∼= C2).

Write A0(E) for C∞ functions and A1(E) for C∞ 1-forms on E, the
latter locally of the form fdx + gdy, where z = x + iy; and finally we
have the C∞ 2-forms A2(E). These are objects locally of the form

Gdx ∧ dy (= −Gdy ∧ dx = − i
2
Gdz ∧ dz̄ =

i

2
Gdz̄ ∧ dz)

with f smooth, which you may think of as a field of infinitesimal area
elements. In more sophisticated terms, they are C∞ sections of the
bundle

∧2 T ∗E = ∪p∈E
∧2 T ∗pE. (Refer to §13.1 for notation.)

1the homology class represented by a 1-cycle γ is written [γ]
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The various degrees of forms are “connected” by exterior differenti-
ation

d : A0(E)→ A1(E)

sending
F 7→ dF := Fxdx+ Fydy

=
∂F

∂z
dz +

∂F

∂z̄
dz̄,

and
d : A1(E)→ A2(E)

fdx+ gdy 7→ df ∧ dx+ dg ∧ dy

= (gx − fy)dx ∧ dy.

The 1st de Rham cohomology group of E is then defined by

H1
dR(E,C) :=

ker(d) ⊂ A1(E)

d(A0(E))
=

“closed” C∞ forms
“exact” C∞ forms

;

the class represented by a 1-form ω is written [ω].

Lemma 22.3.1. The map θ : H1
dR(E,C) → H1(E,C) given by2

[ω] 7→ {[γ] 7→
´
γ
ω} is well-defined, and an isomorphism.

Proof. First we check well-definedness: if γ is closed (∂γ = 0) and
ω exact (ω = dη), then θ([ω]) = 0 since

´
γ
ω =

´
γ
dη =

´
∂γ
η = 0. If γ

is a boundary (γ = ∂Γ) and ω is closed (dω = 0) then
´
γ
ω =

´
∂Γ
ω =´

Γ
dω = 0, so that θ([ω]) is defined on the level of homology classes.

(The middle equality in both cases — swapping ∂ and d — is Stokes’s
theorem, a generalization of the fundamental theorem of calculus for
differential forms.)

To see that θ is injective, assume θ([ω]) = 0, and let p be a point of
E. Then F(q) =

´ q
p
ω defines a C∞ function F on E. (The reason F

isn’t “multivalued” is that two paths differ by a cycle γ, and
´
γ
ω = 0

by the assumption.) Now ω = dF by the fundamental theorem of
calculus, and so [ω] = 0.

Finally, write α, β for a basis of H1(E,Z). Using the identification
H1(E,C)

∼=→ C2 which evaluates a functional against this basis, a nice

way to think about the map θ is as sending [ω] 7→

( ´
α
ω´

β
ω

)
∈ C2.

2“[γ] 7→
´
γ
ω” means the complex-linear functional on homology classes given by

integrating ω over a representative 1-cycle
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Moreover, the Abel map E
∼=→ C/ΛE identifies ω with du. Rescaling

ω (by a complex constant) so that
´
α
ω = 1, the 2-vector becomes

θ([du]) =

( ´
α
du´

β
du

)
=

(
1

τ

)
(where we may assume τ ∈ H), and we

have the standard picture

α

β ΛC/

1(=u)

τ

coord. u

Noting that θ([dū]) =

( ´
α
dū´

β
dū

)
=

( ´
α
du´

β
du

)
=

(
1

τ̄

)
, we conclude

that θ is surjective since

(
1

τ

)
,

(
1

τ̄

)
span C2. �

Remark 22.3.2. (a) Note that meromorphic 1-forms on a Riemann
surface are always closed since locally (f mero.) d{fdz} = df ∧ dz =
∂f
∂z
dz ∧ dz and dz ∧ dz = −dz ∧ dz = 0. (Here we have used ∂f

∂z̄
= 0,

which expresses the holomorphicity of f off its poles.) Using the same
formula as above (i.e. ω 7→ {γ 7→

´
γ
ω}), we can define a map

ker(Res) ⊂ K1(E)

d(K(E))

θ̃−→ H1(E,C)

which also turns out to be an isomorphism. (Here ker(Res) consists
of forms with no residues – in particular, with no simple poles. This
doesn’t mean they’re holomorphic though!)

(b) A nonzero holomorphic 1-form ω cannot be d of a smooth func-
tion G or meromorphic function f . (Locally the integral of ω is a
holomorphic function, so in either case G or f would actually have to
be holomorphic, hence by Liouville constant, making ω zero.) So we
have a commuting diagram of injective homomorphisms

(22.3.1) Ω1(E) �
� //
� t

θ̂

''NN
NNN

NNN
NNN

NN� _

��

ker(d)⊂A1(E)
exact

θ∼=
��

ker(Res)⊂K1(E)
exact

θ̃

∼=
// H1(E,C)
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.In what follows θ̂, θ̃, θ will all just be denoted θ, which you should read
“take the period vector associated to this 1-form”.

22.4. Differentiating cohomology classes

Given a family {Et}t∈P1 of elliptic curves (smooth but for finitely
many t) with holomorphic forms ωt ∈ Ω1(Et), write

θ(ωt) =:

(
P (t)

Q(t)

)
.

This assumes a choice (this unfortunately only works locally in t) of
basis αt, βt for H1(Et,Z), so that P (t) =

´
αt
ωt, Q(t) =

´
βt
ωt. We can

differentiate this period vector to obtain(
P ′(t)

Q′(t)

)
,

which for each t (considering the isomorphisms in (22.3.1)) is θ of some-
thing in ker(d) ⊂ A1(Et) or ker(Res) ⊂ K1(E) (but not Ω1(Et)). We
will use the latter, and we write ω′t for a family of residue-free mero-

morphic 1-forms satisfying θ(ω′t) =

(
P ′(t)

Q′(t)

)
. The point is that by

differentiating families of cohomology classes you get a new family of
cohomology classes.

Example 22.4.1. Consider the Legendre family Et ⊂ P2 given by
the projective closure of

y2 = x(x− 1)(x− t),

with holomorphic 1-form family

ωt =
dx

y

∣∣∣∣
Et

∈ Ω1(Et).

We have

θ(ωt) =

(
P (t)

Q(t)

)
=

( ´
αt
ωt´

βt
ωt

)
=

 ´αt dx

±
√
x(x−1)(x−t)´

βt
dx

±
√
x(x−1)(x−t)

 ,

where αt, βt are the 1-cycles exhibited in the schmatic picture
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β
t

"2 sheets’’ over P
1

E
t

0 t 1

or the topological picture

α

0

t

1

0

t

1

8

8

α

t

t

β t

β
t

β
t

"−  x(x−1)(x−t) ""+  x(x−1)(x−t) "

— which shows the two sheets (each is a P1 with slits from 0 to t and
1 to ∞) being glued together to give Et (cf. §2.3).

From the latter picture, it is clear that for t small we may take αt to
be stationary on its sheet as t moves, and the two “pieces” of βt on the
different sheets not to change either. Therefore we may differentiate
the above integrals under the integral sign (by d

dt
) to obtain(

P ′(t)

Q′(t)

)
=


´
αt

1
2
dx

±(x−t)
√
x(x−1)(x−t)´

βt

1
2
dx

±(x−t)
√
x(x−1)(x−t)
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and (
P ′′(t)

Q′′(t)

)
=


´
αt

3
4
dx

±(x−t)2
√
x(x−1)(x−t)´

βt

3
4
dx

±(x−t)2
√
x(x−1)(x−t)

 ;

obviously the first is θ
(

1/2
x−t

dx
y
|Et
)
and the second θ

(
3/4

(x−t)2
dx
y
|Et
)
, and

so we have

ω′t =
1/2

(x− t)
dx

y

∣∣∣∣
Et

, ω′′t =
3/4

(x− t)2

dx

y

∣∣∣∣
Et

.

These both belong to ker(Res) ⊂ K1(Et), since their only poles are at
(t, 0) (orders 2 and 4 resp.) and the sum of the residues of a meromor-
phic form must always be zero.

Of course, θ(ωt), θ(ω′t), and θ(ω′′t ) must be linearly dependent in C2!
Therefore, [ωt], [ω′t], and [ω′′t ] are linearly dependent in K1(Et) modulo
d(K(Et)), i.e. as cohomology classes.

22.5. The Picard-Fuchs equation

Since what is being differentiated in the last section is really co-
homology classes (via the identification with C2), it makes sense to
write

Dt[ωt] = [ω′t] , D2
t [ωt] = [ω′′t ].

With this notation, the linear dependence observation above implies
an ODE of the form

(22.5.1)
(
A(t)D2

t +B(t)Dt + C(t)
)︸ ︷︷ ︸(·) = 0

=:DPF

satisfied by [ωt] (as a varying cohomology class) hence by P (t) and
Q(t)!

However, to find A, B, and C, we have to compute. We start by
differentiating a meromorphic function

d

(
2y

(x− t)2

∣∣∣∣
Et

)
︸ ︷︷ ︸

∈K(E)

=
−4ydx

(x− t)3

∣∣∣∣
Et

+
2dy

(x− t)2

∣∣∣∣
Et

,

which using y2 = x(x− 1)(x− t) =⇒ dy = 3x2−2(1+t)x+t
2y

dx becomes

=

(
−4y2

(x− t)3y
+

3x2 − 2(1 + t)x+ t

(x− t)2y

)
dx

∣∣∣∣
Et
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and using y2 = x(x− 1)(x− t) again

=
−x2 + (2− 2t)x+ t

(x− t)2y
dx

∣∣∣∣
Et

=
−(x− t)2 − 2tx+ t2 + (2− 2t)x+ t

(x− t)2

dx

y

∣∣∣∣
Et

= −ωt +
(2− 4t)x+ t2 + t

(x− t)2

dx

y

∣∣∣∣
Et

= · · · = −ωt + 4(1− 2t)ω′t + 4t(1− t)ω′′t .

So this last expression is d of a meromorphic function, hence (has both
its periods 0 and) is trivial in H1(Et,C). We conclude that (dividing
through by 4 to simplify)

DPF = t(t− 1)D2
t + (2t− 1)Dt +

1

4

kills [ωt]. From ODE theory, the associated indicial equation is

r(r − 1) +

(
lim
t→0

B(t)

A(t)
t

)
r +

(
lim
t→0

C(t)

A(t)

)
= r2

which has a double root, implying one holomorphic solution (unique
up to scale) and one logarithmic solution near t = 0.

22.6. Computation of a period (Picard-Fuchs method)

First let’s compute its limit

lim
t→0

ˆ
αt

ωt︸ ︷︷ ︸
P (t)

= lim
t→0

ˆ
αt

dx

±
√
x(x− 1)(x− t)

.

Referring to the picture of αt (on the slit P1) above, this

=

‰
dx

x
√
x− 1

= 2πi ·Res0

(
dx

x
√
x− 1

)
= 2πi · 1√

−1
= 2π,

and so P (t) must be “the” holomorphic solution. Write P (t) = 2π
∑
ant

n,
a0 = 1, and apply DPF:

0 = DPF

∑
ant

n

=
∑
n≥0

[
t(t− 1)(n+ 2)(n+ 1)an+2 + (2t− 1)(n+ 1)an+1 +

1

4
an

]
tn
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where we have shifted indices after differentiating. Collecting terms
with like powers of t, this

=
∑
n≥0

[
1

4
an − (n+ 1)an+1

]
tn +

∑
n≥0

[2(n+ 1)an+1 − (n+ 1)(n+ 2)an+2] tn+1

+
∑
n≥0

(n+ 1)(n+ 2)an+2t
n+2.

Shifting indices once more, we have

=
∑
n≥0

[
1

4
an − (n+ 1)an+1 + 2nan − n(n+ 1)an+1 + n(n− 1)an

]
tn

=
∑
n≥0

[(
n+

1

2

)2

an − (n+ 1)2an+1

]
tn.

Since this power series is zero, we get a recurrence relation for the
coefficients of P (t):

an+1 =

(
n+ 1

2

n+ 1

)2

an,

so that

an = a0︸︷︷︸
=1

·
(

1/2

1

3/2

2
· · ·

1/2 + n− 1

n

)2

=

(
−1/2 · −3/2 · · · · · (−1/2− n+ 1)

n!

)2

=

(
−1/2

n

)2

,

and

P (t) = 2π
∑
n≥0

(
−1/2

n

)2

tn.

Again, the situation as t→ 0 looks like

α

β β

Ε Ε
0t

α
0

0

t

t

t      0

In the next chapter the formula for P (t) will be connected to counting
rational points on cubics over Fp.
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Exercises
(1) Check that 2F1

(
1
3
, 2

3
; 1; (3t)3

)
=
∑

m≥0 t
3m · (3m)!

(m!)3 by writing out
the Pochhammer symbols.

(2) Show that the curves Et := {Z0Z1W0W1−t(Z1−Z0)2(W1−W0)2 =

0} ⊂ P1
Z0:Z1

× P1
W0:W1

are in fact elliptic (except at those finitely
many t — which ones? — for which they are singular). You could
do this by projecting to the first P1 and using Riemann-Hurwitz to
compute the genus. (To use R-H in this way, first find all “vertical
tangents” – places on the curve where the partials with respect to
W0 and W1 vanish.)

(3) Writing the family of curves from the last exercise in affine form,
xy − t(x − 1)2(y − 1)2 = 0 (or 1 − tϕ(x, y) = 0), define a family
of loops γt ∈ H1(Et,Z) for small t, and a family of holomorphic
forms ωt ∈ Ω1(Et), exactly as in the text. Compute the period
P (t) :=

´
γt
ωt as a power series, using the computation done above

as a model.
(4) Check that θ̃ in Remark 22.3.2 is well-defined and an isomorphism.
(5) FindQ(t) in the Legendre example by plugging log t

2π
P (t)+

∑
n≥1 bnt

n

into the Picard-Fuchs equation.



CHAPTER 23

Counting Fp-rational points on elliptic curves

In this final chapter on elliptic curves, we take a brief dip into some-
thing much more arithmetic, counting the number (mod p) of solutions
in P2(Fp) to the equations for the Hesse and Legendre cubics from the
last chapter. These cubics still depend on t, which is taken to be an
integer now (rather than a complex number) so that we can reduce
modulo p. In a truly bizarre twist, the number of points (over Fp) in
each case is given by nearly the same power series as the holomorphic
period on the corresponding complex family of elliptic curves from Ch.
22. We briefly explain one abstract way, due to Y. Manin, to under-
stand this connection between arithmetic and transcendental algebraic
geometry.1

23.1. Sum formulas

Let p be an odd prime, and Fp the field with p elements (i.e. Z/pZ
viewed as a ring). Equality in Fp will generally be denoted by “=”, not
“≡

(p)
”. (We will use the latter for counting points mod p.)

Lemma 23.1.1. For k ∈ Z,∑
x∈Fp (or F∗p)

xk =

{
0, p− 1 - k
−1, p− 1 | k

in Fp.

Proof. Given y ∈ F∗p, the assignment x 7→ yx yields an isomor-
phism of additive groups Fp → Fp. Therefore

(23.1.1) yk
∑
x∈Fp

xk =
∑
x∈Fp

(xy)k =
∑
x∈Fp

xk.

1The interested reader is urged to study the theory of modular forms(!) and look
at papers by Ahlgren, Ono, Papanikolas et al in particular. Modular forms are, on
the one hand, essentially given by periods on families of (self-products of) elliptic
curves; on the other hand, they are frequently constructed via point-counts over
finite fields.

255
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Now, F∗p is a cyclic (multiplicative) group of order p− 1, and so

(F∗p)k = {1} ⇐⇒ p− 1 | k.

Provided p− 1 - k, then, there exists y ∈ F∗p with yk 6= 1. By (23.1.1),
we have

0 = (yk − 1)
∑
x∈Fp

xk

which implies (dividing by yk − 1)

0 =
∑
x∈Fp

xk.

On the other hand, if p− 1 | k, then xk = 1 for all x ∈ F∗p and so∑
x∈Fp

xk =
∑
x∈F∗p

1 = p− 1 = −1.

�

Lemma 23.1.2. For x ∈ Fp,
p−1∑
k=1

xk =

{
0, x 6= 1

−1, x = 1
.

Proof. If x = 1 then the sum is 1 + · · ·+ 1︸ ︷︷ ︸
p−1 times

= p−1 = −1. If x 6= 1

then

(1− x)︸ ︷︷ ︸
6=0

p−1∑
k=1

xk =

p−1∑
k=1

xk −
p∑

k=2

xk

= x− xp

= x(1− xp−1)

which (since F∗p is cyclic of order p− 1)

= x(1− 1) = 0

�

Lemma 23.1.3. Let ξ ∈ F∗p. Then ξ
p−1

2 ≡
(p)
±1, and

ξ ∈ F2
p ⇐⇒ ξ

p−1
2 ≡

(p)
1.

Proof. Since F∗p is cyclic of order p−1, (ξ
p−1

2 )2 = ξp−1 = 1. More-
over, if a is a generator then we cannot have a

p−1
2 = 1 (F∗p would then
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have order p−1
2
, a contradiction). Hence x 7→ x

p−1
2 yields a surjective

homomorphism of multiplicative groups

F∗p �
θ
{+1,−1},

whose kernel necessarily has order 1
2
|F∗p| = p−1

2
. Now if ξ = η2 is a

square, then ξ
p−1

2 = ηp−1 = 1. As p−1
2

elements of F∗p are squares, these
exhaust the kernel of θ and the non-square elements go to −1. �

23.2. Fp-points on the Legendre elliptic curve

Consider once again the Legendre family of cubics

Et = {Y 2Z = X(X − Z)(X − tZ)},

but this time with t ∈ Z. After reducing mod p we can look at the
solutions Et(Fp) ⊂ Et(Fp), i.e. with X, Y, Z in Fp resp. its algebraic
closure; there is a clear analogy to Et(Q) ⊂ Et(Q̄).

We are going to compute the number of points |Et(Fp)| modulo p,
i.e. in Fp. (Computing the number in Z is a much harder problem.)
First we claim that

(23.2.1) |Et(Fp)| ≡
(p)

1 +
∑
x∈Fp

{
1 + [x(x− 1)(x− t)]

p−1
2

}
.

The leading “1” on the RHS counts the point [0 : 0 : 1] “at∞”; the rest
of the curve is described by y2 = x(x−1)(x−t). By Lemma 23.1.3, the
quantity in curly brackets yields (mod p) 2 if x(x−1)(x−t) is a square,
1 if x(x− 1)(x− t) = 0, and 0 if x(x− 1)(x− t) is not a square. This
exactly counts pairs (x, y) ∈ F2

p solving the affine equation, confirming
(23.2.1).

Now (summing in Fp)
∑

x∈Fp 1 = 0, so the RHS of (23.2.1) is

1 +
∑
x∈Fp

x
p−1

2 (x− 1)
p−1

2 (x− t)
p−1

2

= 1 +
∑
x∈Fp

x
p−1

2


p−1

2∑
`=0

(p−1
2

`

)
x
p−1

2
−`(−t)`




p−1
2∑

k=0

(p−1
2

k

)
xk(−1)

p−1
2
−k


= 1 +

∑
x∈Fp

xp−1


p−1

2∑
`=0

(p−1
2

`

)
x−`(−t)`




p−1
2∑

k=0

(p−1
2

k

)
xk(−1)

p−1
2
−k

 .



258 23. COUNTING Fp-RATIONAL POINTS ON ELLIPTIC CURVES

The sum here can be rewritten
∑

x∈Fp x
p−1G(x), whereG(x) =

∑ p−1
2

m=− p−1
2

amx
m.

By Lemma 23.1.1, this is just −a0, and so the above

= 1−


p−1

2∑
`=0

(
p−1/2

`

)
x−`(−t)`




p−1
2∑

k=0

(
p−1/2

k

)
xk(−1)

p−1
2
−k




0

= 1−

p−1
2∑
`=0

(−t)`(−1)
p−1

2
−`
(
p−1/2

`

)2

= 1− (−1)
p+1

2

p−1
2∑
`=0

(
p−1/2

`

)2

t`

= 1 + (−1)
p+1

2

∑
`≥0

(
−1/2

`

)
t`

=: P̂ (t).

For the last step, we use the definition (in Fp)(
−1/2

`

)
:=
−1/2 · −3/2 · · · · · (−1/2− `+ 1)

`!
,

which is evidently 0 when p > ` > p−1
2

(since −1
2
− p+1

2
+1 = −1−p−1+2

2
=

p
2

= 0), and equals
( p−1

2
`

)
for 0 ≤ ` ≤ p−1

2
(and is defined to be 0 for

` ≥ p). We conclude:

Proposition 23.2.1. P̂ (t) counts (mod p) the Fp-rational points of
Et.

Notice that

(23.2.2) P̂ (t) is a “mod p” version of the period P (t) from §22.6!

23.3. Fp-rational points on the Hesse cubic

For this section, take p to be an odd prime with p ≡ −1 mod 3.
I can’t resist doing the same exercise for the other main example

from the last chapter, namely

Et = {XY Z = t(X3 + Y 3 + Z3)}

where again we assume t ∈ Z. This has affine form

xy = t(x3 + y3 + 1)
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and toric form
1 = t(x2y−1 + x−1y2 + x−1y−1)︸ ︷︷ ︸

=:ϕ(x,y)

,

where the Laurent polynomial ϕ(x, y) is defined for (x, y) ∈ (F∗p)2.
Using the toric form and Lemma 23.1.2, it is easy to compute the
F∗p-points

E∗t := Et(Fp) ∩ (F∗p)2.

Namely, in Fp (i.e. mod p)

|E∗t | = −
∑

(x,y)∈(F∗p)2

p−1∑
k=1

tk (ϕ(x, y))k ,

the point being (besides the Lemma) that tϕ(x, y) is 1 (in Fp) for
exactly those (x, y) on Et. Switching the order of summation this
becomes

(23.3.1) = −
p−1∑
k=1

tk
∑

(x,y)∈(F∗p)2

ϕ(x, y)k.

Now by Lemma 23.1.1

∑
(x,y)∈(F∗p)2

xiyj =

∑
x∈F∗p

xi

∑
y∈F∗p

yj

 =

{
1, p− 1 | i, j
0, otherwise

.

For k ∈ [1, p− 2],

(ϕ(x, y))k = [ϕ]0 +

{
terms with powers of x, y
not both divisible by p− 1

}
.

Our assumption on p implies that 3 - p− 1, and so

(ϕ(x, y))p−1 = [ϕp−1]0 + x2(p−1)y−(p−1) + x−(p−1)y2(p−1) + x−(p−1)y−(p−1)

+

{
terms with powers of x, y
not both divisible by p− 1

}
(in particular, there are no x−(p−1), y−(p−1), xp−1y−(p−1), x−(p−1)yp−1,
xp−1 or yp−1 terms). So (23.3.1) becomes

−
p−1∑
k=1

tk[ϕk]0 − tp−1 · 3.

Recall from §22.2 that [ϕk]0 =
(

3m
m,m,m

)
if k = 3m (and 0 if 3 - k).
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On the other hand, looking along the coordinate axesX = 0, Y = 0,
Z = 0 we get (only) the points

[1 : −1 : 0] , [0 : 1 : −1] , [−1 : 0 : 1]

in Et(Fp). For example, along Z = 0 (on Et) we must have X, Y 6= 0

and so may assume Y = 1; then the equation is X3 + 1 = 0. This has
only X = −1 as solution: otherwise we would have an element of order
6 in F∗p, so 6 | p− 1, contradicting our assumption on p.

We conclude that

|Et(Fp)| ≡
(p)

3(1− tp−1)−
b p−1

3 c∑
m=1

(
3m

m,m,m

)
t3m,

again very reminiscent of P (t) from before!

23.4. Deep reasons for (23.2.2)

The issue is this: in §23.2, why on earth does |Et(Fp)| − 1 (not
counting the point at ∞) appear to solve the Picard-Fuchs equation(
t(t− 1)D2

t + (2t− 1)Dt + 1
4

)
(·) = 0 ? Indeed, P̂ (t)− 1 = (−1)

p+1
2

2π
P (t),

where P (t) is the solution from §22.6!! The two computations were
quite elementary, after all, so maybe there’s an elementary explanation
for their equivalence?

Nope. This is dealt with in [Clemens, “A scrapbook of complex
curve theory,” pp.65-69] and I’ll just give a hint of the flavor here. It in-
volves an algebro-geometric version of the Lefschetz trace formula (the
formula from topology for the number of fixedmm points of a mapping),
the Riemann-Roch theorem, Serre duality, and abstract sheaf theory.
Not elementary, but we can give a brief summary (with no claim to
total accuracy).

Consider Et over Fp, t ∈ Fp. Then writing FP for “number of fixed
points”, and frobp for the map [Z : X : Y ] 7→ [Zp : Xp : Y p],

|Et(Fp)| = FP
{
frobp : Et(Fp)→ Et(Fp)

}
.

This should make sense to you because as an automorphism of Fp, the
pth-power (Frobenius) map fixes exactly the elements of Fp. By the
Lefschetz-type theorem, it turns out that this

= 1− trace
{
frob∗|H1(Et/Fp,O)

}
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where the H1 is Cech cohomology computed with respect to the Zariski
topology, O is the sheaf of regular functions, and frob∗ is the action
by pullback (under frob) on cohomology classes. It is a 1-dimensional
vector space, with generator represented by a certain rational function
h with two simple poles, at q = [1 : 0 : 0] and some other point
p ∈ Et(Fp). More precisely, H1(Et/Fp,O) is isomorphic to the space of
rational functions on Et with poles allowed only at p and q modulo the
subspace of rational functions with poles allowed at either p or q (not
both). [That this space is 1-dimensional in the more familiar complex
case is an exercise below.] You should also note that pulling back by
frobp stabilizes the vector space we have just described, since (as p, q
are taken to be in Et(Fp) rather than Et(Fp)) p and q are fixed under
frobp. So the displayed expression at least makes sense.

Next, we expand h in formal power series h = 1
y

+
∑

`≥0 b`y
` about

q,2 and also expand a generator ωt ∈ Ω1(Et/Fp) (regular differentials) as
[1 +

∑
k≥1 ak(t)y

k]dy. Recall also from the complex case, that residues
of meromorphic functions require, and depend on, a choice of local
coordinate; while residues of meromorphic 1-forms are invariant (i.e.
require no such choice, as they can already be integrated around a loop
without appending a “dz”). So for functions F with a pole at q, we
take residue by computing Resq(Fω); if F has no other pole, then (as
residues sum to zero) the residue has to be zero.

Now, writing τ for the trace of frob∗ above, we have frob∗h(=

h◦frob) = 1
yp

+
∑

`≥0 b`y
`p = τh+f +g. (The last equality, in which f

has only a pole at q and g has only a pole at p, is by 1-dimensionality
of H1(Et,O) and the “explicit description” we gave of it. In that vector
space, this reads frob∗[h] = τ [h].) Moreover, Resq(hωt) = 1 while

τ = τResq(hωt)+Resq(fωt)+Resq(gωt) = Resq((frob
∗h)·ωt) = ap−1(t),

with the last equality obtained by multiplying out the explicit expres-
sions for frob∗h and ωt. So we end up with

|Et(Fp)| = 1− ap−1(t),

2note that y gives a local coordinate about [1 : 0 : 0] on Et; x does not.
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and (like the periods of ωt) ap−1(t) must satisfy the Picard-Fuchs equa-
tion because [ωt] does. Again, the “regular” solution of DPF(·) = 0 is
unique up to scale, and from there we are essentially done.

Exercises
(1) Check that Et(Fp) is closed under frobp, for t ∈ Fp.
(2) Let E ⊂ P2 be a smooth cubic over the complex numbers, and

p, q ∈ E(C) two distinct points. Let V be the vector space of
meromorphic functions on E with poles only at p and q, with sub-
spaces Wp and Wq (the meromorphic functions with poles only at
p and q respectively). Using Abel’s theorem, prove that the di-
mension of V/(Wp + Wq) is one. [Hint: you will also need to use
the fact that ω ∈ Ω1(E) has no zeroes, and that the “residues” of
F ∈ V given by Resp(Fω) and Resq(Fω) must sum to zero (cf.
Prop. 13.1.6(b)).]
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Curves of higher genus





CHAPTER 24

The algebraicity of global analytic objects

To kick off the last part of this course, on curves of higher genus,
this Chapter will demonstrate two approaches to the following result:
meromorphic (or holomorphic) functions and forms on normalizations
of algebraic curves, all arise as pullbacks of functions and forms on
projective space constructed from rational functions (quotients of ho-
mogeneous polynomials) and their differentials. This is a special in-
stance of Serre’s GAGA principle (“global analytic is global algebraic”
in the projective setting), and is proved (in §24.1) using techniques
from Chapter 8 together with the primitive element theorem.1

For holomorphic forms, we would like a more precise result (already
hinted at in Remark 20.1.1) on how to think of the holomorphic forms
on a normalization “rationally”. It is important at this point to recall
part (B) of the Normalization Theorem 3.2.1, which says that every
Riemann surface can be obtained as the normalization of an algebraic
curve in P2, even one with only ordinary double point (ODP) singu-
larities. So in the course of analyzing curves with ODP’s in §24.2 we
will actually have proved (cf. Prop. 24.2.1(c)) that for any Riemann
surface M of genus g, dim(Ω1(M)) = g. Featuring prominently in this
section is the space of homogeneous polynomials vanishing at the set
of ODP’s, which will play a key role in the proof of Riemann-Roch in
the next Chapter.

24.1. Chow’s theorem for algebraic curves

Let C ⊂ P2 be an irreducible projective algebraic curve of degree
d; applying a projective transformation if necessary we have [0 : 0 :

1] /∈ C. Start by normalizing C; that is, express it as the image of
a morphism σ : C̃ → (P2\{[0 : 0 : 1]}). One may evidently produce

1What I haven’t proved here, is that a global analytic subvariety of projective space
is an algebraic subvariety; but I will use this at a couple of points in later chapters
(apologies).
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meromorphic functions on the Riemann surface C̃, by pulling back the
rational functions C(x, y) under σ∗. (Recall x = X

Z
, y = Y

Z
on P2; and

the field C(x, y) consists of all quotients of homogeneous polynomials
in X, Y, Z of the same degree.) More precisely, writing C(x, y)C for the
subring of rational functions whose polar set does not contain C, define
the field of rational functions on C̃ by

C(C̃) := σ∗C(x, y)C .

Next we consider the projection

π :
(
P2\{[0 : 0 : 1]}

)
� P1

[Z : X : Y ] 7→ [Z : X],

whose composition π̃ := π ◦ σ with the normalization presents C̃ as a
d-sheeted2 branched cover of P1. Write B (⊂ P1) for the branch locus,
and Γ for a path containing B with P1\Γ simply connected (cf. §8.2).
We have inclusions

(24.1.1)
π̃∗C(x) ⊂ C(C̃) ⊂ K(C̃)

rat’l mero.
fcns. fcns.

,

where the first is obtained by noting π∗C(x) ⊂ C(x, y)C and π̃∗C(x) =

σ∗π∗C(x) ⊂ σ∗C(x, y)C .

Now, one might initially speculate that the right-hand inclusion of
(24.1.1) is proper when C has singularities such as ODP’s, since: (a)
an ODP has 2 preimage points p, q ∈ C̃, (b) at first glance the pullback
of a function would seem to have the same value at p and q, and (c)
meromorphic functions on C̃ ought to be able to take different values
at distinct points, right? The weak link in this chain of reasoning is
(b), as you can see from the following

Example 24.1.1. C = {Y 2Z = X2(X − Z)} has tangent lies Y =

±X at its ODP [1 : 0 : 0]. The pullback of x
y
to C̃ therefore takes

values 1 and −1 (resp.) at the 2 points lying over the ODP.

The point is that rational functions are not well-defined at all points
of P2, and this can be used to our advantage to get “more” functions on
singular curves. So it becomes plausible that the right-hand inclusion
2the mapping degree deg(π̃) = d (= deg(C)) by Bézout



24.1. CHOW’S THEOREM FOR ALGEBRAIC CURVES 267

of (24.1.1) is an equality, and that is exactly what we shall prove in the
rest of the section.

To that end, let ϕ ∈ K(C̃)∗ be a nonzero meromorphic function,
and denote by P the set of poles of ϕ. Writing3

(24.1.2) 0 = f(x, y) = yd + a1(x)yd−1 + · · ·+ ad(x)

for the affine equation of C, we have as in §8.2 distinct solutions
{yj(x)}dj=1 to f(x, ·) = 0 over P1\Γ, which are interchanged as one
passes through Γ\B. Moreover, by irreducibility of C (hence f), (24.1.2)
is the minimal polynomial of σ∗y, proving that

(24.1.3) [C(C̃) : π̃∗C(x)] ≥ d.

For each x ∈ P1\(Γ ∪ π̃(P )), one can think of (x, yj(x)) as belong-
ing to C̃ with π̃(x, yj(x)) = x. Consider the elementary symmetric
polynomials (i = 0, . . . , d, with eϕ0 = 1)

eϕi (x) := ei (ϕ(x, y1(x)), . . . , ϕ(x, yd(x))) ,

which are well-defined and holomorphic on P1\(B∪ π̃(P )). As in §8.2,
the fact that they are bounded away from π̃(P ) guarantees (by Rie-
mann) their extension to holomorphic functions on P1\π̃(P ). Further,
if x0 ∈ π̃(P ) has neighborhood ∆x0 ⊂ P1, then for k ∈ N sufficiently
large, ϕ̂ := π̃∗((x − x0)k) · ϕ is holomorphic in π̃−1(∆x0) ⊂ C̃. By the
same argument (from §8.2), eϕ̂i (x) extends holomorphically across x0;
but since eϕ̂i (x) = (x − x0)ik · eϕi (x), eϕi (x) extends meromorphically
across x0. Repeating this argument at all points of π̃(P ), we find that

eϕi ∈ K(P1);

and by Theorem 3.1.5(a) K(P1) ∼= C(x).
Next observe that for any x ∈ P1\(Γ ∪ π̃(P )) and j ∈ {1, . . . , d},

0 =
d∏
i=1

(ϕ(x, yj(x))− ϕ(x, yi(x)))

= ϕ(x, yj(x))d−eϕ1 (x)ϕ(x, yj(x))d−1+eϕ2 (x)ϕ(x, yj(x))d−2−· · ·+(−1)deϕd (x) ;

3as in §8.2 we may change projective coordinates if necessary to put the equation
in this form
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that is, for a dense subset of points p ∈ C̃, ϕ(p) satisfies the equation

0 =
d∑
i=0

(−1)ieϕi (π̃(p)) · ϕ(p)d−i.

Therefore the meromorphic function ϕ itself satisfies

(24.1.4) 0 =
d∑
i=0

(−1)i(π̃∗eϕi ) · ϕd−i,

with coefficients in π̃∗C(x).
Finally, recall the primitive element theorem, which says that an

algebraic field extension (of degree e) is generated by a single ele-
ment (of degree e). (A transcendental field extension, likewise, has
a transcendental element, which satisfies no algebraic equation.) Were
[K(C̃) : π̃∗C(x)] > d, there would thus be an element of degree > d;
but as ϕ ∈ K(C̃) was arbitrary, (24.1.4) shows this is not so. hence

[K(C̃) : π̃∗C(x)] ≤ d.

Putting this together with (24.1.1) and (24.1.3), we see that

K(C̃) = C(C̃),

proving the

Theorem 24.1.2. Every meromorphic function on the normaliza-
tion of an irreducible projective algebraic curve is rational, i.e. the
pullback of a ratio of homogeneous polynomials.

Corollary 24.1.3. Every meromorphic 1-form on a normalization
is rational (i.e. f dg where f, g are rational).

Proof. Consider (say) σ∗(dx) =: ω ∈ K1(C̃), and let ω′ ∈ K1(C̃)

be any other meromorphic 1-form on C̃. Then ω′

ω
belongs to K(C̃),

hence is rational by Theorem 24.1.2. �

24.2. Cohomology of a Riemann surface

Let M be a Riemann surface of genus g. Recall from §20.1 that
the 1st homology group H1(M,Z) = closed loops

boundaries is an abelian group of
rank 2g, and defineM ’s 1st cohomology group to be the 2g-dimensional
vector space of complex-linear functionals

H1(M,C) := Hom(H1(M,Z),C).
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Exactly as in §22.3 (for elliptic curves) we have the de Rham cohomology
groups

H1
dR(M) :=

ker{A1(M)
d→ A2(M)}

image{A0(M)
d→ A1(M)}

=
closed C∞ 1-forms
exact C∞ 1-forms

.

To any closed 1-form ω we may assign the functional γ 7→
´
γ
ω on

loops. By the first 2 paragraphs of the proof of Lemma 22.3.1 (which
work for any M), this induces a well-defined injective map

(24.2.1) H1
dR(M) ↪→ H1(M,C).

Surjectivity also holds but will require a little more work than for el-
liptic curves.

Writing Ω1(M) for the space of “anti-holomorphic” forms (the com-
plex conjugates of holomorphic ones), we can embed

(24.2.2) Ω1(M)⊕ Ω1(M) ↪→ H1
dR(M)

via
(ω, ϕ) 7→ [ω + ϕ].

The map (24.2.1) is well-defined because d(Ω1(M)) = 0 = d(Ω1(M))

(cf. Remark 22.3.2(a)). To prove injectivity, suppose ω + ϕ = df ,
f ∈ A0(M). Then

d(fϕ) = f dϕ︸︷︷︸
=0

+ df ∧ ϕ = (ω + ϕ) ∧ ϕ = −ϕ ∧ ϕ

since ω∧ϕ looks locally like a function times dz∧dz(= 0). Now breaking
M up into triangular regions ∆i with local holomorphic coordinates
zi = xi +

√
−1yi,ˆ

M

ϕ ∧ ϕ =
∑
i

ˆ
∆i

gidzi ∧ gidzi = −2
√
−1
∑ ˆ

∆i

|gi|2dxi ∧ dyi︸ ︷︷ ︸ .
∈R≥0

Since each integral = 0 ⇐⇒ gi ≡ 0, we haveˆ
M

ϕ ∧ ϕ = 0 ⇐⇒ ϕ ≡ 0.

But using Stokes’s theorem and ∂M = ∅,ˆ
M

ϕ ∧ ϕ = −
ˆ
M

d(fϕ) = −
ˆ
∂M

fϕ = 0
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which implies ϕ ≡ 0. So df = ω =⇒ ∂f
∂z̄

= 0 =⇒ f ∈ O(M) =⇒ f

constant (by Liouville) =⇒ ω = 0. So (24.2.1) is injective.
By now you are quite familiar with the fact that dim(Sd−3

3 ) =(
(d−3)+2

2

)
= (d−1)(d−2)

2
. If S is a set of δ points in P2, then the homo-

geneous polynomials of degree d− 3 vanishing on each of these points
are subject to δ (possibly dependent) linear conditions. Denoting the
space of such polynomials by Sd−3

3 (−S), we therefore have

(24.2.3) dim(Sd−3
3 (−S)) ≥ (d− 1)(d− 2)

2
− δ.

Now assume σ : M → P2 is injective off a finite point set, with
image an algebraic curve C = {F (Z,X, Y ) = 0} of degree d (F ∈ Sd3),
having only ODP singularities (as in part (B) of the Normalization
Theorem). Write S for the collection of these ODP’s, and noteM = C̃.
By (24.2.3) and the genus formula,

dim(Sd−3
3 (−S)) ≥ g.

By Remark 20.1.1,4 we have a map

Sd−3
3 (−S)→ Ω1(M)

given by

G 7−→ σ∗
(
g dx

fy

)
where g(x, y) = G(1, x, y) etc. This is necessarily injective: were gdx

fy
to

vanish on C, we would have G ≡ 0 on C; since F is irreducible then
F |G by Study, which is impossible (unless G is trivial) as deg(G) =

d− 3 < d = deg(F ).
All told, we have a sequence of injective maps of complex vector

spaces

Sd−3
3 (−S)⊕ Sd−3

3 (−S) ↪→ Ω1(M)⊕ Ω1(M) ↪→ H1
dR(M) ↪→ H1(M,C).

Notice that the left-hand side has dimension ≥ 2g and the right-hand
side has dimension exactly 2g. All the injections are therefore isomor-
phisms and we conclude:

Proposition 24.2.1. For a Riemann surface M (of genus g) nor-
malizing an algebraic curve of degree d with ordinary double points

4see Griffiths’s book “Introduction to algebraic curves” for more details



24.2. COHOMOLOGY OF A RIEMANN SURFACE 271

S = {p1, . . . , pδ}, the holomorphic forms are all pullbacks of rational
forms of the form gdx

fy
(as described above). Moreover, we have:

(a) [de Rham theorem] H1(M,C) ∼= H1
dR(M);

(b) [Hodge decomposition] H1
dR(M) ∼= Ω1(M)⊕ Ω1(M); and

(c) dim Ω1(M) = g = (d−1)(d−2)
2

− δ = dim(Sd−3
3 (−S)).

We also get an application to the period matrices Π described in
§20.1. Recall that if γ1, . . . , γ2g is a basis for H1(M,Z) and ω1, . . . , ωg

a basis for Ω1(M), then

Π =


´
γ1
ω1 · · · · · ·

´
γ2g
ω1

... . . . . . . ...´
γ1
ωg · · · · · ·

´
γ2g
ωg

 .

Proposition 24.2.2. Viewed as vectors in R2g(∼= Cg), the columns
πj of Π are R-linearly independent.

Proof. Suppose otherwise, i.e. that there exists a nonzero vector
a ∈ R2g satisfying

0 = Πa ;

then we have also (by complex conjugating)

0 = Πa.

That is, (
Π

Π

)
a = 0

and so the rank of

(
Π

Π

)
is less than 2g. But then there is a nonzero

b ∈ C2g such that

tb

(
Π

Π

)
= t0 ,

which means explicitly for each j that
ˆ
γj

(

g∑
i=1

biωi︸ ︷︷ ︸
=:ω

+

g∑
i=1

bg+1ωi︸ ︷︷ ︸
=:ϕ

) = 0.

We find then that (ω, ϕ) ∈ Ω1(M)⊕Ω1(M) goes to zero inHom(H1(M,Z),C) =

H1(M,C). By our sequence of injections above, ω = ϕ = 0. But since
b 6= 0, this contradicts linear independence of ω1, . . . , ωg in Ω1(M). �
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Exercises
(1) Write a basis for the holomorphic 1-forms on the (smooth) curve

C ⊂ P2 with affine equation 1 + x6 + y6 − xy5 = 0. What is
dim(Ω1(C))?



CHAPTER 25

The Riemann-Roch Theorem

As you know, there are no nonconstant holomorphic functions on a
Riemann surfaceM . What if we allow a simple pole at one point p but
no poles anywhere else? Then you still get nothing, unless M is P1 (in
which case there is (z−z(p))−1). This is because for g = genus(M) ≥ 1,
there is a nonzero holomorphic form ω which doesn’t vanish at p. For
any meromorphic function f onM , we know that

∑
q∈M Resq(fω) = 0;

so if f has a simple pole at p, then Resp(fω) 6= 0 and f must have
another pole to cancel this term.

What if we are prepared to allow a double pole at p (but still no
other poles)? Then the answer is more complex; if g = 0 or 1 there are
nonconstant such functions (e.g. the Weierstrass ℘-function), while if
g ≥ 2 it can depend on the point p. In general, the vector spaces of
functions f ∈ K(M) with a single pole (at p) with νp(f) ≥ −k has
dimension ≥ max{1, k − g + 1}. You are guaranteed to get something
nonconstant as soon as k − g + 1 ≥ 2.

In the 1850’s, Riemann proved a more general inequality which re-
places p (and k) by multiple points and orders; a decade later, his
student Roch turned this into an exact equality (Theorem 25.2.3 be-
low) incorporating another term related to meromorphic 1-forms. It
encompasses the equality dim(Ω1(M)) = g and gives a powerful tool
for studying embeddings of Riemann surfaces into higher dimensional
projective spaces, among other things. Its statement is in terms of
spaces of functions and forms related to divisors, and we will start
(§25.1) by defining these spaces precisely.

You may prefer this shorter introduction to the topic from a lecture
by Lefschetz: “Well, a Riemann surface is a certain kind of Hausdorff
space. You know what a Hausdorff space is, don’t you? Its also com-
pact, ok. I guess it is also a manifold. Surely you know what a manifold

273
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is. Now let me tell you one nontrivial theorem, the Riemann-Roch The-
orem.”1

25.1. Effective divisors and rational equivalence

LetM be a Riemann surface,D =
∑

p∈M mp[p] and E =
∑

p∈M np[p]

divisors on M . (Of course, only finitely many mp and np are nonzero.)
If for all p mp ≥ np, then we write D ≥ E.

Definition 25.1.1. D ∈ Div(M) is effective ⇐⇒ D ≥ 0.

Example 25.1.2. The divisor (ω) of a holomorphic 1-form ω is
effective. (Why?)

We can use this idea to put constraints on meromorphic functions
and forms. For instance, suppose D = 3[q]− 2[r], and f ∈ K(M) with
divisor (f) =

∑
p∈M νp(f)[p]. Then imposing the inequality (f)+D ≥ 0

forces νq(f) + 3 ≥ 0 and νr(f) − 2 ≥ 0; that is, f is allowed a pole of
order no worse than −3 at q, and must have a zero of order at least
2 at r. Likewise, if ω ∈ K1(M) then (ω) ≥ D means ω has a zero of
order at least 3 at q, and is allowed a pole of order no worse than −2 at
r. The next definition formalizes this and defines the quantities which
the Riemann-Roch theorem will relate.

Definition 25.1.3. For any D ∈ Div(M),

L(D) := {f ∈ K(M)∗ | (f) +D ≥ 0} ∪ {0},

I(D) := {ω ∈ K1(M)∗ | (ω) ≥ D} ∪ {0}.

(The “∪{0}” just means that the zero-function is included, so as to
produce a vector space.) Set

`(D) := dimL(D) , i(D) := dim I(D).

The next step is to define an equivalence relation on divisors which
is ubiquitous in algebraic geometry.

Definition 25.1.4. Divisors D,E ∈ Div(M) are rationally equiv-
alent iff there exists2 f ∈ K(M)∗ with (f) = D − E; we write D

rat≡ E.
1from A Beautiful Mind by S. Nasar
2by Chow’s theorem all meromorphic functions are rational, hence the terminology
“rational equivalence” (sometimes also called “linear equivalence”).
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Proposition 25.1.5. If D
rat≡ E, then

(i) deg(D) = deg(E);
(ii) L(D) ∼= L(E);
(iii) I(D) ∼= I(E); and
(iv) `(D) = `(E) and i(D) = i(E).

Furthermore,
rat≡ respects the abelian group structure of Div(M).

Proof. By assumption D − E = (f). Now Exercise 3.2 says that
deg((f)) = 0, which yields (i). Given g ∈ L(D),

(fg) + E = (f) + (g) + E = (g) +D ≥ 0 ;

so g 7→ fg defines a map L(D)→ L(E), and h 7→ h
f
defines an inverse

map. This gives (ii), and (iii) is done in the same way. (iv) obviously
follows from (ii)-(iii). The last statement about

rat≡ is essentially just
that (D + (f)) + (E + (g)) = (D + E + (fg)). �

Remark 25.1.6. In fact, the Picard group Pic(M) of §20.1 is just
the group of equivalence classes

Div(M)
rat≡

.

So Proposition 25.1.5(i,iv) can be thought of as saying that deg, `,and
i define functions from Pic(M) to Z.

Definition 25.1.7. A canonical divisor K ∈ Div(M) is just the
divisor of any meromorphic 1-form ω ∈ K1(M). Since any two such are
rationally equivalent (easy exercise), there is a single canonical divisor
class [K] ∈ Pic(M).

The next (basic) result is sometimes called “Brill-Noether reciprocity”:

Proposition 25.1.8. Let D ∈ Div(M) be arbitrary, and K a
canonical divisor. Then

I(D) ∼= L(K −D),

and so i(D) = `(K −D).

Proof. Let K = (ω); if (f) +K −D ≥ 0, then (fω) = (f) +K ≥
D − K + K = D. So f 7→ fω maps L(K − D) → I(D), and η 7→ η

ω

gives an inverse. �
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25.2. Proof and statement

Throughout this section we take C to be an irreducible degree d
projective algebraic curve with ODP singularities S = {p1, . . . , pδ}.
Let M := C̃

σ→ P2 (σ(M) = C) be its normalization, with σ−1(pi) =

{qi, ri}, and define a divisor

E := σ−1(S) =
δ∑
i=1

[qi] + [ri] ∈ Div(M)

of degree 2δ. Given any line H ⊂ P2 (“H” for “hyperplane”), write

H := σ−1(H · C) ∈ Div(M)

for the intersection divisor (of degree d).3

Lemma 25.2.1. For all sufficiently large m ∈ N,

`(mH− E) ≥ md− 2δ − g + 1

and
i(mH− E) = 0,

where g = (d−1)(d−2)
2

− δ is the genus of M .

Proof. Write R ∈ S1
3 and F ∈ Sd3 for the defining homogeneous

polynomials of H and C (resp.). Consider the map

Sm3 (−S)
θ−→ L(mH− E)

G 7−→ σ∗
(
G

Rm

)
.

By Study’s lemma,

σ∗
(
G

Rm

)
≡ 0 ⇐⇒ G|C ≡ 0 ⇐⇒ F |G,

and so ker θ = F · Sm−d3 (⊂ Sm3 (−S)).
Therefore, taking dimensions of

L(mH− E) ⊇ im(θ),

3If H passes through an ODP pi, then qiand ri will both show up in H, with
multiplicities determined by the local intersection multiplicities of H with the two
local analytic components of C at pi. (See Def. 12.2.1 ff)
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we find

`(mH− E) ≥ dim(im(θ)) = dim

(
Sm3 (−S)

F · Sm−d3 (−S)

)
= dimSm3 (−S)− dimSm−d3 .

By Prop. 24.2.1(c), this

=
(m+ 1)(m+ 2)

2
− δ − (m− d+ 1)(m− d+ 2)

2

= dm− δ − d(d− 3)

2

= dm− δ − (d− 1)(d− 2)

2
+ 1

= dm− 2δ − g + 1.

�

Lemma 25.2.2. Let D ∈ Div(M), p ∈M . Then

0 ≤ `(D + [p])− `(D)− (i(D + [p])− i(D)) ≤ 1.

Proof. First note that L(D) ⊆ L(D+[p]) =⇒ `(D+[p])−`(D) ≥
0.

Next, writing D =
∑

q∈M nq[q], an element of L(D+ [p])\L(D) is a
function f ∈ K(M)∗ satisfying

(25.2.1) (f) +D + [p] ≥ 0 and νp(f) = −(np + 1).

If f, g are two such functions, then setting α := limx→p
f(x)
g(x)

, we have

ordp(f − αg) ≥ −np

so that f − αg ∈ L(D). So `(D + [p])− `(D) ≤ 1, and we conclude

(25.2.2) 0 ≤ `(D + [p])− `(D) ≤ 1.

Similarly, writing K for a canonical divisor,

0 ≤ `(K −D)− `(K −D − [p]) ≤ 1

or equivalently

(25.2.3) 0 ≤ i(D)− i(D + [p]) ≤ 1.

Altogether,

0 ≤ `(D + [p])− `(D) + i(D)− i(D + [p]) ≤ 2
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and we just have to show that “2” is impossible.
Suppose (for a contradiction) that f satisfies (25.2.1), which is

equivalent to “1” in (25.2.2), and ω ∈ K1(M) satisfies

(ω) ≥ D and νp(ω) = np,

which is equivalent to “1” in (25.2.3). Then

(fω) = (f) + (ω) ≥ −[p]

with
νp(fω) = νp(f) + νp(ω) = −1.

But the sum of residues of a meromorphic form must be zero (Prop.
13.1.6(b)), so fω having a single simple pole (and no other poles) is
absurd. �

Theorem 25.2.3. [Riemann-Roch] Let M be a Riemann surface
of genus g, D a divisor on M . Then

`(D)− i(D) = deg(D)− g + 1.

Proof. By part (B) of the Normalization Theorem 3.2.1, we can
assume we are in the situation described in the beginning of the section,
with M = C̃.

By Lemma 25.2.1, there exists m0 ∈ Z such that m ≥ m0 =⇒

`(mH− E)− i(mH− E) ≥ md− 2δ − g + 1.

Now for any two lines H1, H2, we have H1
rat≡ H2; so if H1, . . . , Hm are

lines in P2 then by Proposition 25.1.5(iv)

`(H1 + · · ·+Hm − E)− i(H1 + · · ·+Hm − E) ≥ md− 2δ − g + 1.

Taking m large enough and lines through (a) all points of S and (b) all
points in D, we can ensure that

∑m
i=1Hi − E −D is effective, so that

H1 + · · ·+Hm − E = D + [P1] + · · ·+ [Pk]

where k = md− 2δ − deg(D) (and the Pj are points of M). Therefore
we have

`

(
D +

k∑
j=1

[Pj]

)
− i

(
D +

k∑
j=1

[Pj]

)
≥ k + deg(D)− g + 1.
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Repeatedly applying the right-hand inequality of Lemma 25.2.2 gives

k + `(D)− i(D) ≥ `

(
D +

k∑
j=1

[Pj]

)
− i

(
D +

k∑
j=1

[Pj]

)
and we conclude that

(25.2.4) `(D)− i(D) ≥ deg(D)− g + 1.

Next we show the reverse inequality. Plugging K−D into (25.2.4),
we have

`(K −D)− i(K −D) ≥ deg(K −D)− g + 1

which becomes (using Brill-Noether reciprocity)

i(D)− `(D) ≥ 2g − 2− deg(D)− g + 1 = −(deg(D)− g + 1),

so that
`(D)− i(D) ≤ deg(D)− g + 1.

�

Amongst the easy corollaries of this theorem are the Riemann in-
equality

`(D) ≥ deg(D)− g + 1,

and (by putting D = 0 in the theorem) the formula

dim Ω1(M) = g.

Here is one more simple application:

Proposition 25.2.4. Up to isomorphism, P1 is the only Riemann
surface of genus 0.

Proof. SupposeM has genus 0; then first of all the above corollary
of Riemann-Roch says that dim Ω1(M) = 0. If we take (for some
p ∈ M) D = [p], then I(D) ⊂ Ω1(M) = {0} =⇒ i(D) = 0. So by
Riemann-Roch,

`(D) = deg(D)− g + 1 = 1− 0 + 1 = 2.

Now L(D) consists of functions with a simple pole allowed at p (and
no other poles). The constant function 1 belongs to L(D); and since
dimL(D) = 2 there is also a nonconstant function f ∈ L(D), which by
Liouville must have the allowed simple pole. Therefore the mapping
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degree of f : M → P1 is (cf. §14.1)

deg(f) = deg(f−1([∞])) = deg([p]) = 1;

that is, f is an isomorphism. �

Exercises
(1) Check that any two canonical divisors on a Riemann surface are

rationally equivalent.
(2) Let D ∈ Div(M), g = genus(M). Prove that if degD > 2g − 2,

then i(D) = 0. Likewise show that if degD < 0, then `(D) = 0.
(3) LetM be a genus g Riemann surface, and p ∈M . Using Riemann-

Roch, find the smallest value of k for which there must exist f ∈
K(M)∗ having a pole at p of order no worse than k (i.e. νp(f) ≥
−k), and no other poles.

(4) Let M have genus g ≥ 2. (a) Prove that M has a morphism to P1

of degree ≤ g + 1. [Hint: use Exercise (3)] (b) Prove that M has
a morphism to P1 of degree ≤ g. [Hint: let p ∈ M , and look at
i((g − 2)[p]). This is a bit harder than (a).]

(5) Assume D > 0. By Exercise (2), if g ≤ 1 then i(D) = 0, and
Riemann-Roch becomes `(D) = deg(D) for g = 1 and deg(D) + 1

for g = 0. Prove this directly (a) forM ∼= P1 and (b) forM ∼= C/Λ
(1-torus).



CHAPTER 26

Applications of Riemann-Roch, I: special Riemann

surfaces

We now focus our attention on Riemann surfaces with a degree-two
mapping to P1, starting with the case of genus 1. (The higher genus
cases can be viewed as a generalization of elliptic curves, though there
is no group law.) The first section begins with some general claims
which will be more thoroughly investigated in the next Chapter.

26.1. Curves of genus 1

For the proof of Riemann-Roch (Theorem 25.2.3), we needed to use
the (unproved) Normalization Theorem 3.2.1(B). It’s actually possible
to argue the other way, from Riemann-Roch to the existence of plane
projective immersions (with ODP singularities) for arbitrary Riemann
surfaces.

When can we do better? The degree-genus formula tells you that
only curves of genera 0, 1, 3, 6, 10, 15, . . . (numbers expressible as (d−1)(d−2)

2
,

d ∈ N) can ever be embedded as smooth curves in P2. There is no rea-
son to believe, from this or from the Normalization Theorem, that an
arbitrary Riemann surface of one of these genera can be so embed-
ded. In fact, it isn’t true once you get to genera 6, 10, 15, . . .. That it
works for genus 1 and genus 3 (“almost”; see next Chapter) is a bit of
a miracle!

So: if you buy that any genus 1 Riemann surface is a complex 1-
torus and any torus can be “Weierstrassed” into P2, the following result
isn’t surprising. On the other hand, it shows that Riemann-Roch is
powerful and gives us a hint of how we might prove similar results in
higher genus (e.g., 2 and 3) later.

Theorem 26.1.1. LetM be a Riemann surface of genus one. There
exists an injective morphism of complex manifolds σ : M ↪→ P2 with
image σ(M) a smooth algebraic curve of degree 3.

281
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Proof. Given p ∈ M , we know that i(2[p]) = 0 = i([p]) by Exer-
cise 25.2, so that Riemann-Roch yields

`(2[p]) = deg(2[p])− g + 1 = 2− 1 + 1 = 2,

`([p]) = deg([p])− g + 1 = 1.

In terms of the spaces of meromorphic functions, this says that

L(2[p]) ( L([p]) = L(0) = O(M),

where dimL([p]) = 1 means L([p]) consists of constant (or equivalently,
holomorphic) functions. Therefore, we have an element

x ∈ L(2[p])\L([p]),

i.e. a meromorphic function with a double pole at p and no other poles.
Regard x as a morphism M → P1. By Riemann-Hurwitz, the

ramification degree

deg(Rx) = 2(deg(x) + g − 1) = 2(2 + 1− 1) = 4,

whereas the ramification indices νp(x) for a degree two mapping are
all ≤ 2. Hence, the ramification divisor is of the form (cf. §14.1 for
notation)

Rx = [p1] + [p2] + [p3] + [p4]

with p1, p2, p3, p4 ∈ M distinct. Set ai = x(pi) ∈ P1. The {ai} are still
distinct points: by the form of Rx, [pi] must occur with multiplicity
two in x−1([ai]); and since (deg(x) = 2 =⇒ ) deg(x−1([ai])) = 2, the
only possibility is x−1([ai]) = 2[pi].

Now clearly one of the pi, say p4, has to be p (as x has a double
pole there). So also a4 =∞, and we have the picture:

P

x

p p

a3

1 2

8

a
1

a2

p
3

pM

1

In the following, {pi} resp. {ai} means i = 1, 2, 3.
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Next, notice that x − ai is a local coordinate about ai on P1. The
meaning of a degree-2 ramification at pi is simply that there is a local
(holomorphic) coordinate about pi on M such that1 z2

i = x − ai. Dif-
ferentiating gives dx loc

= 2zidzi. Again using Riemann-Roch, we have
a nonvanishing holomorphic form ω ∈ Ω1(M), and by the Residue
Theorem

0 =
∑
q∈M

Resq(x · ω) = Resp(x · ω).

Writing z :=
´
p
ω for a local holomorphic coordinate at p, we have

(locally) ω = dz; since the residue vanishes, x loc
= 1

z2 + h(z) (h holomor-
phic) has no 1

z
term.2 Taking differentials, dx loc

=
(−2
z3 + h′(z)

)
dz. Put

together with the previous local computation, this tells us that dx has
divisor

(dx) =

(
3∑
i=1

[pi]

)
− 3[p].

Set y0 := dx
ω
∈ K(M)∗. In light of the fact that (ω) = 0, we have

that (y0) = (dx). If we put

g(x) :=
3∏
i=1

(x− ai),

then (g(x)) =
∑3

i=1(x − ai) = (
∑3

i=1 2[pi]) − 6[p] = 2(y0) = (y2
0). We

conclude that g(x)

y2
0

has trivial divisor and so is some constant C, and

define y := y0

√
C so as to have

y2 − g(x) = 0

on M .
Now for the embedding. Write σ : M → P2 for the morphism

defined by sending p 7→ [0 : 0 : 1] and all other points q 7→ [1 :

x(q) : y(q)]. The image σ(M) is contained in the projective closure E
of {y2 − g(x) = 0} (in P2), which is smooth due to distinctness of the
{ai}, and connected due to its irreducibility. By the usual arguments,
σ(M) is open and closed in E, hence equals E. At this point we have

1For an arbitrary choice of local coordinate zi it means that x−ai = z2ihi(zi) where
h doesn’t vanish at 0; and then we can put zi := zi

√
hi(zi).

2the coefficient of 1
z2 can be achieved by rescaling ω if needed
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a diagram

(26.1.1) C \ {p} σ // //

x
''PP

PPP
PPP

PPP
PP

E \ {[0 : 0 : 1]} � � //

π|E
��

P2 \ {[0 : 0 : 1]}

π
uullll

llll
llll

llll
l

P1

where π([Z : X : Y ]) := [Z : X].

If σ is not injective, there exist distinct points q1, q2 ∈M\{p} such
that

σ(q1) = σ(q2) =: Q;

applying π to this gives

x(q1) = x(q2) = π(Q) =: ξ,

in which ξ is not∞ or one of the {ai}. Since deg(x) = 2, deg(x−1([ξ])) =

2 and we must have x−1(ξ) = {q1, q2}. From the equation for E it is ev-
ident that deg(π|E) = 2 also, with (π|E)−1(ξ) consisting of (ξ,

√
g(ξ))

and (ξ,−
√
g(ξ)). Clearly one of these points has to be Q. From

(26.1.1), it is also clear that q1, q2 are the only points of M that can go
to these points. So whichever is not Q cannot get hit and σ fails to be
surjective, a contradiction. �

26.2. Hyperelliptic curves

Above we used the fact, for a genus one Riemann surface M , that
`(2[p]) = 2 > 1 = `([p]) for p ∈M , to construct a degree-two mapping
x : M → P1. Now suppose M has genus 2: how to map it to P1? Well,
we have a basis {ω1, ω2} ⊂ Ω1(M), and ω2

ω1
produces a meromorphic

function, which does the job. By Poincaré-Hopf, deg((ω1)) = 2g− 2 =

2, and so this map has two simple poles (or one double pole), hence
has degree two.

In terms of homogeneous coordinates, we might write

p 7→ [ω1(p) : ω2(p)],

where the meaning of the right-hand side is (expressing ωi
loc
= fi(z)dz in

terms of a local coordinate vanishing at p) simply [f1(0) : f2(0)]. If both
fi could simultaneously equal zero we would have a well-definedness
problem (which could be gotten around by taking a limit), but this
does not happen: we would have to have i([p]) ≥ 2. By Riemann-Roch
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this yields `([p]) = deg([p])− g + 1 + i([p]) ≥ 2, thereby producing an
isomorphism M → P1 as in the proof of 25.2.4, contradicting g = 2.

This discussion hopefully motivates

Definition 26.2.1. A Riemann surface M is hyperelliptic iff there
exists a (nonconstant) degree-two morphism x : M → P1.

Clearly, any genus 2 Riemann surface is hyperelliptic.
Now, let M be hyperelliptic of any genus and consider what the

Riemann-Hurwitz formula has to say when applied to x:

χM = 2χP1 − rx

2− 2g = 2 · 2−
∑
p∈M

(νp(x)− 1),

where deg(x) = 2 =⇒ νp(x) ≤ 2. So the sum equals the number of
ramification points, and this is just 2g + 2:

Rx = [p1] + · · ·+ [p2g+2].

By composing x with an automorphism of P1 if necessary, we may as-
sume that none of the x(pi) =: ai are 0 or∞. Put x−1([∞]) =: [p] + [q]

and x−1([0]) =: [p′] + [q′]. We have the picture

P

x

M

1

8aaa1

pp
2g+1 2g

p
1

a
2

p
2

2g+1 2g

p

q

p’

q’

0

in which  : M → M denotes the involution exchanging the branches
of M over P1 (cf. Exercise 1).

Lemma 26.2.2. Let V be a finite-dimensional vector space, J : V →
V an involution. Then we have a decomposition V = V + ⊕ V − into
the (+1)- and (−1)- eigenspaces of J .

Proof. With respect to any basis for V , J is a matrix with minimal
polynomial m(t) = t2 − 1. This has no repeated roots, and so J is
diagonalizable. Moreover, since J2 = idV , any eigenvalue λ satisfies
λ2 = 1. �
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We apply this to the pullback map ∗ : Ω1(M) → Ω1(M). Notice
that Ω1(M)+ = {0} since such forms would be pullbacks of holomorphic
forms from P1 (cf. Exercise 2). Hence Ω1(M) = Ω1(M)− and so

∗ω = −ω

for all ω ∈ Ω1(M).
Put D = (g+1)[p]+(g+1)[q] ∈ Div(M).We have (Exercise 25.2)

i(D) = 0, so that Riemann-Roch gives

`(D) = 2g + 2− g + 1 = g + 3.

Now apply the Lemma again, this time to ∗ : L(D) → L(D), noting
that L(D)+ contains the linearly independent set

{1, x, x2, . . . , xg+1}.

In fact,3

LM(D)+ = x∗LP1((g + 1)[∞])︸ ︷︷ ︸
polynomials of
degree ≤ g + 1

,

and so the above set is a basis. Therefore

dim(L(D)−) = `(D)− dim(L(D)+)

= (g + 3)− (g + 2) = 1,

and there exists a nonzero y ∈ L(D) such that ∗y = −y.

Claim 26.2.3. (y) =
∑2g+2

i=1 [pi]−D.

Proof. Since the pi are ramification points, (pi) = pi . But then

−y(pi) = (∗yi)(pi) = y((pi)) = y(pi)

and so y(pi) = 0. That is, y−1([0]) ≥
∑2g+2

i=1 [pi], which implies

deg((y)) = deg(y−1([0])) ≥ deg
(∑

[pi]
)

= 2g + 2.

On the other hand, y ∈ L(D) =⇒ y−1([∞]) ≤ D =⇒

deg((y)) = deg(y−1([∞])) ≤ deg(D) = 2g + 2.

So deg((y)) is forced to equal 2g+ 2, which means also that y−1([0]) =∑
[pi] and y−1([∞]) = D. �

3using subscripts to denote which Riemann surface we are considering functions on
(e.g. LM (D) just means L(D))
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Set

g(x) :=

2g+2∏
i=1

(x− ai) ∈ K(M)∗,

and compute (in Div(M))

(g(x)) =
∑

((x−ai)) = 2
∑

[pi]−(2g+2)x−1([∞]) = 2
∑

[pi]−2D = (y2).

But then y2/g(x) has trivial divisor, and so is a constant. Rescaling y,
we have that (in K(M))

y2 − g(x) = 0.

By considering the image of

σ : M → P2

given by
m(6= p, q) 7→ [1 : x(m) : y(m)]

and
p, q 7→ [0 : 0 : 1],

we arrive at:

Theorem 26.2.4. Hyperelliptic Riemann surfaces are precisely the
normalizations of (plane) algebraic curves of the form4{

Y 2Z2g =

2g+2∏
i=1

(X − aiZ)

}
⊂ P2.

A basis of Ω1(M) is given by ωj := xj−1dx
y

, j = 1, . . . , g.

Proof. We just need to show ωj is holomorphic:

(ωj) = (j − 1)(x) + (dx)− (y)

= {(j − 1)([p′] + [q′])− (j − 1)([p] + [q])}

+
{∑

[pi] − 2([p] + [q])
}

−
{∑

[pi] − (g + 1)([p] + [q])
}

= (j − 1) ([p′] + [q′]) + (g − j) ([p] + [q]) ≥ 0.

�

4note: the singular point [0 : 0 : 1] is not an ODP, so the construction of g holomor-
phic differentials that follows shouldn’t be compared with the formulas you know
in that case. Also, it should be emphasized that the ai are distinct.
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A hyperelliptic curve, by the way, is just an irredicuble projective
curve whose normalization is a hyperelliptic Riemann surface!

The first two exercises below are ones you could have done long ago,
but fill in (very) small gaps in the proofs above. The same goes for the
third, if you had known the definition of hyperelliptic! The fourth does
make heavy use of Riemann-Roch.

Exercises
(1) Given a degree 2 holomorphic map ϕ : M → M ′ of compact

Riemann surfaces, with corresponding involution  defined as fol-
lows: if p ∈ M is a ramification point of ϕ, (p) := p; otherwise,
ϕ−1(ϕ(p)) = {p, p̃} and (p) := p̃. Clearly  ◦  = IdM (i.e.  is an
involution) and ϕ ◦  = ϕ. Prove that  : M → M is a holomor-
phic map of Riemann surfaces. Since  is injective and surjective
(why?), it follows that  ∈ Aut(M).

(2) Continuing Exercise (1), let ω ∈ Ω1(M) satisfy ∗ω = ω. Prove
that ω = ϕ∗η for some η ∈ Ω1(M ′).

(3) Suppose that a dth-degree irreducible algebraic curve C ⊂ P2 has
a point of multiplicity (d− 2). Show that C is hyperelliptic.

(4) Let M be a Riemann surface of genus two. In this problem you
will construct a realization of M as an algebraic curve, different to
that produced above. You will need to use that M is hyperelliptic,
with x : M → P1 its degree-two mapping and  the associated
involution. Take p and q (in contrast to the notation above) fixed
non-ramification points on M with distinct images under x; let α
and β denote arbitrary points of M .
(a) Prove that `([α] + [β]) = 1 unless (α) = β. [Hint: otherwise
you get a different involution (why?). To see why this is a problem
you might consider the fact that ∗ω = −ω for all holomorphic
forms implies their divisors are -symmetric.]
(b) For any points α, β on M , show i([α] + [β]− [p]− [q]) = 1 (as
opposed to 2) ⇐⇒ {α, β} 6= {p, q}. [Hint: use (a), and consider
`([α] + [β]− [p]− [q]).]
(c) Use I(−[p] − [q]) to construct a map ϕ : M → P2. [Hint:
compute i(−[p]−[q]).] You will need to check that ϕ is well-defined.
[Hint: compute i(−[p]− [q] + [α]), using Exercise 25.2.]
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(d) Show that ϕ is injective off {p, q}, but that ϕ(p) = ϕ(q). [Hint:
using part (b), compute i([α] + [β]− [p]− [q]).]
(e) Show that there exists a meromorphic form ω ∈ I(−[p] − [q])

with poles at both p and q.
(f) Explain why the zero-divisor (ω)0 (the effective “part” of (ω))
is ϕ−1 of the intersection [divisor] of a line in P2 with C := ϕ(M).
Prove that deg((ω)0) = 4 (easy). Assuming C is an algebraic curve
(this is GAGA), conclude that deg(C) = 4.
(g) Clearly ϕ(p) = ϕ(q) is a singularity of C. Prove it is the only
one, and a double point. [Hint: assume otherwise, and produce a
genus zero normalization or similar.]





CHAPTER 27

Applications of Riemann-Roch, II: general

Riemann surfaces

Next we’ll use Riemann-Roch to develop two methods for mapping
an arbitrary Riemann surface into a (usually higher-dimensional) pro-
jective space, with a nice application to curves of genus three. The
second approach behaves differently in the hyperelliptic and nonhyper-
elliptic cases, so we first will want to convince ourselves that there are
nonhyperelliptic Riemann surfaces! To see this, we will start with an
heuristic argument for the “number of complex parameters” governing
Riemann surfaces, and show that the hyperelliptic ones have fewer pa-
rameters. But there’s much more in this chapter, which should give a
glimpse of how rich the correspondence between algebraic curves and
Riemann surfaces really is.

27.1. Moduli

In algebraic geometry there is the notion of moduli spaces, which
parametrize structures of a prescribed sort modulo some equivalence
relation, such as “smooth algebraic curves of degree 5 up to projective
equivalence” or “Riemann surfaces of genus 4 up to isomorphism”. A
main point is that these spaces can be given algebraic structure them-
selves, i.e. turned into algebraic varieties, in many cases. Suitably
refined, the structure of these varieties is one of the hotter topics of
study around.1

We shall only be concerned with the notion of moduli as a set of
local parameters (on the moduli space), and will say colloquially that
some structure has a certain number of moduli : e.g. genus 1 (resp. 0)
Riemann surfaces have one modulus (resp. zero moduli) since they can
all be expressed as C/Z 〈1, τ〉 (resp. P1) up to isomorphism. Underlying

1so-called “modular curves” or “modular varieties” are a more specialized notion
with an arithmetic flavor

291
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the claim in §26.1 that not all Riemann surfaces of genus 6, 10, 15, etc.
can be embedded smoothly in P2 is a deep calculation of Riemann:

Theorem 27.1.1. Riemann surfaces of genus g ≥ 2 (up to isomor-
phism) have 3g − 3 moduli.

Proof. (Sketch) Consider a genus g Riemann surface M , and any
effective divisor D of degree 2g on M . By Exercise 25.2, i(D) = i(D−
[p]) = 0 for any point p ∈M . So Riemann-Roch says

`(D) = deg(D)− g + 1 = g + 1,

`(D − [p]) = g.

Hence there exists f ∈ L(D) and not in any of the finitely many L(D−
[p]) for those p appearing in D; and so f−1([∞]) = D, which means
deg(f) = deg(f−1([∞])) = 2g. Now Riemann-Hurwitz tells us about
the ramification behavior:

χM = deg(f) · χP1 − deg(Rf )

2− 2g = 2g · 2− rf
rf = 6g − 2.

For “almost all” D the points in Rf will have multiplicity one (ramifi-
cations of order two) and lie over distinct points in P1, meaning that
the branch locus B ⊂ P1 consists of 6g − 2 points. We want to use all
this data to compute the number of “local deformation parameters” of
M .

Look at this in a slightly more formal way, consider the set S1

of 2-tuples (M, f) where M has genus g and f has degree 2g. This
maps to the set S2 of 2-tuples (M,D) where D ≥ 0 of degree 2g (take
D := f−1([∞])). From there you can map to the set S of Riemann
surfaces of genus g, by forgetting D. It’s fairly clear that (fixing M) D
has 2g parameters, making dim(S2) − dim(S) = 2g. Moreover, given
M and D, there are `(D) = g + 1 choices of parameter for f (to have
D as its poles), meaning dim(S1) − dim(S2) = g + 1. Our argument
in the first paragraph shows that the first map is surjective (while the
second obviously is), and so

(27.1.1) dim(S) = {dim(S1)− g − 1}︸ ︷︷ ︸
dim(S2)

− 2g = dim(S1)− 3g − 1.
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On the other hand, you can map S1 to S3, the set of (6g−2)-tuples
of (unordered) points on P1, by taking f(Rf ) ∈ Div(P1). This map
is surjective since given a branch-point set in P1 you can construct an
existence domain for an appropriate algebraic function,2 and in fact
the construction shows that there are only finitely many possibilities
for M . Moreover, it shows that a continuous family of degree-2g func-
tions on M with the same branch-point set gives rise to a continuous
family of automorphisms of M . But for g ≥ 2 M has only finitely
many automorphisms. So we see that this map is finite-to-1, and thus
dim(S1) = dim(S3) = 6g − 2. Plugging this in to (27.1.1), we get the
desired result. �

It’s much easier to count moduli for hyperelliptic and algebraic
plane curves.

Proposition 27.1.2. Hyperelliptic Riemann surfaces of genus g ≥
1 (up to isomorphism) have 2g − 1 moduli.

Proof. They are essentially just the existence domains of the al-
gebraic functions

√∏2g+2
i=1 (z − αi), and so are completely determined

by the branch locus {αi}2g+2
i=1 . This has 2g+ 2 parameters, but we have

to account for change of coordinate on P1, which is by PGL2(C), by
subtracting dim(PGL2) = 3. �

Proposition 27.1.3. Smooth algebraic curves of degree d modulo
projective equivalence have

(
d+2

2

)
− 9 moduli.

Proof. A curve is determined by a polynomial in Sd3 , which has
dimension

(
d+2

2

)
. We have only to account for changing projective

coordinates by GL3(C), which has dimension 9. (Here PGL3 is not
what is wanted, as we do want to quotient out the rescalings of the
equation.) �

Now we can compare moduli, with two very interesting results.
First, consider the numbers you get for general Riemann surfaces of
genus 1, 2, 3, 4, 5, 6 : the numbers of moduli are 1, 3, 6, 9, 12, 15. For
hyperelliptic ones, we have instead 1, 3, 5, 7, 9, 11. So while all genus
2 Riemann surfaces are hyperelliptic, we have:
2like

√
(z − a)(z − b)(z − c)(z − d) (for g = 1), but more complicated (since g ≥ 2);

cf. [Griffiths and Harris], pp. 255-257
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Proposition 27.1.4. A general Riemann surface of genus g ≥ 3

is non-hyperelliptic.

So we will need a more general method of realizing Riemann surfaces
as algebraic curves than that discussed in §26.2, and that is what we
will do in the remainder of this Chapter.

Finally, look at those genera which correspond to nonsingular alge-
braic curves in P2 of degree 3, 4, 5, 6, 7, . . .: namely, 1, 3, 6, 10, 15, and
so on. The Riemann surfaces of these genera have (by Thm. 27.1.1)
moduli 1, 6, 15, 27, 42,etc. But now look at the smooth algebraic
plane curves of the corresponding degrees (via Prop. 27.1.3): we get
1, 6, 12, 19, 27. The case of genus 3 will be treated in §27.3. Beyond
that, we have:

Proposition 27.1.5. Smooth algebraic plane curves of degree d ≥ 5

do not yield all the Riemann surfaces of genus (d−1)(d−2)
2

— only a
special subset.

27.2. Projective embeddings

Let M be a Riemann surface of genus g. For any D ∈ Div(M) of
degree > 2g − 2, recall from Exercise 2 of Chap. 25 that i(D) = 0. By
Riemann-Roch, we then have

`(D) = deg(D)− g + 1.

This will be used repeatedly in the argument below.3

Now fix a divisor D =
∑

p∈M np[p] ∈ Div(M) of degree d ≥ 2g + 1.
We will define an embedding (injective morphism of complex manifolds)

ϕ : M ↪→ Pd−g.

(Since d− g ≥ g+ 1, this can only give an embedding in P2 for g = 1.)
The support of D, which is the subset of M consisting of the points
aapearing in D (i.e. those p with nonzero np), is written |D|.

3It’s very important to understand the argument in this section. Try slimming it
down (I’ve expressed it in a somewhat bloated manner) and writing it out for a
specific choice of d and g (> 1, say). (Also, if you are stuck on Chap. 26 Exercise
4, some of the steps are similar.)



27.2. PROJECTIVE EMBEDDINGS 295

First off, certainly d > 2g − 2 and so `(D) = d − g + 1. Write
{f0, . . . , fd−g} for a basis of L(D), and define for p /∈ |D|

(27.2.1) ϕ(p) := [f0(p) : · · · : fd−g(p)].

If p ∈ |D|, this is unsuitable since some functions may blow up (or
all functions may be required to vanish). Therefore if z is a local
coordinate (vanishing at p to first order), we put

(27.2.2) ϕ(p) := [(znpf0)(p) : · · · : (znpfd−g)(p)].

For points q in a neighborhood of p, [(znpf0)(q) : · · · : (znpfd−g)(q)] gives
the same result as [f0(q) : · · · : fd−g(q)], and so we have constructed
an analytic map . . . provided that (27.2.1-2) do not yield [0 : · · · : 0]

at any point. That is the central well-definedness issue, and we must
check it.4

Now for p, q ∈ M , notice that D − [p], D − 2[p] and D − [p] − [q]

each still have degree > 2g − 2. Therefore we have

`(D − [p]) = d− g

and
`(D − 2[p]) = d− g − 1 = `(D − [p]− [q]),

with the immediate consequences

(27.2.3) L(D − [p]) ( L(D),

(27.2.4) L(D − [p]− [q]) ( L(D − [p]),

(27.2.5) L(D − 2[p]) ( L(D − [p]).

To interpret these, for simplicity first assume p, q /∈ |D|. Then
(27.2.3) says that there exists f ∈ L(D) not vanishing at p, meaning
that the {fi(p)} are not all zero; this makes ϕ well-defined on M\|D|.
Next, (27.2.4) gives us g ∈ L(D − [p])\L(D − [p] − [q]), a function
vanishing at p but not q, forcing ϕ to take different values at p and q;
hence ϕ is injective on M\|D|. Finally, (27.2.5) provides h ∈ L(D −
[p])\L(D − 2[p]), i.e. vanishing to exactly first order at p, so that the

4Note that (27.2.2) isn’t just a special formula for p ∈ |D|; it contains (is more
general than) (27.2.1) since for p /∈ |D| we have np = 0.
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derivative of h hence that of ϕ is nonzero there; together with the
injectivity result, this proves that the image of M\|D| is smooth.

In order to extend these statements to all of M , we have to refine
the argument just a bit. For a general points p, q ∈ M , (27.2.3) tells
us that there exists a function f ∈ L(D) with νp(f) = −np exactly;
(27.2.4) that some g ∈ L(D) has νp(g) > −np but νq(g) = −nq; and
(27.2.5) that there exists an h ∈ L(D) with νp(h) = −np + 1 exactly.
These give precisely the well-definedness, injectivity, and smoothness
of image for the map described by (27.2.2). So the image is a compact
complex analytic curve Pd−g, which is algebraic by GAGA.

27.3. Canonical maps

Once again we consider a Riemann surface M , this time of genus
g ≥ 2, and let

{ω1, . . . , ωg} ⊂ Ω1(M)

be a basis. Instead of choosing a divisor and go through Riemann-Roch
to get a projective embedding from meromorphic functions, why not
just use these? Define the canonical map

ϕK : M → Pg−1

by
p 7→ [ω1(p) : · · · : ωg(p)].

The meaning of this, as you would expect, is locally writing each ωi as
fi(z)dz, and taking [f1(p) : · · · : fg(p)]. This is well-defined, i.e. the
{ωi} do not all have a zero at p. Otherwise we would have I([p]) =

I(0) = g hence (by Riemann-Roch) L([p]) = 2, which we know to be
false for M not isomorphic to P1.

Bottom line: this looks quite promising, from the standpoint of
getting a convenient projective embedding. Or does it?

Example 27.3.1. For M hyperelliptic, consider the setting of The-
orem 26.2.4; we have

ϕK(p) =

[
dx

y
:
x dx

y
: · · · : x

g−1dx

y

]
= [1 : x : · · · : xg−1].
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Notice that this looks a lot like the rational canonical map f from
Example 7.3.7. In fact, it factors

(27.3.1) C

x ��@
@@

@@
@@

@ ϕK
// Pg−1

P1
f

<<zzzzzzzzz

with deg(x) = 2, and so does not give an embedding of M in Pg−1.

All is not lost: the hyperelliptic case is very special (in a bad way),
and for g ≥ 3 we know that there are (lots of) nonhyperelliptic curves.

Theorem 27.3.2. Let ϕK be the canonical map for an arbitrary
Riemann surface of genus g ≥ 2. Then

(a) ϕK is nondegenerate;5

(b) ϕK(M) is smooth; and
(c) ϕK is injective ⇐⇒ M is nonhyperelliptic.

Proof. (a) Were ϕK(M) contained in a proper linear subspace of
Pg−1, this would produce a linear relation on the {ωi}. But they are
linearly independent by construction, being a basis!

(b) This is clear in the hyperelliptic case, by observing that the de-
rivative of the (injective) rational canonical map is nowhere vanishing.
(We will return to this in the nonhyperelliptic case.)

(c) The implication “ =⇒ ” is already done (by contrapositive) in
Example 27.3.1.

Now let z be a local coordinate vanishing to first order at a point
p ∈M , and consider the linear functionals on Ω1(M) (= I(0)) given by

ω 7→
( ω
dz

)
(p)

ω 7→
( ω
dz

)′
(p)

...

ω 7→
( ω
dz

)(k−1)

(p).

If the first is zero on some given ω, then ω ∈ I([p]). If the first and
second are zero, then ω ∈ I(2[p]). If all are zero, then ω ∈ I(k[p]).
Since k linear conditions cut out a subspace of codimension at most k,

5cf. the beginning of Chapter 7, and also 7.3.1.
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we have
i(k[p]) = dim I(k[p]) ≥ g − k.

More precisely, we have i(k[p]) = g − k + a and by Riemann-Roch

`(k[p]) = k − g + 1 + i(k[p]) = 1 + a.

For the special case k = 1, there can be no redundancies in one linear
condition and so we have a = 0.

Suppose ϕK([p]) = ϕK([q]) for p 6= q. Then ω 7→
(
ω
dz

)
(p) and ω 7→(

ω
dz

)
(q) yield the same functional on Ω1(M), up to a constant multiple;

in particular they vanish on the same ω’s. So I([p]) = I([p]+[q]), which
yields i([p] + [q]) = i([p]) = g − 1 and via R-R

`([p] + [q]) = 2− g + 1 + i([p] + [q]) = 2.

Therefore there exists a nonconstant meromorphic function F ∈ L([p]+

[q]). We know that L([p]) and L([q]) have only constant functions
(a = 0 when k = 1), and so F has to have the allowed simple pole at
both of p and q. Thus deg(F) = 2, and so M is hyperelliptic. This
completes the proof of (c).

(b, cont’d.) Now assume M is nonhyperelliptic. Then we must
have `(2[p]) = 1, i.e. a = 0 for k = 2. Consequently

i(2[p]) = g − 2

(whilst i([p]) = g− 1), and we can arrange a basis of Ω1(M) so that in
local coordinates at p,

ω1
loc
= dz , ω2

loc
= zh2(z)dz ,

ωj
loc
= z2hj(z)dz (3 ≤ j ≤ g).

(Here the hi(z) are holomorphic, and h2 doesn’t vanish at z = 0.) The
canonical map takes the local form

ϕK(z) = [1 : zh2(z) : z2h3(z) : · · · : z2hg(z)]

with derivative

ϕK(z) = [0 : h2(z) + zh′2(z) : ∗ : · · · : ∗]

which does not vanish at p. This gives the desired smoothness. �
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Consider a smooth, irreducible algebraic curve C and hyperplane
H = {W (Z) = 0}, both in Pn. (Here W is a homogeneous polynomial
in Z1, . . . , Zn+1 of degree one, with affine form w.) One can define an
intersection divisor C ·H on C in a way which extends what we have
done in P2. If C is not necessarily smooth, then the divisor lives on
a normalization M of C and is denoted σ∗H; it is given simply by∑

p∈M ordp(σ
∗w)[p]. We define the degree of the curve to be the degree

of this divisor, called a hyperplane section:

deg(C) := deg(σ∗H).

Since any two hyperplane sections are rationally equivalent (why?),
any two hyperplane sections have the same degree, making deg(C)

well-defined.
In the case at hand, σ is ϕK and n = g−1. Hyperplane sections are

particularly interesting because if we write W (Z) =
∑g

i=1 αiZi, then

σ∗H = (α1ω1 + · · ·+ αgωg)

is a canonical divisor on M ! That’s why ϕK is called the canonical
map, and its image ϕK(M) a canonical curve.

Proposition 27.3.3. Assume M is nonhyperelliptic of genus g.
Then the degree of the canonical curve ϕK(M) ⊂ Pg−1 is 2g − 2.

Proof. The assumption is necessary in order that M normal-
ize ϕK(M). (In the hyperelliptic case, it is normalized by the ratio-
nal canonical map.) We then compute deg(ϕK(M)) = deg(ϕ∗KH) =

deg(K) = 2g − 2 by Poincaré-Hopf, and that’s it. �

And so, we find that “nearly all” genus 3 curves have a nice embed-
ding into the projective plane.

Corollary 27.3.4. Every nonhyperelliptic genus 3 curve is the
normalization of a smooth quartic curve in P2.

27.4. Weierstrass points

We began our discussion of Riemann-Roch with a naive analysis,
for a fixed point p on a Riemann surface M , of what orders of pole
are possible if we are after a meromorphic function with its only pole
at p. To conclude, I will now briefly explain the sense in which this
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can depend on the choice of p and not just the genus g of M . Assume
g > 0 for what follows.

First note that `(0) = 1 (constant functions), and `([p]) = 1 by the
argument at the beginning of Chap. 25. By equation (25.2.2), we know
for each k that

0 ≤ `((k + 1)[p])− `(k[p]) ≤ 1.

On the other hand, since the degree of (2g − 1)[p] exceeds 2g − 2,
we have (Chap. 25 Exercise 2) that i((2g − 1)[p]) = 0, and so (by
Riemann-Roch)

`((2g − 1)[p]) = (2g − 1)− g + 1 = g.

More generally, for k ≥ 2g − 1, the fact that i(k[p]) = 0 yields

`(k[p]) = k − g + 1.

So the scenario is that `(k[p]) starts (at k = 0) at 1 and works its
way up to g in increments of 0 or 1, as k rises to 2g − 1; thereafter it
increases by 1 whenever k does.

The situation with i(k[p]) is “dual”: it starts at g and works its way
down to 0 in decrements of 0 or 1, as k rises to 2g−1; and then it stays
at 0.

Now it turns out that at all but finitely many points, `(g[p]) = 1;
that is, all the increments are postponed as far as possible and the
sequence `(k[p]) looks like 1, 1, 1, . . . , 1, 2, 3, . . . , g, and so on. Those
points where this is not the case are called the Weierstrass points of
M . The simplest example I am aware of is, for a hyperelliptic curve,
the 2g+2 fixed points of the involution . For these the sequence looks
like 1, 1, 2, 2, 3, 3, etc.

Exercises
(1) Check that the definition of ϕK(p) in §27.3 is independent of the

choice of local coordinate near p.
(2) Show that any smooth quartic curve in P2 is a canonical curve (of

genus 3), and hence also nonhyperelliptic.
(3) In this exercise you will prove a new Cayley-Bacharach type result

(in P2): if C1 and C2 (of degrees m and n respectively, with C1

assumed smooth and irreducible) meet in mn distinct points, and
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C3 (of degree m+n−3) passes through p1, . . . , pmn−1 ∈ C1∩C2, then
it passes through the remaining point p := pmn. (We shall write f1,
f2, f3 for the resp. defining homogeneous polynomials.) Start out
by assuming C3 does not contain p, and follow these steps:
(a) Let g denote the genus of C1, and show that (m−3)m = 2g−2

and g = dim(Sm−3
3 ).

(b) Let h ∈ Sm−3
3 , set Fh := f2·h

f3
|C1 ∈ K(C1)∗, and write (Fh) =

[p] + (h) − D (this defines D ∈ Div(C1)). Show that the map
Sm−3

3 → L(D)/C (here C =constant functions) given by h 7→ Fh is
injective, and use this to put a lower bound on `(D).
(c) Find deg(D), i(D), and obtain a contradiction.

(4) A problem on automorphisms of canonical curves:
(a) Let α : C → C be an automorphism of a canonical curve of
genus g. Prove that α is the restriction to C of a linear automor-
phism of Pg−1. [Hint: consider the action of α∗ on Ω1(C).]
(b) Let M be a nonhyperelliptic Riemann surface of genus 3 with
an involution . How many fixed points does it have? What is the
genus of the quotient Riemann surface? [Hint: consider the canon-
ical embedding and apply (a);  is the restriction of what sort of
linear automorphism on P2?]

(5) Using the embedding of §27.2, try to prove: (a) there exists, for an
arbitrary Riemann surface, an embedding onto a smooth curve in
P3 and (b) an immersion onto a curve with only ODP singularities
in P2. [Hint: use sufficiently general projections of the complement
of a linear subspace in Pn onto P2 and P3.] Also, (c) what degrees
do these curves have?





CHAPTER 28

Abel’s Theorem, part I

Recall the setup from Chapter 20: M a Riemann surface of genus
g ≥ 1, with closed paths (“1-cycles”)γi giving a basis {[γi]}2g

i=1 for
H1(M,Z). We have the Jacobian of M , which is the complex g-torus

J(M) :=
(Ω1(M))∨

H1(M,Z)

∼=→ Cg

ΛM

.

The isomorphism is given by evaluating functionals against a basis
{ω1, . . . , ωg} ⊂ Ω1(M), and ΛM is called the period lattice. The Picard
group

Pic0(M) :=
Div0(M)

(K(M)∗)

of degree-0 divisors modulo rational equivalence is the object we want
to understand. To this end, we had shown that the Abel-Jacobi map

AJ : Pic0(M)→ J(M)

D 7→
ˆ
∂−1D

is a well-defined homomorphism, where ∂−1D is just a compact way of
writing “some 1-chain Γ with ∂Γ = D”. The important content of this
is that AJ((f)) = 0 for any f ∈ K(M)∗.

By Abel’s theorem we will henceforth mean the statement that AJ
is injective, that is

(28.0.1) AJ(D) = 0 =⇒ D = (f) for some f ∈ K(M)∗ ;

while the surjectivity will be known as Jacobi inversion: i.e.,
(28.0.2)
given any point in J(M) [any functional on Ω1(M), up to periods],

there exists a divisor D inducing that functional via
´
∂−1D

(·).

These statements will be proved in Chap. 29. Our aim here is just
to explain how Abel’s theorem relates to Riemann-Roch and develop a
couple technical lemmas to be used in the sequel.

303
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Before starting let’s refine one aspect of the above picture just a
bit. Intersecting 1-cycles on M – or more precisely, intersecting trans-
verse representatives of homology classes1 – gives a perfect, unimodular
pairing

“ · ” : H1(M,Z)×H1(M,Z)→ Z.

There is always a symplectic basis, that is one with the property that

γi · γg+j = δij = −γg+j · γi

γi · γj = 0 = γi+g · γj+g
for 1 ≤ i, j ≤ g (where δij is the Kronecker delta). This is the situation
pictured in §20.1. We will assume henceforth when writing {γi}2g

i=1 that
they form a symplectic basis for the first homology.

We should also remark on what the Picard group is really doing
here. For an elliptic curve E, in Pic0(E) we have [p+q]−[p]−[q]+[O] ≡
0, where addition inside the brackets is the group law on E and outside
the brackets means adding divisors. What this says is: while as divisors
(i.e. in the free abelian group on points of E) [p+q] 6= [p]+[q], working
modulo rational equivalence we do have [p + q] + [O] ≡ [p] + [q]. So
Pic effectively recovers the group law on E. Now, curves of higher
genus have no group law on points; but by “linearizing” points and
working modulo divisors of functions, we get a form of generalization
of the group law in genus 1. Intriguingly, a more precise form of Jacobi
inversion in the next Chapter will tell us that this may “almost” be
seen as a group law on unordered g-tuples of points on M .

28.1. From Riemann-Roch to Abel-Jacobi

Let D be a divisor onM ; we have been interested in the dimensions
of the vector spaces L(D) and I(D). In the interval

0 ≤ deg(D) ≤ 2g − 2

is where anything “of interest” lies: outside this range, either `(D) or
i(D) is zero. At the extremes, Abel’s theorem will tell us:

(i) `(D) when deg(D) = 0; and
(ii) i(D) when deg(D) = 2g − 2.

1each intersection point contributes a ±1 according to the “right-hand rule” and
the orientation of M given by the complex structure
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In case (i), if there is a meromorphic function f ∈ K(M)∗ with (f) +

D ≥ 0, then

deg((f) +D) = deg((f)) + deg(D) = 0 + 0 = 0

=⇒ (f) +D = 0 =⇒ D
rat≡ 0.

In this event, there can be only one such f (up to scale), as

(f) = −D = (g) =⇒ (f/g) = 0 =⇒ f/g constant.

Together with similar reasoning in case (ii), and assuming Abel, this
argument proves

Proposition 28.1.1. (i) If degD = 0, then `(D) = 0 or 1; and

AJ(D) = 0 ⇐⇒ D
rat≡ 0 ⇐⇒ `(D) = 1.

(ii) If degD = 2g − 2, then i(D) = 0 or 1; and

AJ(K−D) = 0 ⇐⇒ D
rat≡ K ⇐⇒ `(D−K) = 1 ⇐⇒ i(D) = 1.

Another point of contact with the last few chapters comes in the
context of canonical and hyperelliptic curves. First, fix q ∈M and look
at the mapping

uq : M −→ J(M)

p 7−→ AJ([p]− [q]) =


´ p
q
ω1

...´ p
q
ωg

 mod ΛM .

Assuming Abel’s theorem, we have (for genus ≥ 1)

Proposition 28.1.2. (a) uq is injective;
(b) its differential yields the canonical map; and
(c) if M is hyperelliptic and q is a fixed part of , then uq(M) is

symmetric with respect to the involution u 7→ −u of J(M).

Proof. (a) Assuming p1 6= p2 and uq(p1) = u2(p2), we have

AJ([p1]− [p2]) = 0

Abel
=⇒ ∃ f ∈ K(M)∗ with (f) = [p1]− [p2]

=⇒ f : M −→
(∼=)

P1 has degree one,

contradicting g ≥ 1.
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(b) Given ω ∈ Ω1(M), we can consider ω(p) ∈ T ∗pM. By the funda-
mental theorem of calculus, the differential

duq(p) : TpM −→ Tuq(p)J(M) ∼= Cg

is given by (ω1(p), . . . , ωg(p)). (That is, if ωi
loc
= fi(z)dz, then duq(p)

sends ∂
∂z
|p 7→ (f1(0), . . . , fg(0)) ∈ Cg.) This associates a line in Cg to

each p ∈M ; projectivizing clearly recovers ϕK : M → Pg−1.
(c) Using ((x, y)) = (x,−y), we have

uq((p)) =


´ (p)
q=(q)

dx
y

...´ (p)
(q)

xg−1dx
y

 =


´ p
q
∗ dx

y
...´ p

q
∗ x

g−1dx
y



=


−
´ p
q
dx
y

...
−
´ p
q
xg−1dx

y

 = −uq(p).

�

In fact, in the hyperelliptic case it is clear from (c) that the fixed
points of  map to 2-torsion points of J(M).

28.2. Differential forms of the third kind

There is a classical (and passé) terminology for meromorphic differ-
ential forms on a Riemann surface: “first kind” refers to holomorphic
forms; “second kind” to meromorphic forms with trivial residues (and
hence no simple poles); and “third kind” to everything else. In this
section we’ll pursue a method for constructing functions with a given
divisor (if possible). The title refers to the essential use we shall make
of meromorphic forms with prescribed (nonzero) residues.

Given p, q ∈M

i(−[p]− [q]) = g − (−2)− 1 + `(−[p]− [q])︸ ︷︷ ︸
0

= g + 1 (> g),

so there exists ω ∈ I(−[p]− [q])\Ω1(M). By the residue theorem,

0 = Resp(ω) +Resq(ω)︸ ︷︷ ︸
both nonzero since poles simple
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and so we can normalize ω so that

Respω =
1

2π
√
−1

, Resqω =
−1

2π
√
−1

.

For any meromorphic form η, write (η) = (η)0−(η)∞ where (η)0, (η)∞ ≥
0 are the zero- and polar-divisors.

Lemma 28.2.1. Given D ∈ Div0(M), there exists

ηD ∈ I

−∑
p∈|D|

[p]


such that

(η)∞ =
∑
p∈|D|

[p] and Respη =
ordp(D)

2π
√
−1

.

Proof. Write D =
∑

[pk]−
∑

[qk], and pick ωk so that Respkωk =

−Resqkωk = 1
2π
√
−1

. Then add
∑
ωk =: η. �

Next let D =
∑
nj[Pj] and ηD be as in Lemma 28.2.1, and consider

a collection {γi}2g
i=1 of closed paths with support |γi| ⊂ M\|D|, such

that their classes {[γi]}2g
i=1 ⊂ H1(M,Z) yield a basis.

Lemma 28.2.2. If

(28.2.1)
ˆ
γi

ηD ∈ Z (∀i),

then (fixing Q ∈M)

f(P ) := exp

(
2π
√
−1

ˆ P

Q

ηD

)
yields a well-defined function f ∈ K(M)∗ with (f) = D.

Proof. We must check independence of path. Let Cj denote cir-
cular paths around the Pj. Given two paths

−−→
Q.P and

−−→
Q.P ′,

−−→
Q.P −

−−→
Q.P ′ = ∂∆ +

∑
mjCj +

∑
`iγi

where ∆ is a (real-2-dimensional) closed region in M\|D|. Nowˆ
∂∆

ηD =

ˆ
∆

dηD =

ˆ
∆

0 = 0,

∑
mj

ˆ
Cj

ηD =
∑

mjnj ∈ Z
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since ResPkηD = nk
2π
√
−1

, and∑
`i

ˆ
γi

ηD ∈ Z

by assumption (28.2.1). So for some µ ∈ Z

exp
(

2π
√
−1
´
−−→
Q.P

ηD

)
exp

(
2π
√
−1
´
−−→
Q.P ′

ηD

) = exp
(
2π
√
−1µ

)
= 1,

and f is well-defined (and holomorphic) on M\|D|.
For the divisor, let z be a holomorphic coordinate defined in a

neighborhood of Pj (with z(Pj) = 0), and write

η
loc
=

nj

2π
√
−1

dz

z
+ h(z)dz

with h holomorphic. Without loss of generality, we can assume that
Q lies in the neighborhood, with z(Q) =: z0 (fixed) and z(P ) =: z

(variable). Locally

f(z) = exp

(
2π
√
−1

ˆ P

Q

ηD

)
= exp

(
2π
√
−1

ˆ z

z0

h(w)dw

)
· exp

(
nj

ˆ z

z0

dw

w

)
= H(z) · exp (nj log z)

exp (nj log z0)

where H is holomorphic and nonvanishing in our neighborhood (being
the exponential of something holomorphic). Finally, writing H0(z) =
H(z)

z
nj
0

, the above
= H0(z) · znj .

This makes it clear that f is meromorphic at Pj with

νPj(f) = nj.

Doing this for each j, we conclude

(f) =
∑

nj[Pj] = D.

�
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In the next chapter we will take γ1, . . . , γ2g to yield a symplectic
basis for H1, i.e.

γi · γg+j = δij (Kronecker delta)

for 1 ≤ i, j ≤ g. This is the situation pictured in §20.1. It turns out
that the period vectors π1, . . . , πg associated to γ1, . . . , γg are actually
linearly independent over C,2 and so the g × g matrix they form is
invertible. Applying the inverse matrix to ω1, . . . , ωg, we may replace
them by {ωj} satisfying ˆ

γi

ωj = δij.

Given D and ηD as in Lemma 28.2.1, then, we can modify ηD to

η̃D := ηD −
g∑
i=1

(ˆ
γi

ηD

)
ωi

so that ˆ
γi

η̃D = 0

for i = 1, . . . , g. We will prove that

(28.2.2) AJ(D) = 0 =⇒
there exists a further modification

η̂D := η̃D +
∑g

j=1 µjωj

with
´
γi
η̂D ∈ Z (i = 1, . . . , 2g),

so as to affirm condition (28.2.1) (for η̂D). To attack (28.2.2), we need
the Riemann bilinear relations, our next topic.

The problems below are only loosely related to the material of his
chapter. The second one is rather open ended!

Exercises
(1) This problem, in which you will prove a version of Abel’s theorem

for a “singular” cubic (not its normalization), is only loosely related
to the chapter. Think of the cubic C as P1 with 0 identified to ∞
and coordinate z. We consider Ω1(C) to be spanned by dz

z
(even

though it isn’t holomorphic) and H1(C,Z) by S1= unit curcle. Di-
visors must avoid the singularity, and meromorphic functions f
must have f(0) = f(∞) 6= 0,∞.

2to be proved in §29.1. Since the vectors are non-real, this doesn’t follow from
independence over R (which we already have).
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(a) What is J(C)?
(b) Compute AJ(D) for D =

∑
ni[zi],

∑
ni = 0.

(c) Show 0 = AJ((f)) ∈ J(C).
(d) Formulate and prove the injectivity statement (Abel’s theo-
rem). [Hint: the proof will use what you did in (c), even though
it’s a “converse”, and so needn’t be long.]

(2) Let M be a Riemann surface and Σ ⊂ M a (nonempty) finite set
of points.
(a) Define divisors on the relative variety (M,Σ) to be formal sums∑
ni[pi] where no pi lies in Σ; two of these are rationally equivalent

if their difference is the divisor of f ∈ K(M)∗ which is 1 on all points
of Σ. Construct an AJ map and Jacobian for (M,Σ). [Hint: the
case M = P1, Σ = {0,∞} should recover the results of exercise
(1).]
(b) Next consider the complement M\Σ. We define divisors by
Div(M)/Div(Σ), and rational equivalence by taking divisors of
meromorphic functions on M (and ignoring any poles/zeroes on Σ,
since that information is quaotiented out). Construct an AJ map
and Jacobian for M\Σ. [Hint: note that there is no such thing as
degree of a divisor, since the points in Σ effectively have arbitrary
coefficients. Or rather, using these points, you can make the degree
of any divisor zero! This should have some bearing on your choice
of path.]



CHAPTER 29

Abel’s Theorem, part II

As suggested at the end of the previous chapter, on any Riemann
surface M , we can produce a perfect1 pairing on the level of homology

(29.0.1) 〈 , 〉 : H1(M,Z)×H1(M,Z)→ Z

by intersecting 1-cycles.2 With respect to the basis {γj}2g
j=1 described

there, this has (2g × 2g) matrix3

Q =

(
0 Ig
−Ig 0

)
.

We can use this pairing to produce an isomorphism of dual spaces
(29.0.2)

H1(M,C) = H1(M,Z)⊗ C
∼=−→ Hom(H1(M,Z),C) = H1(M,C)

which is a special case of Poincaré duality.
Recalling the isomorphisms

Ω1(M)⊕ Ω1(M)
∼=−→ H1

dR(M,C)
∼=−→ H1(M,C),

there is also a pairing (the “cup-product”)

H1(M,C)×H1(M,C)→ C

1this means that the (bilinear) pairing is described (with respect to an integral basis
of H1(C,Z)) by an integrally invertible, i.e. unimodular, matrix.
2More precisely, any two given homology classes have representative 1-cycles (say,
α, β) which intersect transversely. At each intersection point p there is a local
holomorphic coordinate z = x + iy, and the tangent vectors vα and vβ to the 1-
cycles (which have well-defined directions) can be wedged to produce an element
vα ∧ vβ = ξp

∂
∂x ∧

∂
∂y ∈

∧2
TpM (ξp 6= 0). The intersection is called positively

or negatively oriented depending upon the sign of ξp, and the intersection number
〈[α], [β]〉 is the number of positive intersection points minus the number of negative
ones.
3having this particular intersection form is the definition of a symplectic basis of
H1(M,Z)

311
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induced on the level of 1-forms by

(ω, η) 7−→
ˆ
M

ω ∧ η.

Notice that since two holomorphic forms wedge to zero, this pairing
restricts to zero on Ω1(M)×Ω1(M) (and Ω1(M)×Ω1(M)). Yet another
pairing (the “cap-product”)

H1(M,Z)×H1(M,C)→ C

is induced by

(γ, ω) 7→
ˆ
γ

ω.

The restriction of this pairing to H1(M,Z) × Ω1(M) is caputred by
the period matrix of chapter 20. An important fact is that, under
(28.0.2), both of these integration-induced products are nothing but
complex-linear extensions of (28.0.1).

Assuming this compatibility, we can quickly derive the Riemann
bilinear relations as follows. If for any closed 1-form ϕ ∈ Ω1(M) ⊕
Ω1(M), we write

πj(ϕ) :=

ˆ
γj

ϕ,

then (28.0.2) identifies

(29.0.3) [ϕ] =

g∑
j=1

(πj(ϕ)[γj+g]− πj+g(ϕ)[γj])

in H1(M,C), i.e. as functionals on homology. One has for ω, ϕ ∈
Ω1(M)

(29.0.4) 0 =

ˆ
M

ω ∧ ϕ = −
g∑
j=1

(πj(ϕ)πj+g(ω)− πj+g(ϕ)πj(ω))

by writing
´
M
ω ∧ ϕ = 〈[ω], [ϕ]〉 and expanding both classes as in

(28.0.3). Similar reasoning together with the local computation

idz ∧ dz̄ = i(dx+ idy) ∧ (dx− idy) = i(−2idx ∧ dy) = 2dx ∧ dy,

leads to

(29.0.5) 0 < i

ˆ
M

ω ∧ ω̄ = −i
g∑
i=1

(
πj(ω)πj+g(ω)− πj+g(ω)πj(ω)

)
.
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This is all meant as motivation, though it can be made completely
rigorous. We’ll start the first section with a more concrete, classical
proof of (29.0.4-5), without the compatibility assumptions on the three
bilinear pairings.

29.1. Derivation of the Riemann Bilinear Relations

We start by cutting M open to get the “fundamental domain”, a
simply-connected closed region F

q

q q

q

q

q

M

fundamental

domain
γ

γ

γ

γ
g+j

j

j

g+j

r’

r

p’

p

po

with boundary ∂F. (Only a piece of it is shown in the picture.) Let p0

in the interior of F be fixed. Given ω ∈ Ω1(M),

u(p) :=

ˆ p

p0

ω

then yields a well-defined (single-valued) holomorphic4 function on F.
If we take a second holomorphic form ϕ ∈ Ω1(M), then

d(uϕ) = ω ∧ ϕ = 0.

That is, uϕ is a closed holomorphic form on F with the consequence
that

0 =

ˆ
F

d(uϕ) =

ˆ
∂F

uϕ

by Stokes’s theorem. Now, the picture above tells us that ∂F is the
composition of paths

γ−1
2g γ

−1
g γ2gγg · · · · · γ−1

g+2γ
−1
2 γg+2γ2γ

−1
g+1γ

−1
1 γg+1γ1,

4to be holomorphic on a closed set means that the function extends to a holomorphic
function on a slightly larger open set (which, in this case, would live on the universal
cover of M).
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written right to left (with inverse meaning the reverse direction). So
the last integral becomes

=

g∑
j=1

{
ˆ
γj

(u(p)− u(p′))︸ ︷︷ ︸´ q
p′ ω−

´
γg+j

ω+
´ p
q ω

ϕ +

ˆ
γj+g

(u(r)− u(r′))︸ ︷︷ ︸´ q
r′ ω+

´
γj
ω+
´ r
q ω

ϕ }

and, noting that
´ q
p′
ω =
´ q
p
ω = −

´ p
q
ω, this

=

g∑
j=1

(
−
ˆ
γg+j

ω

ˆ
γj

ϕ+

ˆ
γg+j

ϕ

ˆ
γj

ω

)
.

Replacing ϕ by iω̄, essentially the same computation yields

0 < i

ˆ
F

ω ∧ ω̄︸ ︷︷ ︸
d(uω̄)

=

ˆ
∂F

u(iω̄) = i

g∑
j=1

(
−
ˆ
γj+g

ω

ˆ
γj

ω̄ +

ˆ
γg+j

ω̄

ˆ
γj

ω

)
.

So we have recovered (29.0.4-5).
To reformulate this in matrix terms for any symplectic basis {γj}2g

j=1

of H1(M,Z) and any basis {ωi}gi=1 of Ω1(M), notice that the (k, `)th

entry of5

Π ·Q · tΠ =

 ↑ ↑
π1 · · · π2g

↓ ↓

( 0 Ig
−Ig 0

) ← π1 →
...

← π2g →



=

 ↑ ↑ ↑ ↑
−πg+1 · · · −π2g π1 · · · πg

↓ ↓ ↓ ↓


 ← π1 →

...
← π2g →


is

g∑
j=1

(πj(ωk)πg+j(ω`)− πj(ω`)πg+j(ωk))

which is zero by (29.0.4); so

(29.1.1) Π ·Q · tΠ = 0.

Similarly,

(29.1.2)
√
−1Π ·Q · tP̄ i > 0

in the sense that tx(
√
−1Π·Q·tΠ̄)x̄ ∈ R>0 for any x ∈ Cg. In particular,

the diagonal entries of (29.1.2) are positive real.

5recall from Chapter 20 that πj is the complex g-vector with ith entry πj(ωi)



29.1. DERIVATION OF THE RIEMANN BILINEAR RELATIONS 315

Remark 29.1.1. Consider any two symplectic integral bases Γ =

{γj} and Γ = {γ′j} (thought of as row-vectors), so that

Γ′ = ΓA

for some A ∈ SL2g(Z). Applying the basis {ωi} (viewed as a column-
vector of 1-forms) on the left yields

Π′ = ΠA.

Furthermore, since both bases are symplectic we have Q = tΓ · Γ and

Q = tΓ′ · Γ′ = tAtΓΓA = tAQA;

that is, A belongs to the symplectic group Sp2g(Z). It is for this reason
that (29.1.1-2) are compatible with change of symplectic basis: e.g.,
assuming (29.1.1) we have

Π′QtΠ′ = ΠAQtAtΠ = ΠQtΠ = 0.

Now thinking of the g × 2g period matrix as two g × g blocks, viz.

(29.1.3) Π =
(
A B

)
,

we have

ΠQtΠ =
(
A B

)( Ig
−Ig

)(
tA
tB

)
= A · tB − B · tA

and
ΠQtΠ̄ = A · tB̄ − B · tĀ.

In these terms, (29.1.1) reads

(29.1.4) A · tB = B · tA

while (29.1.2) becomes

(29.1.5)
√
−1tv(AtB̄ − BtĀ)v̄ > 0 (∀v ∈ Cg).

If tA has nonzero kernel, then there exists v ∈ Cg satisfying tAv =

0, hence tvA = 0 and tĀv̄ = 0, contradicting (29.1.5). It follows
that A is invertible, and so we have proved the statement on C-linear
independence asserted at the end of §28.2.



316 29. ABEL’S THEOREM, PART II

Applying A−1 to the left of Π amounts to a change of the basis {ωi}
for Ω1(M), viz.6

A−1Π = A−1

 ω1

...
ωg

( γ1 · · · γ2g

)
=

 ω′1
...
ω′g

( γ1 · · · γ2g

)
.

If we apply it to (28.1.3), then we get

Π′ := A−1Π =
(

Ig A−1B
)
.

We can therefore always assume that {ωi} is chosen so that

Π =
(

Ig Z
)
,

again as claimed in §28.2. The bilinear relations (29.1.4-5) simplify to

(29.1.6)

{
Z = tZ√

−1(Z̄ − Z) > 0
,

which in particular tell us that the imaginary part Im(Z) is a positive-
definite, real symmetric matrix.

29.2. Proof of Abel’s Theorem

With the holomorphic basis as normalized above, we can now quickly
establish (28.2.2) and hence (28.0.1). WriteD =

∑
ni[Pi] (with

∑
ni =

0) and let ϕ := η̃D be as §28.2, so that

(29.2.1) ResPi(ϕ) =
ni

2π
√
−1

(∀i)

and ˆ
γj

ϕ = 0 (j = 1, . . . , g).

For each k = 1, . . . , g set

uk(p) :=

ˆ p

p0

ωk

on F, and let Γ be a 1-chain (sum of paths) with ∂Γ = D. Then noting
D =

∑
ni([Pi]− [p0]), we haveˆ

Γ

ωk =
∑
i

niuk(Pi) = 2π
√
−1

∑
p∈|D|

Resp(ukϕ)

6here the “product” of ωi and γj is just the integral
´
γj
ωi
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which by the Residue Theorem

=

ˆ
∂F

ukϕ
§29.1
=

∑
j

(πj(ωk)︸ ︷︷ ︸
δjk

πg+j(ϕ)− πg+j(ωk)πj(ϕ)︸ ︷︷ ︸
0

) = πg+k(ϕ).

If AJ(D) = 0 then there are integers mj (j = 1, . . . , 2g) such that
for every k ˆ

Γ

ωk =

2g∑
j=1

mj

ˆ
γj

ωk.

Using
´
γj
ωk = δjk and Z = tZ (from (29.1.6)), this

= mk +

g∑
j=1

mj+gπj+g(ωk) = mk +

g∑
j=1

mj+gπk+g(ωj).

Now

ϕ̂ := ϕ−
g∑
j=1

mj+gωj

is still an element of I(−
∑

p∈|D|[p]) satisfying (29.2.1). Moreover, for
k ∈ {1, . . . , g}

πk+g(ϕ̂) = πk+g(ϕ)−
g∑
j=1

mj+gπk+g(ωj)

=

ˆ
Γ

ωk −
g∑
j=1

mj+gπk+g(ωj) = mk ∈ Z

and

πk(ϕ̂) = πk(ϕ)︸ ︷︷ ︸
0

−
g∑
j=1

mj+gπk(ωj)︸ ︷︷ ︸
δkj

= −mk+g ∈ Z.

By Lemma 28.2.2, exp
(
2π
√
−1
´
ϕ̂
)
now gives a meromorphic function

with (f) = D.

29.3. Proof of Jacobi Inversion

To show that AJ is surjective, we will study the image of a certain
class of (degree zero) divisor on M , namely those of the form

[p1] + · · ·+ [pd]− d[q]

given some fixed point q ∈M and natural number d. Such divisors are
obviously in 1-to-1 correspondence with unordered d-tuples of points
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on M , in other words with elements of the dth symmetric power7

SymdM :=

d copies︷ ︸︸ ︷
M × · · · ×M

(p1, . . . , pd) ∼ (pσ(1), . . . , pσ(d))
∀ σ∈Sd

.

In order to be able to use complex analytic techniques we need to put
the structure of a d-dimensional complex manifold on this.8

To get the idea of how this works, take d = 2 and consider C instead
of a (compact) Riemann surface. The symmetric square Sym2C is the
quotient of C × C by the involution (z1, z2) 7→ (z2, z1). What causes
difficulty is the locus consisting of its fixed points, i.e. the diagonal
line. Take two small open sets in Sym2M , one which intersects the
diagonal and one which does not:

z

z
2

1

β
U

U
α

Clearly (z1, z2) give local holomorphic coordinates on Uα. On Uβ,
they are not well-defined, but their elementary symmetric polynomi-
als σ1(z1, z2) = z1 + z2 and σ2(z1, z2) = z1z2 are. Moreover, these
functions generate all polynomials in z1, z2 which are invariant un-
der the involution and hence well-defined on Uβ ⊂ Sym2C. Taking
(w1, w2) := (z1 + z2, z1z2) as the holomorphic coordinates there,9 the
transition function Φβα is then just (σ1, σ2). To see that this is invert-
ible on Uαβ, notice that in Uα the diagonal is defined by w2

1 = 4w2

(since z1 = z2 ⇐⇒ (z1 + z2)2 = 4z1z2). Since Uαβ avoids this locus
(and is simply connected),

√
w2

1 − 4w2 is well defined there and we can

7elements are written either p1 + · · ·+ pd or {p1, . . . , pd}
8Had we started with M itself of dimension > 1, its symmetric powers would be
singular complex analytic spaces, hence not manifolds. So what happens next is
special for dim(M) = 1.
9we could in fact take these as global coordinates, but this situation won’t generalize
to M
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define Φαβ by  z1 =
w1+
√
w2

1−4w2

2

z2 =
w2−
√
w2

1−4w2

2

.

More generally, in a neighborhood of

{q1, . . . , q1︸ ︷︷ ︸
k1 times

; . . . ; q`, . . . , q`︸ ︷︷ ︸
k` times

} ∈ SymdM

(where
∑`

j=1 kj = d), the local coordinate system is given in terms of
holomorphic coordinates zj on M near each qj, by

{p1, . . . , pk1︸ ︷︷ ︸
all near q1

; . . . ; pd−k`+1, . . . , pd︸ ︷︷ ︸
all near q`

} 7−→

(σ1 (z1(p1), . . . , z1(pk1)) , . . . , σk1 (z1(p1), . . . , z1(pk1)) ; . . . ;

σ1 (z`(pd−k`+1), . . . , z`(pd)) , . . . , σk` (z`(pd−k`+1), . . . , z`(pd))) .

Inelegant, but it gets the job done.
Now let D be any divisor of degree d on M , and consider the map-

ping
αD : P(L(D))→ SymdM

which sends (for f ∈ L(D))

[f ] 7→ (f) +D.

(Here (f) + D ≥ 0 by definition, and deg((f) + D) = degD = d; so
(f) +D is of the form [p1] + · · ·+ [pd]. The map sends to the projective
equivalence class [f ], i.e. “f up to a constant multiple”, to {p1, . . . , pd}.)

Lemma 29.3.1. αD is (a) injective and (b) holomorphic.

Definition 29.3.2. The linear system10 |D| consists of all effective
divisors onM rationally equivalent toD. The Lemma evidently realizes
|D| = image(αD) as a subvariety of SymdM isomorphic to P`(D)−1.

Proof. (of Lemma)
(a) (f) + D = (g) + D =⇒ (f) = (g) =⇒ (f/g) = 0 =⇒ f/g

constant =⇒ [f ] = [g].
(b) To show αD holomorphic in a neighborhood of [f0], augment f0

to a basis {f0, f1, . . . , f`(D)} ⊂ L(D) and write fµ := f0 +
∑`(D)

j=1 µjfj

10the notation |D| is unfortunately standard for both the linear system and the
support of D, two completely different concepts!
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so that {µj}`(D)
j=1 are the local holomorphic coordinates (on some small

U ⊂ L(D)). Let p ∈ |D|∪ |(f0)|, with open neighborhood Np ⊂M and
local coordinate z (i.e. ordp(z) = 1). Set k := ordp(f0) + ordp(D), and
Wf0,p := SymkNp with coordinates σ1(z1, . . . , zk), . . . , σk(z1, . . . , zk).

We must show that the composition

U −→ O(Np) −→ Wf0,p ↪→ Ck

µ 7−→ fµz
ordpD 7−→

(
fµzordpD

)∣∣∣
Np

‖
p1(µ) + · · ·+ pk(µ)

7−→

 σ1

(
z(p1(µ)), . . . , z(pk(µ))

)
...

σk

(
z(p1(µ)), . . . , z(pk(µ))

)


is holomorphic, which in turn boils down to the statement that each
σ` is holomorphic in each µj. For k = 1, this is the holomorphic
implicit function theorem; for k > 1, it is this together with Rouché
and the Riemann extension theorem in a manner familiar from previous
chapters. �

Definition 29.3.3. An effective degree d divisor D (viewed as an
element of SymdM) is called general ⇐⇒ D = [p1] + · · · + [pd] with
the {pj} distinct points of M .

Now look at the “Abel-Jacobi” mapping

ud : SymdM −→ J(C)

[p1] + · · ·+ [pd] 7−→ AJ

(
d∑
j=1

[pj] − d[q]

)
,

where q ∈ M is fixed. This is shown to be holomorphic by using
the fundamental theorem of calculus at general D, then applying the
Osgood and Riemann extension theorems. (Boundedness is clear by
taking a local lifting of the image of ud to Cg.)

The next result does not require D to be general.

Lemma 29.3.4. The fiber of ud over ud(D) is |D| (∼= P`(D)−1).

Proof. (For simplicity write u for ud.)
u−1(u(D)) ⊂ |D|: u(E) = u(D) =⇒ AJ(E −D) = 0

Abel
=⇒ E −D

is the divisor of some f ∈ K(M)∗ =⇒ (f) + D = E ≥ 0 (since
E ∈ SymdM ) =⇒ f ∈ L(D) =⇒ E = αD(f) ∈ image(αD) = |D|.
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u−1(u(D)) ⊃ |D|: Given E ∈ |D|, there exists f ∈ L(D) such that

E = (f) + D =⇒ E − D = (f)
rat≡ 0 =⇒ 0 = AJ(E − D) =⇒

u(E) = u(D) =⇒ E ∈ u−1(u(D)). �

IfD = [p1]+· · ·+[pd] is general, then writing zj for local coordinates
about each pj,

(dud)D : TD
(
SymdM

)
−→ Tu(D)(J(M))

is computed by the matrix
∂
∂z1

∑d
i=1

´ zi
q
ω1 · · · ∂

∂z1

∑d
i=1

´ zi
q
ωg

... . . . ...
∂
∂zd

∑d
i=1

´ zi
q
ω1 · · · ∂

∂zd

∑d
i=1

´ zi
q
ωg


∣∣∣∣∣∣∣∣
{p1,...,pd}

.

If we write locally (about each pj) ωi
loc
= fi(zj)dzj, this

=

 f1(p1) · · · fg(p1)
... . . . ...

f1(pd) · · · fg(pd)

 =


← ϕ̃K(p1) →

...

← ϕ̃K(pd) →

 ,

where ϕK is the canonical map and ϕ̃K(pj) ∈ Cg is a “lift” of ϕK(pj) ∈
Pg−1. (For d = 1 this is just Proposition 28.1.2(b).) From this we see
that

rank
(
(dud)D

)
= dim (span(ϕK(p1), . . . , ϕK(pd))) + 1,

where “span” means the projective linear span in Pg−1. Taking d = g,
we now have the following claim:

Lemma 29.3.5. rank ((dug)D) = g for D = [p1]+· · ·+[pg] ∈ SymgM

generic,11 i.e. in some Zariski open subset of SymdM .

Proof. Choose p1, . . . , pg distinct with span (ϕK(p1), . . . , ϕK(pg)) =

all of Pg−1. This is possible since the canonical map is always nonde-
generate by Theorem 27.3.2(a). Consequently rank ((dug)D) = g, and
this holds more generally for D in an algebraic open set. This is be-
cause its failure is equivalent to det(dug) = 0, which is an algebraic
condition which will hold on some codimension-one subvariety. �

11“general” may not be quite enough — D may have to avoid a larger number of
subvarieties of SymgM then just the ones where two or more pj ’s coincide.
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Theorem 29.3.6. [Jacobi inversion] ug is surjective and gener-
ically injective.

Proof. By Lemma 29.3.5, dug is generically an isomorphism of
tangent spaces. So ug takes an open ball about a general point D ∈
SymdM to an open ball. But ug is continuous and SymgM compact,
so image(ug) is both a closed analytic subvariety of J(M) and contains
an open ball, and is therefore all of J(M) (which is connected).

Since at a generic D, dug is (in particular) injective, we see that
any such D is an isolated point of (ug)−1{ug(D)}. But the latter is a
projective space by Lemma 29.3.4, and so the only way D is isolated
is if (ug)−1{ug(D)} is isomorphic to P0, i.e. is just D itself. �

Finally, to address (28.0.2) head-on, surjectivity of AJ follows from
the diagram

(29.3.1) Div0(M)
AJ // J(M)

SymgM
3 SD 7→D−g[q]

ffMMMMMMMMMM
ug
OOOO

.

29.4. A final remark on moduli

For any Riemann surface M (of genus ≥ 1) with given symplec-
tic basis of H1(M,Z), we know that there is a unique choice of basis
for Ω1(M) making the period matrix Π of the form

(
Ig Z

)
. More-

over, we know by (29.1.6) that Z is symmetric with positive definite
imaginary part, i.e. belongs to the gth Siegel upper half space

Hg := {Z ∈Mg(C) | Z = tZ, Im(Z) > 0}.

Note that H1 is just H, the familiar upper half plane.
The Jacobian J(M) is, of course, the quotient of Cg by the lattice

ΛM given by integral linear combinations of the columns of Π. More
generally, let Z be any g × g complex matrix such that

(
Ig Z

)
has

R-linearly independent column vectors. Writing ΛZ for their Z-span,
we define a complex torus by AZ := Cg/ΛZ ; any complex g-torus is
isomorphic to one of this form. A major result is the
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Theorem 29.4.1. [Riemann Embedding Theorem] AZ is an
abelian variety (i.e., has a holomorphic embedding in projective space)
if and only if ±Z belongs to Hg.

(Of course, any τ R-linearly independent from 1 is in the upper
or lower half plane, so every complex 1-torus is algebraic; already for
g = 2 this is false.) You can find (effectively) two proofs in Griffiths
and Harris, one using generalized theta functions and the other using
Kodaira’s embedding theorem.

For us, the implications of this theorem are:

(a) Jacobians of Riemann surfaces of genus g are abelian vari-
eties of dimension g; and

(b) abelian varieties of dimension g have g(g+1)
2

moduli.

Since Riemann surfaces of genus g ≥ 2 have 3g−3 moduli, we conclude:

Corollary 29.4.2. For g < 4, all abelian g-folds are Jacobians;
for g ≥ 4, “most” of them are not.

For g ≥ 4, then, we have the problem of characterizing the “Jaco-
bian locus” in the moduli space Hg/Sp2g(Z), which is the (very diffi-
cult) Schottky problem. There are recent results describing this locus
in terms of the vanishing of theta functions.12

12for example, see the seminar talk http://www.math.princeton.edu/~sam/papers/talk3s.pdf





Appendix: genera of singular curves

Start with an irreducible projective algebraic curve

C ⊂ P2

of degree d, defined over C. We know how to piece the local normal-
izations about singular points together with the smooth part of C to
construct a Riemann surface C̃, together with a map

σ : C̃ → P2

with image(σ) = C. The genus formula of Chapter 14, derived from
a generic stereographic projection and the Riemann-Hurwitz formula,
said that

g(C̃) =
(d− 1)(d− 2)

2
− δ

if all singularities of C (if any) are ordinary double points and there
are δ such points.

Here we would like to be able to compute the genus of the nor-
malization of an arbitrary irreducible curve, with singularities of any
order and type. There exist formulas when the singularities are ordi-
nary,13 but my preference is for methods over formulas, particularly
when the methods allow you to treat more general cases.14 There are
two methods: the first one computes the divisor of the pullback of a
meromorphic differential 1-form on P2 to C̃ and applies Poincaré-Hopf;
the second is based on projecting C to a line and applying Riemann-
Hurwitz (like in the proof of the genus formula). Rather than trying to
state them formally, I’ll use both methods to treat an example which
is “sufficiently general” that you’ll be able to adapt the approaches to
any other curve.

13cf. §6.4 for the definition of an ordinary k-tuple point. One book which proves
the formula is Fulton’s book on algebraic curves.
14and particularly when you can’t remember formulas (welcome to my world)

325
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So here is the ugly curve we will study: put

F (Z,X, Y ) := X3Z3 +X6 + Y 5Z,

and
C := {F (Z,X, Y ) = 0} ⊂ P2,

with affine form x3 +x6 + y5 = 0. This is a degree 6 (i.e. sextic) curve;
a smooth curve of this degree has genus 10. That will not be the answer
here.

One immediately obvious singularity is at (0, 0) (i.e. [1 : 0 : 0] in
projective coordinates [Z : X : Y ]). The lowest-order homogeneous
term (of the affine equation, in coordinates vanishing at this point) is
x3. So [1 : 0 : 0] is a triple point, but very definitely not an ordinary
triple point of C. Ugly enough? Well, this turns out to be the only
singularity.

Method I: Poincaré-Hopf

Set ω = σ∗
(
dx
y

)
∈ K1(C̃)∗ (it will actually turn out to be in Ω1(C̃),

although this is inessential for the method). Poincaré-Hopf tells us
that deg((ω)) = 2g − 2, where g = g(C̃). So we have to compute
(ω) =

∑
mi[pi] ∈ Div(C̃). Where might these {pi} lie in C̃? Or rather,

where might the {σ(pi)} lie on C? There are four (not necessarily
disjoint) possibilities:

(1) on the intersections of C with the x-axis, i.e. in C ∩ {Y = 0};
(2) at points where C has a vertical tangent, hence in C ∩ {FY = 0};
(3) at singularities of C, i.e. in Sing(C); and
(4) on the line at infinity, i.e. in C ∩ {Z = 0}.

Why might one expect nontrivial νp(ω) at p in one of these sets? For
(1), the denominator of dx

y
is zero on the line Y = 0; while for (2)

the pullback of dx will be zero, since at such a point the curve has no
“horizontal variation” to first order. You should always be suspicious
of (3) and (4). Conversely: on the smooth affine part of C, dx and y
never blow up, and (1) and (2) are the only ways they can develop a
zero. So (1)-(4) are actually the only places where ω can have a zero
or pole.

Now we go through these 4 sets of points for the particular curve
under consideration.
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(1): we look at the affine equaton and set y = 0, which yields
x3 + x6 = 0, hence x = 0, ζ6, ζ6, or −1. (Here, ζ6 = exp(π

√
−1

3
).)

While (0, 0) is a singular point and will be dealt with below, it is clear
that dx

y
|C will behave in the same way near the remaining three points:

(−1, 0), (ζ6, 0), and (ζ6, 0). We look in a neighborhood of (−1, 0) on
C. Setting χ = x+ 1 (or x = χ− 1), the equation becomes in (χ, y):

0 = y5 + (χ− 1)3 + (χ− 1)6 = y5 − 3χ+ {higher-order terms in χ}

= y5 − 3χh(χ),

where h(0) 6= 0.15 The local normalization of C at (χ, y) = (0, 0) is
therefore t 7→

(
t5, t · 5

√
3h(t5)

)
, under which dx

y
= dχ

y
pulls back to

d(t5)

t· 5
√

3h(t5)
= t3 · 5dt

5
√

3h(t5)
which has a zero of order 3 at t = 0. So we

conclude that
νσ−1[1:−1:0](ω) = 3,

and similarly that

νσ−1[1:ζ6:0](ω) = νσ−1[1:ζ6:0](ω) = 3.

(2): for vertical tangents or singularities we will have

0 = FY = 5Y 4Z,

so that these must occur along the x-axis or along the line at ∞. The
intersections with the x-axis other than [1 : 0 : 0] were just dealt with.
Any nonsingular intersections with {Z = 0} will be dealt with in step
(4). So vertical tangents are subsumed under the other three categories.

(3): at a singular point we must have 0 = FY ,

0 = FX = 3X2Z3 + 6X5 = 3X2(Z3 + 2X3),

and
0 = FZ = 3X3Z2 + Y 5.

We must have Z = 0 or Y = 0. If Z = 0 then the last two equations
imply X = Y = 0, a contradiction. If Y = 0 then the last equation
gives Z = 0 (no!) or X = 0; the latter works, and so [1 : 0 : 0] is
the only singular point. In local coordinates about (x, y) = (0, 0), our
curve is 0 = y5 + x3 + x6 = y5 + x3h(x) (different h(x) from above,

15Sometimes (though rarely) one may have to “remember” more about h in these
types of problems, but not in this example.
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again h(0) 6= 0), which is locally irreducible and has a singularity of
order 3. Undeer the local normalization t 7→ (t5, t3 · 5

√
h(t5)), dx

y
pulls

back to d(t5)

t3· 5
√
h(t5)

= t · 5dt
5
√
h(t5)

, and we conclude that

νσ−1[1:0:0](ω) = 1.

(4): C ∩ {Z = 0} is the single point [0 : 0 : 1]. We will need to
switch to affine coordinates vanishing at this point, namely u = 1

y
= Z

Y
,

v = x
y

= X
Y

(or conversely y = 1
u
, x = v

u
):

u

v

x

y

P
2

We divide Z3X3 +X6 + Y 5Z = 0 by Y 6, obtaining(
Z

Y

)3(
X

Y

)3

+

(
X

Y

)6

+
Z

Y
= 0

v6 + u3v3 + u = 0

which is a locally irreducible Weierstrass polynomial in v with (multi-
valued) roots of the form

v∗(u) :=
3

√
−u3 ±

√
u6 − 4u

2
.

(Use the quadratic formula to solve for v3, then take cube root.) Sub-
stituting in t6 gives

ṽ(t6) =
3

√
−t18 +

√
t36 − 4t6

2
=

3

√
−t18 + t3 ·

√
t30 − 4

2

= t · 3

√
−t15 +

√
t30 − 4

2

which is just t times some local analytic H(t) with H(0) 6= 0. So

the normalization is t 7→ (t6, t · H(t)) and dx
y

=
d( vu)

1
u

pulls back to
d( tH(t)

t6
)

1
t6

= t6d
(
H(t)
t5

)
= (tH ′(t)− 5H(t)) dt, which has neither zero nor
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pole at t = 0. Hence,
νσ−1[0:0:1](ω) = 0.

Upshot: putting everything together,

(ω) = [σ−1[1 : 0 : 0]]+3[σ−1[1 : ζ6 : 0]]+3[σ−1[1 : −1 : 0]]+3[σ−1[1 : ζ6 : 0]]

=⇒ 2g − 2 = deg((ω)) = 1 + 3 + 3 + 3 = 10

=⇒ g = 6.

Method II: Riemann-Hurwitz

Recall that this dealt with maps of Riemann surfaces

f : M → N,

and told us that
χM = deg(f) · χN − rf .

Here deg(f) is the mapping degree of f (the number of points in the
preimage of a general point on N) and rf is the degree of the ramifi-
cation divisor16 Rf :=

∑
p∈M(νp(f)− 1)[p].

Now let q ∈ P2\C, M = C̃, N = P1, π =stereographic projection
(P2\{q})→ P1 through q; and take

f : C̃ → P1

to be given by f := π ◦ σ. Usually it is easiest to take [1 : 0 : 0],
[0 : 1 : 0], or [0 : 0 : 1] as q. In our case the only one of these not on C
is [0 : 1 : 0]. So our projection looks like

16locally about any p ∈ M and its image f(p) ∈ N , one has local holomorphic
coodinates z resp. w (with z(p) = 0 resp. w(f(p)) = 0), in which f takes the form
z 7→ zνp(f) = w.
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P
2

π

(forgets x−coord.)

[0:1:0]

C

and the mapping degree is the number of intersection points of {y = y0}
and {x3 + x6 + y5 = 0} for general y0 — i.e. deg(f) = 6. Obviously
χP1 = 2− 2 · 0 = 2, so we have

2− 2g = χC̃ = 6 · 2− rf = 12− rf

=⇒ g =
1

2
rf − 5.

So we will have to compute Rf =
∑
mi[pi] (or at least rf ) and the first

issue to resolve is where the σ(pi) can lie on C:

(1) points having horizontal tangents (subset of {F = 0} ∩ {FX = 0});
(2) singular points (FX = FY = FZ = 0) — i.e. [1 : 0 : 0] for our
example; and
(3) L∞ ∩ C — i.e. [0 : 0 : 1] in our example.

(1): 0 = FX = 3X2(Z3 + 2X3) has solutions other than X = 0,
which corresponds to the singular point. Namely, writing x = X

Z
we

get x3 + 1
2

= 0 hence x = −1
3√2
, ζ6

3√2
, ζ6

3√2
. Plugging this into the affine

equation of C yields y5 = 1
4
hence y = 1

5√4
, ζ5

5√4
,
ζ2
5

5√4
,
ζ3
5

5√4
,
ζ4
5

5√4
. These

are independent of the choice amongst the 3 values for x, and so we
get 5 · 3 = 15 ramification points. As you may check, the intersections
between F = 0 and FX = 0 at these points are all of first order, hence
correspond to ramifications of order 2 and so make a contribution of
νp(f)− 1 = 2− 1 = 1 each to rf .

(2): Near (x, y) = (0, 0), the composition

t
σ7−→ (t5, t3H(t))

π7−→ t3H(t)
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has νp(f) = 3 hence contributes 2 to rf .
(3): Near (u, v) = (0, 0),

t
σ7−→ (t6, tH(t))︸ ︷︷ ︸

u,v

π7−→ t6.

This is because π is supposed to take the y-coordinate, which is 1
u

here; but we have to compute the image in a holomorphic coordinate
vanishing at the image of p = [0 : 0 : 1]. So in fact u is the correct
variable, and the map indeed has νp(f) = 6 and contributes 5 to rf .

Conclusion: rf = 15 · 1 + 2 + 5 = 22

=⇒ g =
22

2
− 5 = 6,

confirming the previous computation.

Exercises
(1) Find the genus of the normalization of the curve C ⊂ P2 with

affine equation x3 + y2 + y2x3 − 2
5
y5 = 0. Do this in 2 different

ways: (a) by using an appropriate projection, computing the degree
of the ramification divisor, and applying Riemann-Hurwitz; (b)
by computing the divisor of the pull-back of a meromorphic 1-
form on the normalization and applying Poincare-Hopf (try it with
dy
x
). [Hint: to do the local normalizations, first make sure you are

dealing with an irreducible Weierstass polynomial f(x, y) = 0 –
you may have to change variable, swap coordinates, divide out by
a unit (which can reduce the degree of the equation!), factor into
irreducibles, whatever. If you can’t find a multivalued solution y(x)

by taking roots, using quadratic equation, and so on, you can always
use power series. If f(x, y) is an irreducible Weierstrass polynomial
of degree k in y, then try substituting in tk for x: write 0 = f(tk, y)

and solve for y as a power-series in t, call this G(t). Then the local
normalization is t 7→ (tk, G(t)).]


