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Abstract. We reevaluate the claim that predicative reasoning (given the nat-
ural numbers) is limited by the Feferman-Schütte ordinal Γ0. First we com-
prehensively criticize the arguments that have been offered in support of this
position. Then we develop a general method for accessing ordinals which is
meant to be predicatively valid. We find that the small Veblen ordinal φΩω (0),
and probably much larger ordinals, are predicatively provable.

The precise delineation of the extent of predicative reasoning is a remarkable
modern result in the foundations of mathematics. Building on ideas of Kreisel
[27, 28], Feferman [11] and Schütte [41, 42] independently identified a countable
ordinal Γ0 and argued that it is the smallest predicatively non-provable ordinal.
(Throughout, I take “predicative” to mean “predicative given the natural num-
bers”.) This conclusion has become the received view in the foundations commu-
nity, with reference [11] in particular having been cited with approval in virtually
every discussion of predicativism for nearly sixty years. Γ0 is now commonly re-
ferred to as “the ordinal of predicativity”. Some publications which explicitly make
this assertion are [1, 2, 3, 4, 6, 19, 20, 21, 23, 25, 26, 37, 38, 40, 45, 46].

This achievement is notable both for its technical interest and for the insight it
provides into an important foundational stance. Although predicativism is out of
favor now, at one time it was advocated by such luminaries as Poincaré, Russell,
Skolem, and Weyl. (Historical overviews are given in [19] and [35].) Its central
principle — that sets have to be “built up from below” — is, on its face, reasonable
and attractive.

Undoubtedly one of the main reasons predicativism was not accepted by the gen-
eral mathematical public early on was its apparent failure to support large portions
of mainstream mathematics. However, we now know that the bulk of core mathe-
matics can in fact be developed in predicative systems [16, 44], and the limitation
identified by Feferman and Schütte is probably now a primary reason, possibly the

primary reason, for predicativism’s nearly universal unpopularity.1 There do exist
important mainstream theorems which are known to in various senses require prov-
ability of Γ0, and in any case Γ0 is sufficiently tame that it is simply hard to take
seriously any approach to foundations that prevents one from recognizing ordinals
at least this large. Thus, it is of great foundational interest to examine carefully
whether the Γ0 limitation really is correct. If it is not, predicativism could be more
viable than previously thought and its current peripheral status in the philosophy
of mathematics may need to be reconsidered.

Date: February 25, 2023.
1Other concerns may include questions about the ease of use of predicative systems in practice

or a sense that they are philosophically, as opposed to mathematically, too limiting.
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I believe Γ0 has nothing to do with predicativism. I will argue that the current
understanding of predicativism is fundamentally flawed and that a more careful
analysis shows the “small” Veblen ordinal φΩω (0), and probably much larger ordi-
nals, to be within the scope of predicative mathematics.2 It is my hope that this
conclusion will open the way to a serious reappraisal of the significance and interest
of predicativism.

1. A critique of the Γ0 thesis

At issue is the assertion that there are well-ordered sets of all order types less
than Γ0 and of no order types greater than or equal to Γ0 which can be proven to
be well-ordered using predicative methods (cf. [11], p. 13 or [43], p. 220). I call this
the Γ0 thesis.

As stated, this claim is imprecise because the classical concept of well-ordering
has a variety of formulations which are not predicatively equivalent (see §§1.1,
1.5, and 2.3). Previous discussions of predicativism have tended to ignore these
distinctions, and this will emerge as a crucial source of confusion (see §§1.1 and
1.5). To fix ideas I will use the term “well-ordered” to mean of a set X that it is
equipped with a total order with respect to which, for any Y ⊆ X , if Y is progressive
then Y = X . Progressive means that for every a ∈ X , if {b ∈ X : b ≺ a} ⊆ Y then
a ∈ Y .

In principle, to falsify the Γ0 thesis I need only produce (1) a well-ordering proof
of an ordered set that is isomorphic to Γ0 and (2) a convincing case that the proof
is predicatively valid. However, no matter how convincing I could make that case,
in light of the broad and sustained acceptance the thesis has enjoyed it would be
unsatisfying to leave the matter there. The Γ0 thesis has been repeatedly and
forcefully defended by two major figures, Feferman and Kreisel.3 Many current
authors simply assert it as a known fact. The only substantial published criticism
of which I am aware appears in [24], but even that is somewhat ambivalent and
seems to conclude in favor of the thesis. Therefore, I take it that I have a burden
not only to positively demonstrate the power of predicative reasoning, but also to
show where the more pessimistic previous assessments went wrong.

This is a somewhat lengthy task because a great deal has been written in support
of the Γ0 thesis from a variety of points of view. However, I believe that the entire
body of argument is specious and can be decisively refuted. The goal of Section 1
is to do this in some detail.

One point before I begin. Predicativism is a philosophical position, and prior to
the acceptance of a particular formalization there will be room for argument over
its precise nature. Thus, a debate about the Γ0 thesis could easily degenerate into
a purely semantic dispute over the meaning of the term “predicative”. I therefore
want to emphasize that the central claim of this section is that there is no coherent
philosophical stance which would lead one to accept every ordinal less than Γ0 but
not Γ0 itself, in the same way that there is no coherent version of finitism which

2Similar conclusions are reached in [7].
3Feferman objected to this characterization when I posted the original version of this paper on

the arXiv. In an email he sent me (which he gave me permission to make public) he wrote “Both
Kreisel and I have raised critical questions about the proposed characterization at different stages,
so it is not fair to say without qualification that we forcefully defended it.” It is indeed true that
he raised critical questions; see footnote 15 below. I leave it to the reader to judge whether it
remains fair to say that he forcefully defended the Γ0 thesis.
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would lead one to accept every number less than 1,000 but not 1,000 itself. My
polemical technique will be to examine various formal systems that have been al-
leged to model predicative reasoning and indicate how in each instance the informal
principles that motivate the system actually justify a stronger system which goes
beyond Γ0. This is obviously independent of any special views one may have about
predicativity. (A second major claim is that none of these supposedly predicative
systems is actually predicatively legitimate. Of course, evaluating the justice of this
claim does require some understanding of predicativism.)

1.1. The principal error. The Γ0 thesis is supported by a number of formal
systems which have been proposed in the primary literature as models of predicative
reasoning. However, I anticipate that most readers will be most familiar with the
treatment of the Γ0 thesis given in a secondary source such as the excellent graduate
text [36]. So let me start with a short explanation of the problem with the analysis
presented there. Then I will go on to review the formal systems which appear in
the primary literature.

Just above I introduced the notion of progressivity for subsets of totally ordered
sets (for every a ∈ X , if {b ∈ X : b ≺ a} ⊆ Y then a ∈ Y ) and defined a totally
ordered set to be well-ordered if progressivity of Y ⊆ X entails that Y = X . This is
easily seen to be equivalent to the usual definition in terms of every nonempty subset
having a least element (and the trivial proof of this equivalence is predicatively
unproblematic).

Let me also define a property P to be progressive on X if (∀b ≺ a)P (b) implies
P (a), for all a ∈ X . This reduces to the previous setwise condition when P (a) is
the property “a ∈ Y ” for some Y ⊆ X . So if X is well-ordered, any progressive
property of this form will satisfy (∀a ∈ X)P (a). Can we draw the same conclusion
for other properties? That is, if X is well-ordered and P is any progressive property,
may we conclude (∀a ∈ X)P (a)?

Yes, we can, by the simple technique of introducing the set Y = {a ∈ X : P (a)}.
Progressivity of the property P then entails progressivity of Y in the first, setwise
sense. If X is well-ordered then this yields Y = X , i.e., (∀a ∈ X)P (a).

But this is an argument that predicativists cannot generally make. Introducing
the set Y requires a comprehension principle which is impredicative unless P has
a special form. Predicativism famously disallows, for instance, any definition of a
set of natural numbers that involves quantification over all sets of natural numbers.
The comprehension principles available to predicativists are very weak.

This matters for the analysis presented in [36] and elsewhere. That analysis
involves proof trees of infinite (well-ordered) heights over a straightforwardly pred-
icative base system. The idea is that one starts with proof trees of height ε0, say,
but once one has proven that a notation for α is well-ordered — so that α is pred-
icatively “recognized” to be an ordinal — one is allowed to use proof trees of height
α. If we define γ0 = 0 and γn+1 = φγn

(0) for n ≥ 0, where φα are the Veblen
functions, then, for all n, using a proof tree of height γn one can prove that a
notation for γn+1 is well-ordered. Thus, iterating this process, every ordinal less
than Γ0 = sup γn is supposed to be predicatively provable. Conversely, within the
context of the infinitary systems used in [36] one cannot prove that a notation for
Γ0 is well-ordered using a proof tree of any height less than Γ0, and this allegedly
shows that Γ0 is the limit of predicative reasoning.
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An obvious question is why predicativists cannot recognize for themselves that
this process yields a proof, valid for all n, that some notation for γn is well-ordered,
and infer from this that Γ0 = sup γn is well-ordered. It seems like just the sort of
countable reasoning that predicativists are good at. This question was raised in
[24], among other places. I will return to it in a moment. But first, let us ask how
the predicativist is to infer the soundness of proof trees of height α from the fact
that α is well-ordered. Why should it follow that such trees prove true theorems?
It is easy to see that soundness is progressive — if every proof tree of height less
than α is sound, then every proof tree of height α is sound — so one wants to
make an inductive argument with the property P (a) = “proof trees of height α are
sound”, where a is a notation for α.

But all we prove with a tree of height γn is that a notation for γn+1 is well-ordered
in the weak, setwise sense. Lacking an impredicative comprehension principle, we
cannot infer the soundness of proof trees of height γn+1. The Feferman-Schütte
analysis relies essentially on an impredicative inference from setwise well-ordering
to induction for general properties.

I have not seen any attempt, anywhere, to actually give a predicatively valid
argument that would allow one to infer the soundness of proof trees whose height
is known to be (setwise) well-ordered — doubtless because the task is hopeless.
However, several correspondents (but not Feferman) have suggested to me that
a predicativist can simply intuit this inference without needing to prove it. This
response runs into the obvious question mentioned above, about predicativists being
able to recognize that for all n they can prove a notation for γn is well-ordered.
They would then be able to get beyond Γ0. So if one wants to stop exactly at Γ0,
one has to postulate that predicativists are able to intuit the desired inference in
any particular case, but they cannot recognize that they have this general ability, as
this would allow them to get past Γ0. For every n, when it is proven that a notation
for γn is well-ordered, the revelatory intuition that proof trees of that height are
sound has to come as a surprise. This is the crevice into which defenses of the Γ0

thesis have to squeeze.
In a nutshell: the crucial inference from “a notation for γn is well-ordered” to

“proof trees of height γn are sound” requires a comprehension principle that is not
available to the predicativist. But if this inference could somehow be recognized
as generally valid, one would then be able to see all at once that notations of γn
for all n are well-ordered, and infer from this that Γ0 is well-ordered. The only
way someone could get everything less than Γ0, but not Γ0 itself, is if they could
somehow recognize the correctness of the crucial inference in each instance but not
as a general principle.

A comment made in [14]4 obliquely indicates that Feferman may have, at the time
of writing that paper, been aware of the difficulty. However, he did not suggest any
way to resolve it, arguing instead (wrongly; see §1.7) that the new system presented
in [14] could legitimately reach the desired conclusion. Over the next twenty years
or so he went on to propose several distinct analyses which were supposed to justify
the Γ0 thesis. So I will have to discuss these.

4[14], p. 85; see footnote 15 below.
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1.2. Formal systems for predicativity. A variety of formal systems have been
proposed as modelling predicative reasoning in some form of second order arith-
metic. Among the main examples are Σ [27], H+, R+, H , R [11], RA∗ [43], P+∃/P
[14], Ref∗(PA(P )) [15], and U(NFA) [20]. I give here a brief sketch of their most
important features.

The systems Σ, H , and R are similar in broad outline and need not be dis-
tinguished in this discussion; likewise for the systems H+, R+, and RA∗. All six
express a concept of “autonomy” which allows one to access larger ordinal notations
from smaller ones, and I will refer to them generally as “autonomous systems”. In
the last three systems the idea is that once predicativists have proven the well-
foundedness of a set of order type α they are allowed to use infinite proof trees of
height α to establish the well-foundedness of larger order types, the key infinitary
feature being an “ω-rule” which permits deduction of the formula (∀n)A(n), where
n is a number variable, from the family of formulas A(n) with n ranging over all
numerals. In the first three systems all proofs are finite and the key proof principle
is a “formalized ω-rule” scheme which, for each formula A, concludes the formula
(∀n)A(n) from a premise which arithmetically expresses that for every number n
there is a proof of A(n). This leads to a hierarchy of systems Sa where a is an ordi-
nal notation and Sa⊕1 incorporates a formalized ω-rule scheme referring to proofs
in Sa. The predicativist is then permitted to execute a finite succession of proofs in
various Sa’s, subject to the requirement that passage to any Sa must be preceded
by a proof that a is an ordinal notation.

The linked systems P and ∃/P are notable for their conception of predicativists
as having a highly restricted yet not completely trivial ability to deal with second
order quantification, in particular their being able to use only free or, to a limited
extent, existentially quantified set variables. Second order existential quantification
is actually permitted only in the “auxiliary” system ∃/P , but once a functional has
been shown to exist uniquely one is allowed to introduce a symbol for it which can
then be used in P . By passing back and forth between P and ∃/P one is able to
produce functionals which provably enumerate larger and larger initial segments of
the ramified hierarchy over an arbitrary set and use them to prove the well-ordering
property for successively larger ordinal notations.

The system Ref∗(PA(P )) is obtained by applying a general construction Ref∗ to a
“schematic” form PA(P ) of Peano arithmetic. This construction involves extending
the language of PA(P ) to allow assertions of truth and falsehood and adding axioms
which govern the use of the truth and falsehood predicates. Paradoxes arising from
a self-referential notion of truth are avoided by regarding the truth and falsehood
predicates as partial and axiomatizing them in a way that expresses their ultimate
groundedness in facts about PA(P ). The ability to reason about truth in effect
implements the formalized ω-rule mentioned above, and this again enables one to
prove the well-foundedness of successively larger ordinal notations. The general idea
is that Ref∗(S(P )) embodies what one “ought to accept” given that one accepts
a schematic theory S(P ), and an argument can then be made that predicativism
is fundamentally based on Peano arithmetic and therefore Ref∗(PA(P )) precisely
captures what a predicativist ought to accept.

Like Ref∗(PA(P )), U(NFA) is an instance of a general construction which ap-
plies to any schematic formal system and is supposed to embody what one ought
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to accept once one accepts that system. However, the exact claim is slightly dif-
ferent: here we are concerned with determining “which operations and predicates,
and which principles concerning them, ought to be accepted” once one has ac-
cepted the initial system ([20], p. 75). This problem is approached from the point
of view of generalized recursion theory and one is allowed to generate operations
and predicates by using a least fixed point operator. It is easily seen that this recur-
sive generation procedure rapidly recovers Peano arithmetic from a weaker theory
NFA (“non-finitist arithmetic”); therefore, U(NFA) is already supposed to capture
predicative reasoning.

1.3. Outline of the critique. All of the proposed formalizations of predicative
reasoning cited in §1.2 have the same provable ordinals, namely all ordinals less
than Γ0. This by itself might be seen as good evidence in favor of the Γ0 thesis
simply because it seems unlikely that so many different approaches should all have
settled on the same wrong answer.5

Nonetheless, each of the formal systems in §1.2 is simultaneously too weak and
too strong to faithfully model predicative reasoning and thereby verify the claim
about Γ0. They are all too weak for a general reason I discuss in §1.4; in brief,
anyone who accepts a given system ought to be able to grasp its global validity
and then go beyond it. This is an old objection and there are several responses to
it on record. However, these responses, which I review below, are not well-taken
because they typically involve postulating (usually with little or no justification) a
limitation on predicative reasoning which, if true, would actually have prevented a
predicativist from working within the original system.

In addition, each system is manifestly impredicative in some way, and hence
too strong. This fact does not seem to be widely appreciated, but it is hardly
obscure. The autonomous systems impredicatively infer a transfinite iteration of
reflection principles from a statement of transfinite induction. P + ∃/P allows
predicate substitution for Σ1

1 formulas, so that for every Σ1
1 formula A it in effect

lets one reason about {n : A(n)} as if this were a meaningful set, which in general
is predicatively not the case. Ref∗(PA(P )) makes truth claims about schematic
predicates which do not make sense unless one assumes an impredicative compre-
hension axiom. U(NFA) employs a patently impredicative least fixed point operator
and also treats schematic predicates in a way that again can only be justified by
impredicative comprehension. I will elaborate on all of these points below.

The most striking impredicativity is the least fixed point operator of U(NFA),
but the other instances are actually more significant because they fit into a general
pattern. The basic problem is that in each of these systems one proves the well-
foundedness of successively larger ordinal notations by an inductive argument that
at each step involves generating some kind of iterative hierarchy which is used
to prove transfinite induction at the next level — but this does not justify the
statement of transfinite recursion which is needed to generate the next hierarchy.
In order to make this inference from induction to recursion one has to smuggle an
impredicative step somewhere into the proof, and this is the function of all the
other examples of impredicativity noted above. I will return to this point in §1.10.

There are also more subtle instances of impredicativity which occur in the use
of self-applicative schematic predicates in Ref∗(PA(P )) and U(NFA); see §2.4.

5Unless, of course, they were deliberately engineered to get that answer. One may suspect this
of all of them aside from the autonomous systems; it is most obvious in the case of P + ∃/P .
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I next describe an objection that is generally applicable, and then go on to discuss
the individual formal systems.

1.4. A general difficulty. Suppose A is a rational actor who has adopted some
foundational stance. Any attempt to precisely characterize the limits of A’s rea-
soning must meet the following objection: if we could show that A would accept
every member of some set of statements S, then A should see this too and then be
able to go beyond S, e.g. by asserting its consistency. Thus, S could not have been
a complete collection of all the statements (in a given language) that A would ac-
cept. A similar argument can be made about attempts to characterize A’s provable
ordinals.

There are a variety of ways in which this objection might be overcome. A may
actually be unable to recognize S as a legitimate set, for instance, perhaps, if S is
infinite and A is a finitist. Or the language in use may not be capable of expressing
the consistency of S. Or maybe the disciples of some foundational philosophy can
indeed see, as we do, that there exists a proof that they would accept for each
statement in S, but they cannot go from this to actually accepting every statement
in S (though it is difficult to imagine a plausible set of beliefs that would not allow
them to take this step). Or it might be possible to identify some special limitation
in their belief system which prevents them from grasping the validity of all of S at
once despite their ability to accept each statement in S individually.6

Defenses of the Γ0 thesis generally take the last approach. This is tricky for a
slightly subtle reason. It is not hard to believe that A (or anyone) is unable to
simultaneously identify exactly which statements are true from their perspective.
But it is more difficult to reconcile this with the claim that we do know that A
would accept each statement in S. The most obvious way to establish this claim
would be to explicitly show how A would prove each statement in S, and this is
actually the method used in the case at hand: each of the proposed formal systems
for predicativism is accompanied by a recursive proof scheme which is supposed to
show how a predicativist could use the system to access every ordinal less than Γ0.
What is confusing here is the suggestion that we can see that predicativists would
accept each proof in the scheme but they cannot see this.

In fact this is highly implausible, for the following reason. In general we are not
merely given a recursive set of proofs which establish for each n that some notation
an for γn is an ordinal notation; for each of the formal systems under discussion,
at least at an intuitive level these proofs are all essentially the same. It is therefore
hard to understand why someone who is presumed to grasp induction on ω (and
even, allegedly, in “schematic” form [15, 17, 20]) would not be able to infer the
single assertion that an is an ordinal notation for all n.

6Yet another idea is to assert that we merely believe that A could come to accept every
statement in S, but we do not know this. If so, it is possible that A could indeed share this belief,
but without sufficient certainty to legitimize going beyond S.

Whether this tactic could work depends on exactly why we have reservations about what A
can accept. It is no good, for example, to say that we are not sure what an ideal predicativist
can accept because there is more than one version of predicativism; in that case, there would

simply be more than one kind of ideal predicativist, and the objection would apply to them all
separately. In any case, the arguments which have been brought forward to justify the Γ0 thesis
all very explicitly purport to show that for all n the predicativist can prove that a notation for γn
is well-ordered.
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It is reasonable to expect that if predicativists understand how to go from an
to an+1 for any single value of n, and if the passage from an to an+1 is essentially
the same for all n, then they can infer the statement that every an is an ordinal
notation. As this would enable them to immediately deduce the well-foundedness
of an ordered set isomorphic to Γ0, advocates of the Γ0 thesis have a crucial burden
to explain why they cannot in fact do this. Yet the handful of attempts to establish
this point that appear in the literature are brief, vague, and, I will argue in the
next section, totally unpersuasive.

I now turn to the systems introduced in §1.2.

1.5. The finitary autonomous systems. The initial idea behind the finitary
autonomous systems Σ, H , and R is that if predicativists trust some formal sys-
tem for second order arithmetic, such as ACA, say (see [44]), then they should
accept not only the theorems of the system itself, but also additional statements
such as Con(ACA) which reflect the fact that the axioms are true. Feferman [10]
analyzed several such “reflection principles” and found the strongest of them to be
the formalized ω-rule scheme

(∀n) [Prov(pA(n)q) → A(n)] ,

where pA(n)q is the Gödel number of A(n) and Prov formalizes “is the Gödel
number of a provable formula” (here, provable in ACA).

Having accepted this scheme, the argument runs, predicativists are then com-
mitted to a stronger system consisting of ACA plus the ω-rule scheme, and they
should therefore now accept a version of the formalized ω-rule scheme which refers
to provability in this stronger system. This process can be transfinitely iterated,
yielding a family of formal systems Sa indexed by Church-Kleene ordinal notations
a. Kreisel’s idea [27] was that predicativists should accept the system indexed by
a when and only when they have a prior proof that a is an ordinal notation.7

Feferman [11] proved that when this procedure is carried out starting with a
reasonable base system S0, Γ0 is the smallest ordinal with the property that there
is no finite sequence of ordinal notations a1, . . . , an with a1 a notation for 0, an a
notation for Γ0, and such that Sai

proves that ai+1 is an ordinal notation (1 ≤ i <
n). Thus, Γ0 is the smallest predicatively non-provable ordinal.

There are two fundamental problems with this analysis. The first is that the
plausibility of inferring soundness of Sa from the fact that a is an ordinal notation
hinges on our conflating two versions of the concept “ordinal notation” — supports
transfinite induction for arbitrary sets versus supports transfinite induction for
arbitrary properties — which are not predicatively equivalent. I already mentioned
that in Section 1.1. What we actually prove about a is that, for a given partial
order ≺ on a subset of ω, if X is a set with the property that

(∀b) [(∀c ≺ b)(c ∈ X) → b ∈ X ]

then every b ≺ a must belong to X . Classically this entails that for every formula
A the statement

(∀b) [(∀c ≺ b)A(c) → A(b)]

7The H system in [11] follows this description precisely. Systems of ramified analysis like Σ and
R are a little more complicated in that each Sa has its own set variables Xa, and legal formulas of
Sa must contain only set variables Xb with b � a. These systems are formally more complicated
than H, but they are supposed to more transparently model the intuition of a predicative universe
which is only available in stages.
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implies A(b) for all b ≺ a because we can use a comprehension axiom and reason
about the set X = {b : A(b)}. Predicatively this should still be possible if, for
example, A is arithmetical, but not in general. Now the statement P(b) ≡ “if
ProvSb

(pAq) then A, for every formula A” is not only not arithmetical, it cannot
even be formalized in the language of second order arithmetic. So we should not
expect there to be any obvious way to predicatively infer P(a) from what we have
proven about a. Indeed, there are good reasons to suppose that this inference is
not legitimate, for instance the fact that Sa proves the existence of arithmetical
jump hierarchies up to a, which is formally stronger than the fact that transfinite
induction holds up to a for sets.

One may be tempted to dismiss this first objection as technical and to grant
that predicativists can make the disputed inference, but that leads to a second
basic problem: if predicativists could somehow infer the soundness of Sa then they
actually ought to be able to infer more. This point was made well by Howard [24].
I would put it this way: according to Kreisel, predicativists are (somehow) always
able to make the deduction

from I(a) and ProvSa
(pA(n)q), infer A(n), (∗)

where I(a) formalizes the assertion that a is an ordinal notation. Shouldn’t they
then accept the assertion

(∀a)(∀n) [I(a) ∧ ProvSa
(pA(n)q) → A(n)] (∗∗)

for any formula A?
As a straightforward consequence of [11], one can use (∗∗) to prove I(a) with a

some standard notation for Γ0.
8 The claim must therefore be that predicativists

can recognize each instance of (∗) to be valid but cannot recognize the validity of
the general assertion (∗∗). In other words, whenever they have proven that a is an
ordinal notation they can infer the statement that all theorems of Sa hold, but they
do not accept the general statement “if a is an ordinal notation then all theorems
of Sa hold.” Why not?

(a) Kreisel’s first answer. Kreisel addresses this point in [27]. He writes:

Here, too, though each extension is predicative provided < has
been recognized by predicative means to be a well-ordering, the
general extension principle is not since [it is framed in terms of]
the concept of predicative proof [which] has no place in predicative
mathematics. ([27], p. 297; see also p. 290)

Although this comment sounds authoritative, it does not hold up under scrutiny
because in whatever sense it could be said that (∗∗) presumes the concept of pred-
icative proof, the same is true of any instance of (∗). If we had no concept of proof
or validity then we ought not to be able to make the inference (∗) in any instance.

8According to the proof sketched in [11] that Γ0 ≤ Aut(S), we can find r ∈ ω which is the
Gödel number of a recursive function {r} with {r}(n) a notation for γn, {r}(n) <O {r}(n+1), and
S0 ⊢ (∀n) ProvS{r}(n)

(pI({r}(n+ 1))q). Letting A(n) ≡ I({r}(n + 1)) and substituting {r}(n)

for a in (∗∗), a simple induction argument yields (∀n) I({r}(n)) (note that S0 supports complete
induction), from which we deduce I(a) with a = 3 · 5r .

(The expression A({r}(x)) should be understood as an abbreviation of a formula which asserts
that there exists y such that {r}(x) = y and A(y). Alternatively, we can use a language that
contains symbols for all primitive recursive functions and reword the arguments — here and below
— to ensure that all recursive functions in use are actually primitive recursive.)
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One can try to read something more subtle into Kreisel’s comment, but I have
not found any way to elaborate it into a convincing argument. Perhaps the best
attempt appears in §1.5 (b) below.

Similar reasoning would actually support a more severe conclusion. Consider:

Although the inference of B from A is predicative provided A has
been recognized by predicative means to imply B, the general prin-
ciple of modus ponens is not since it is framed in terms of the
concept of predicative truth, which has no place in predicative
mathematics.

This is a parody, but not a gross one. In fact, I do not really see what could make
one accept the first statement and not the second. (The rejoinder that modus
ponens is not framed specifically in terms of predicative truth misses the point. To
predicativists, “truth” and “predicative truth” are the same thing, so it would not
make sense to suggest that they can reason about truth but not about predicative
truth.) If one did accept the second statement, of course, this would prevent any
use of reflection principles since absent a general grasp of modus ponens the mere
acceptance of a set of axioms would not entitle one to globally infer the truth of all
theorems provable from those axioms.

(b) Kreisel’s second answer. A second argument in response to something like the
objection raised above was made by Kreisel ([31], §3.631) and cited with approval
by Feferman ([12], p. 134). Unfortunately, the cited passage is rather inscrutable,
so it is hard to be sure what Kreisel had in mind. I think it is something like this.
Predicativists are at any given moment only able to reason about those subsets
of ω that have previously been shown to exist. The “basic step” of predicative
reasoning is thus the passage from one level Nα of the ramified hierarchy over ω to
the next (Nα+1 = the subsets of ω definable by second order formulas relativized
to Nα). Now the proof that (a notation for) γn+1 is well-founded uses only sets
in Nγn

, so once Nγn
is available this proof can be executed and one can pass to

Nγn+1. However, we cannot go directly from Nγn
to Nγn+2 since the proof that γn+2

is well-founded uses sets in Nγn+1 which are not yet available. Thus, we cannot
grasp the validity of the sequence of proofs as a whole since later proofs involve the
use of sets that are not known to exist at earlier stages. Each individual proof is
admissible, however, since there is a finite stage in the reasoning process at which
the sets needed for that proof become available.

This neatly answers the question raised in §1.4 as to how each proof could be
recognized as valid while the entire sequence of proofs cannot. But wait. Exactly
how would one use the well-foundedness of γn+1 proven using sets in Nγn

to “pass
to Nγn+1” and make sets at that stage available for future proofs? If we accept
Kreisel’s premise then it would seem that we cannot directly go even two levels up
from Nγn

to Nγn+2, let alone all the way to Nγn+1 , because the construction of
Nγn+2 uses sets in Nγn+1 which are not yet available. Thus, the argument that
prevents us from getting up to Γ0 should be equally effective at preventing us from
getting from γn to γn+1.

This point may become clearer if we ask how predicativists could establish the
existence of Nω. Starting with N0 = ∅, they can use the basic step to directly pass
to N1, then to N2, and so on, so that for each n ∈ ω they can give a finite proof
of the existence of Nn. But in order to accept the existence of Nω they have to
somehow globally grasp that Nn exists for all n without sequentially proving their
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existence one at a time. Presumably they can accomplish this by recognizing the
general principle that the existence of Nn+1 follows from the existence of Nn and
then making an induction argument. So evidently in this case they can accept
the validity of the sequence of proofs as a whole despite the fact that later proofs
involve the use of sets that are not known to exist at earlier stages. That is, just
getting up to Nω already requires some ability to reason hypothetically about sets

that are not yet available. So Kreisel’s argument (if this really is what he meant)
appears to make little sense.

However, this entire discussion is speculative until we are told precisely why the
proof that γn+1 is well-founded is supposed to legitimate passage to Nγn+1. This
takes us to Kreisel’s final argument.

(c) Kreisel’s third answer. Kreisel’s most sophisticated analysis appears in [32].
Here he rightly addresses the central question of exactly how a predicativist would
infer soundness of Sa once I(a) has been proven. On my reading, the novel idea
is that this inference (or something like it) would not be based on genuinely “un-
derstanding” the well-ordering property of a, which he now denies a predicativist
could do, but instead would be directly extracted from the structure of the proof
of I(a). If P is the property “the (formal) definitions at a level of the [ramified]
hierarchy considered are understood if our basic concepts are understood” ([32], p.
498), then

Since we do not have an explicit definition for P . . . it seems reason-
able to suppose that the formal derivation of the well-foundedness

of β is needed . . . specifically, we expect to use the derivation as a

(naturally, infinite) schema which need be applied only to instances
of P whose meaning is determined at stage α. ([32], pp. 498-499;
italics in original)

He adds in a footnote: “It seems likely that the work of Feferman and Schütte
‘contains’ all the formal details needed . . . the principal problem is conceptual: to
formulate properly just what details are needed.”

It seems even more reasonable to suppose that if, ten years after his first attempt
(in [27]) to refute the objection about (∗∗), Kreisel is still not sure how to do this,
then the objection is probably valid. Here he gives us not a fully realized refutation,
but merely a speculation as to how one might be obtained. I do not think any
attempt of this type is likely to succeed for the reasons discussed at the beginning
of this section, in particular the fact that Sa proves the existence of arithmetical
jump hierarchies up to a and this is surely not predicatively entailed by I(a) (cf. the
end of §2.3). Moreover, even if one could work out some way of converting formal
derivations of well-ordering in the autonomous systems into informal verifications of
soundness in some metatheory, then presumably the metatheory and the conversion
process could be formalized, and then a predicativist should be able to apply a single
instance of the formalized ω-rule to the metatheory and deduce (∗∗) as a general
principle. But again, this discussion is completely hypothetical because the alleged
conversion process has not been identified.

(d) Feferman’s position. In [14] Feferman raises a version of the objection and
notes that it “involve[s] the ordinal character of the proposal via progressions, hence
[does] not apply to P [+∃/P ]” ([14], p. 85). Similar comments appear in ([15], p.
3) and ([19], p. 24). It is certainly true that the systems P + ∃/P , Ref∗(PA(P )),



12 NIK WEAVER

and U(NFA) do not presume any special ability to reason using well-ordered sets.
However, Feferman nowhere openly repudiates the earlier systems, and I read his
remark in [15] as implying that the later systems are merely more “perspicuous”
than the earlier ones because they do not assume that predicativists have any
understanding of ordinals. As far as I know he has never addressed the argument
that a grasp of ordinals sufficient to justify (∗) would also justify (∗∗) and hence
lead one beyond Γ0.

9

1.6. The infinitary autonomous systems. In order to evaluate the infinitary
(semiformal) autonomous systems we must first clarify in exactly what way these
systems are supposed to model predicative reasoning. Surely they are not meant
to be taken literally in this regard. Perhaps we can conceive of an idealized pred-
icativist living in an imaginary world who is capable of actually executing proofs of
transfinite length, but in this case the allowed proof lengths would merely depend
on the nature of the imagined world, not on which well-ordering statements the
predicativist is able to prove.

Presumably the infinitary autonomous systems are meant to be taken as mod-
elling what an actual predicativist would consider a valid but idealized reasoning
process. In other words, predicativists do not actually reason within any of these
infinitary systems, but they believe that in principle these systems would prove true
theorems if they could somehow be implemented (in some imaginary world). On
this interpretation the fact that an ordinal α is autonomous within one of these sys-
tems could lead predicativists to accept the well-foundedness of (some notation for)
α only if they knew this fact. But the only way they could know what is provable
in an infinitary system is via some kind of meta-argument about what is provable
in that system. This immediately suggests that they should be able to get beyond
Γ0 by performing a single act of reflection on the finitary system in which they
actually reason.

We can now see that just as in the case of the finitary autonomous systems one
is faced with a dilemma: (1) why should predicativists believe that the fact that
some set of order type α is well-founded renders proof trees of height α valid, and
(2) granting that they can draw this inference for any particular α, why do they
fail to grasp that it is valid in general? The inference superficially seems reasonable
because it is classically valid, but it is hard to imagine what its predicative justifi-
cation could be. It is even harder to believe that a predicativist could recognize its
validity in each instance but not as a general rule.

9In [18] Feferman refers to “the argument that the characterization of predicativity requires
one to go beyond predicative notions and principles” ([18], footnote 6), which sounds like it could
be a version of the general objection of §1.4. However, his response (“But the predicativist . . .”,

p. 316) seems aimed merely at showing that the set of all predicatively provable ordinals is not
a predicatively valid set, a view that I agree with (though not for the reason given there). This
should not prevent a predicativist from understanding the assertion that every an is an ordinal
notation, in the notation of §1.4.

One could possibly make an argument that the statement (∀n) I(an) cannot even be pred-
icatively recognized as meaningful, let alone true, on the grounds that the general concept of
well-ordering is not available to a predicativist. Perhaps this is the point of the comment in [18].
Presumably the idea would be that each I(an) can only be understood as a sensible assertion
once it is proven and not before. This seems like a difficult position to defend, but in any case
it would void the main argument because if one did accept that some theorems of San

cannot be
recognized as meaningful until they are actually proven, this would invalidate any use of reflection
principles in the first place.
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Working only in Peano arithmetic, predicativists should be able to draw conclu-
sions about what is provable in some infinitary system using proof trees of various
heights. But in order to infer which proof trees are actually valid, they need some
new principle going beyond Peano arithmetic. Augmenting PA with an axiom
scheme which expresses the principle “if a well-founded proof tree proves A, then
A” in some form would yield a system which proves the well-foundedness of a
notation for Γ0 and larger ordinals. Expressing the principle as a deduction rule
scheme rather than as an axiom scheme would yield a system which proves the
well-foundedness of notations for all ordinals less than Γ0 but not Γ0 itself, but we
would need to explain why the deduction rules are valid while the corresponding
axioms are not — and we would still be able to get beyond Γ0 by a single additional
act of reflection. One is virtually forced to assert that whenever predicativists prove
that a set is well-founded they are then able to infer the validity of proof trees of
that height via an unformalizable leap of intuition. I am not aware of any rational
basis for such a claim.

1.7. The linked systems P and ∃/P . P+∃/P can be criticized in three different
ways.

(a) Obscure formulation. The central feature of P + ∃/P , its division into two
distinct but interacting formal systems, is so unusual that it would seem to call for
an especially careful account of the underlying motivation. Although [14] contains
a substantial amount of prefatory material, there is no explicit discussion of this
seemingly crucial point. One gets a vague sense that part of the motivation is to
allow use of second order quantifiers only during brief excursions into the “auxiliary”
system ∃/P as a sort of next-best alternative to prohibiting them altogether, but
nothing is said about why exactly this degree of usage is deemed acceptable. This
makes it difficult to evaluate P + ∃/P , since one is left with the basic question of
how we are supposed to regard the predicative meaning and reliability of statements
proven in P as opposed to those proven in ∃/P .

There apparently is some basic distinction to be made between the conceptual
content of the theorems of the two systems. I infer this from the requirement both
in the description of allowed formulas of ∃/P ([14], p. 76) and in the rules IV and
V ([14], p. 78) that at least part of the premise must specifically be proven in
P . For instance, the functional defining axioms (IV) allow the introduction of a
functional symbol provided existence of the functional has been proven in ∃/P and
its uniqueness has been proven in P . Existence can only be proven in ∃/P since
P lacks the necessary quantifiers, but no reason is given why uniqueness must be
proven in P . Would a proof of uniqueness in ∃/P be unreliable in some way? If
so, why should we trust other theorems of this system? Why are we able to justify

introducing a functional symbol when the functional’s uniqueness has been proven

in P , but not when its uniqueness has been proven in ∃/P?
The question is significant because an identical point can be made in the two

other cases (the allowed formulas of ∃/P and rule (V)), and if they were all broad-
ened to include premises proven in ∃/P then the system P would become superflu-
ous: all reasoning could take place in ∃/P . This is problematic because agreeing
that P is indeed dispensable would obviate the need for the functional defining
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axioms altogether and thereby void Feferman’s justification for not allowing a pred-
icativist to get beyond Γ0 by reflecting on the validity of P + ∃/P (see §1.7 (c)).

(b) Too strong. It is also unclear how to reconcile the proposed formalism sur-
rounding second order existential quantification with the motivating idea that

we have partial understanding of 2nd order existential quantifica-

tion, for example when a function or predicate satisfying an elemen-
tary condition is shown to exist by means of an explicit definition.
Some reasoning involving this partial understanding may then be
utilized, though 2nd order quantifiers are not to be admitted as
logical operators in general. ([14], p. 71; italics in original)

For example, this intuition seems somewhat incompatible with the use of negated
second order existential quantifiers, which are allowed in ∃/P . Even more prob-
lematic is the proof of transfinite recursion over well-ordered sets ([14], pp. 82-83),
which conflicts rather severely with any understanding of second order existence
in terms of “explicit definition”. The offending aspect of this proof is its use of
predicate substitution with a Σ1

1 formula, which is hard to reconcile with the idea
that only “some” reasoning about “partially understood” second order quantifiers
is available.10 General freedom to replace set variables with Σ1

1 formulas seems to
imply a complete ability to reason abstractly about second order existence.

Feferman mentions the prima facie impredicative nature of his predicate substi-
tution rule (rule V) and responds that

By way of justification for the schema V it may be argued that
the (predicative) provability of B(X) establishes its validity also
for properties whose meaning is not understood, just as one may
reason logically with expressions whose meaning is not fully known
or which could even be meaningless. ([14], p. 92)

But this line of argument would equally well justify full comprehension. Indeed, for
any formula A(n) the predicatively valid statement (∃Y )(n ∈ Y ↔ n ∈ X) yields
(∃Y )(n ∈ Y ↔ A(n)) by predicate substitution. Even if we restrict ourselves to Σ1

1

formulas A, we could still infer Σ1
1 comprehension. So the idea that “the predicative

provability of B(X) establishes its validity also for properties whose meaning is not
understood” is clearly not acceptable as a general principle as it stands.

(c) Too weak. Now consider the general objection of §1.4. Feferman addresses it
in the following way:

. . . this is not a good argument because the functional defining ax-
ioms are only given by a generation procedure and the predicative
acceptability of these axioms is only supposed to be recognized
at the stages of their generation. To talk globally about the cor-
rectness of P we have to understand globally the meaning of all
functional symbols in P ; there is no stage in the generation process
at which this is available ([14], p. 92).

The point here is that P + ∃/P contains a rule which allows one to introduce a
symbol for a functional ~α 7→ β once a unique β satisfying some formula A(~α, β)

10Note that the final L in rule V, predicate substitution ([14], p. 78), should be L∃.
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(with ~α = (α1, . . . , αn), and all free variables in A shown) has been proven to exist
for any ~α. The αi and β are predicate variables.

I do not see how the fact that new symbols can be introduced could in itself
prevent anyone from grasping the overall validity of the system. Surely, “to talk
globally about the correctness of P” we need only to accept the validity of the func-
tional generating procedure, not necessarily “to understand globally the meaning
of all functional symbols” beforehand.11

The more substantial question is whether the validity of the functional defining
axioms of P might only be recognized in stages. Now it may be possible to imag-
ine a set of beliefs which would lead one to accept the functional defining axioms
only at the stages of their generation: perhaps someone could, by brute intuition,
accept the validity of a specific functional definition after having grasped an ex-
plicit construction of the functional being defined, yet not be able to reason about
functional existence in general terms. This seems something like the standpoint
of “immediate predicativism” discussed on pp. 73 and 91 of [14]. The problem is
that it tends to conflict with rule VII (relative explicit definition) and axiom VIII
(unification) ([14], p. 78) of ∃/P , both of which do presume an ability to reason
abstractly about second order existence (not to mention rule V, predicate substitu-
tion). Thus, Feferman’s argument belies his premise that a predicativist is capable
of accepting rule VII and axiom VIII.12

1.8. The system Ref∗(PA(P )). The Ref∗ construction applies to any schematic
formal theory, but the case of interest for us is schematic Peano arithmetic PA(P ).
This is formulated in the language L of first order arithmetic augmented by a single
predicate symbol P . The axioms are the usual axioms of Peano arithmetic with
the induction scheme replaced by the single axiom

P (0) ∧ (∀n)(P (n) → P (n′)) → (∀n)P (n),

and there is an additional deduction rule scheme allowing substitution of arbitrary
formulas for P . Now if S(P ) is any schematic theory then Ref∗(S(P )) is a theory in
the language of S(P ) augmented by two predicate variables T and F whose axioms
are the axioms of S(P ) together with “self-truth” axioms governing the partial truth
and falsehood predicates T and F , and with a substitution rule which allows the
substitution of formulas possibly involving T and F for P .

11Of course, the validity of the functional generating procedure hinges on the validity of ∃/P ,
so it may be significant that Feferman refers to “the correctness of P” and not “the correctness
of P in conjunction with ∃/P”. This goes back to the question raised in §1.7 (a) about whether
predicativists can trust theorems proven in ∃/P , and if not, why it makes sense for them to use
this system at all.

12For the argument to work we have to be able to imagine someone who can think, for example,

whenever it is the case that for every number n and any ~α there exists a
unique β satisfying A(~α, n, β), for any ~α these β’s can be unified into a single
~γ satisfying A(~α, n, γn) for all n

but who cannot think

whenever for any ~α a unique β exists satisfying A(~α, β), I can introduce a
functional symbol F such that A(~α, F (~α)) holds for any ~α,

yet who can think

I can introduce a functional symbol F such that A(~α, F (~α)) holds for any ~α

once they have actually proven, for any particular A, the existence for any ~α of a unique β
satisfying A(~α, β). This combination of abilities and deficits is patently incoherent.
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(a) Too strong. I will discuss the clear impredicativity of schematic predicate
variables in §2.4. Leaving that issue aside for now, the first point to make here is
that the key axiom which distinguishes Ref∗(PA(P )) from the much weaker system
Ref(PA(P )), axiom 3.2.1 (i)(P ) ([15], p. 19), has no obvious intuitive meaning. The
reason for using schematic formulas, as opposed to ordinary second order formulas
involving set variables, is that they are supposed to allow one to fully express
principles such as induction without assuming any comprehension axioms ([15],
p. 8). This means that we interpret a statement involving a schematic predicate
symbol P not as making an assertion about a fixed arbitrary set, but rather as a
sort of meta-assertion which makes an open-ended claim that the statement will be
true in any intelligible substitution instance. However, the truth claim

T (pP (n)q) ↔ P (n),

a special case of 3.2.1 (i)(P ), cannot be given the latter interpretation since the
number pP (n)q does not change when a substitution is made for P in this formula.
If we interpret P in a way that is compatible with 3.2.1 (i)(P ), i.e., as indicating
membership in a fixed set, then the substitution rule P − Subst :L(P )/L(P, T, F )
([15], Definition 3.3.2 (iii)) can only be justified by an impredicative comprehension
principle (cf. [15], p. 8).

Feferman characterizes axiom 3.2.1 (i)(P ) as “relativizing T and F to P” ([15],
p. 19). I am not sure what this means, but the axiom clearly is not valid on
arbitrary substitutions for P , yet one draws consequences from it to which one does
apply a substitution rule (and this is crucial for the proof that (Π0

1 − CA)<Γ0 ≤
Ref∗(PA(P ))). In fairness, I should point out that this problem is noted in ([15],
§6.1.3 (i)), with the comment that “a fall-back line of defense could be that this
substitution accords with ordinary informal reasoning. However, this seems to
me to be the weakest point of the case for reflective closure having fundamental
significance.”

I would argue that the above difficulty not only invalidates the idea that
Ref∗(PA(P )) models predicative reasoning, it shows that the Ref∗ construction
indeed has no fundamental significance. There is no way to interpret the P symbol
that simultaneously makes sense of the axiom 3.2.1 (i)(P ) and the substitution rule
P − Subst :L(P )/L(P, T, F ).

(b) Too weak. The Ref∗ construction is described in [15] as a “closure” opera-
tion and the question of its significance is discussed in terms of Kripke’s theory
of grounded truth outlined in [33]. A casual reading of §6 of [15] might leave the
impression that the statements A such that Ref∗(PA(P )) proves T (pAq) are sup-
posed to be precisely the grounded true statements of the language L(P, T, F ). But
this cannot be right because these statements are recursively enumerable, so that
one can write a formula (∀n)T ({r}(n)) which asserts precisely their truth. This
formula is grounded (in any reasonable sense) and true but the assertion of its truth
is not a theorem of the system. Why shouldn’t we add this formula as an axiom?

The more careful formulation that the self-truth axioms “correspond directly to
the informal notion of grounded truth and falsity” ([15], p. 42) is well-taken, but we
must not confuse this with the claim that the self-truth axioms capture the informal
notion.
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Now consider the claim that in general Ref∗(S(P )) encapsulates what one “ought
to accept” given that one has accepted S(P ) ([15], p. 2). This has an air of para-
dox since one has to ask whether the claim itself is something that anyone ought
to accept. However, that point is not crucial to the question of what a predica-
tivist can prove since it need not attach to the specific assertion that Ref∗(PA(P ))
encapsulates what one ought to accept given that one has accepted PA(P ). We
may suppose that predicativists do not realize (and indeed, ought not accept) that
their commitment to Peano arithmetic obliges them to accept every theorem of
Ref∗(PA(P )), although this is in fact the case. This leads us back to the question
posed in §1.4. Evidently we are dealing with a claim that predicativists can affirm
each theorem of Ref∗(PA(P )) individually but cannot accept this system globally.

This point is not explicitly addressed in [15], but the informal notion of “partial
truth” has the flavor of a forever incomplete process and might seem like it could
support such a claim. For example, it is suggested in §6.1.1 of [15] that the pas-
sage from S(P ) to Ref(S(P )) should not be iterated because this would “vitiate the
informal idea behind the use of partial predicates of truth and falsity.” A possi-
bly more straightforward question which avoids the issue of using multiple partial
truth predicates is whether one could justify augmenting Ref∗(PA(P )) by the single
statement (∀n)T ({r}(n)) described above.

Surely predicativists can justify adding this statement if they are able to generally
recognize that every statement proven true by Ref∗(PA(P )) is indeed true. Given
that Ref∗(PA(P )) is finitely axiomatized and that the predicativist is presumed
to accept each theorem of Ref∗(PA(P )) individually, it is unclear how this could
be plausibly denied. Indeed, axiom (vi) clearly affirms that the predicativist is

able to reason about the collective truth of an infinite set of statements themselves
involving assertions of truth and falsehood.

In §6.1.3 (ii) of [15] Feferman considers the question “have we accepted too lit-
tle?” in terms of logically provable statements, e.g. of the form A∨¬A, whose truth
is not provable because A is not grounded. This leads into a brief discussion of the
relative merits of Kripke’s minimal fixed point approach versus van Fraassen’s more
liberal “supervaluation” approach to self-applicative truth. But this discussion is
misleading because Ref∗(PA(P )) does not even prove the truth of every statement
in Kripke’s minimal fixed point; in particular, if this needs repeating, it does not
prove the statement (∀n)T ({r}(n)). This formula is not logically provable but it
is grounded, and it seems a rather stronger candidate for a statement that “ought”
to be accepted as true.

1.9. The system U(NFA). Distinct, not obviously equivalent, versions of U(NFA)
are presented in [17] and [20]. I give priority to the later version in [20].

(a) Too weak. Like Ref∗, U is presented in [20] as a general construction (“un-
folding”) which can be applied to any schematic formal system S(P ). As usual,
granting that acceptance of S(P ) justifies acceptance of every theorem of U(S(P )),
we can ask why it fails to justify accepting a formalized ω-rule scheme referring
to theorems of U(S(P )). This question is not addressed in either [17] or [20]; the
closest I can find to an answer is the following passage in [17]:

[W]e may expect the language and theorems of the unfolding of
(an effectively given system) S to be effectively enumerable, but we
should not expect to be able to decide which operations introduced
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by implicit (e.g. recursive fixed-point) definitions are well defined
for all arguments, even though it may be just those with which we
wish to be concerned in the end. This echoes Gödel’s picture of
the process of obtaining new axioms which are “just as evident and
justified” as those with which we started . . . for which we cannot
say in advance exactly what those will be, though we can describe
fully the means by which they are to be obtained. ([17], p. 10)

Here reference is made to the fact that U uses partial operations, which is apparently
seen as having fundamental significance. It is true that the question of which partial
operations of U(NFA) are total is (unsurprisingly) not decidable, though this in
itself seems a questionable basis for forbidding us from proceeding beyond U(NFA)
when it did not prevent us from formulating this system in the first place or from
working within it.

If S(P ) involves no basic objects of type 2 (as is the case for NFA) then an
argument could be made that applying the U construction twice is conceptually
different from applying it once in that U(S(P )) does employ higher type objects
and thus the original system S(P ) can possibly be seen as being “concrete” in a
way that U(S(P )) is not. However, this should not prevent one from accepting a
formalized ω-rule scheme applied to U(NFA), which would seem to require only
that one accept U(NFA) is sound.13

(b) Way too strong. U(NFA) is actually impredicative in three distinct ways.
First, the U construction suffers from the same nonsensical treatment of schematic
predicates as Ref∗. Here the offending axiom is Ax 7 ([20], p. 82), which does not
make sense if P is understood as a schematic predicate. It is valid if we regard
P as indicating membership in a fixed set, but then, just as for Ref∗(PA(P )), use
of the substitution rule (Subst) ([20], p. 82) would have to presume impredicative
comprehension.

The really striking impredicativity of U(NFA), however, is its use of a least fixed
point operator, which apparently informally assumes the legitimacy of generalized
inductive definitions in the sense of [8]. This not only vitiates any claim of U(NFA)
to model predicative reasoning, it more broadly undermines the idea that U(NFA)
has any fundamental philosophical significance, since it would seem that anyone
who accepts the U construction and Peano arithmetic ought to at least accept ID1

[8], which is far stronger than U(NFA).14

The third impredicativity arises from the use of a schematic predicate symbol P
with the assumption that predicativists can understand and reason about formu-
las containing P , so that the allowed substitutions for P would include formulas
containing P . See §2.4.

1.10. Summary of the critique. At the beginning of this section I made strong
claims about the weakness of the case for the Γ0 thesis. Were they borne out?

13Another questionable point in the “too weak” category is the restriction on allowed types in
([20], p. 81). I do not understand the justification given there, and a corresponding restriction is
not made in the system sketched in [17]. In light of footnote 2 of [20], this raises the question of
whether U(NFA) as described in [17] really does have proof-theoretic ordinal Γ0.

14On the other hand, the minimality property of LFP (Ax 4 (ii), p. 79) is never used in [20],
so this axiom could be eliminated without affecting the proof-theoretic strength of U(NFA). The
existence of not necessarily minimal fixed points might be predicatively justifiable if intuitionistic
logic is used; see the discussion of inductively defined classes at the beginning of §3.
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First, I stated that each of the formal systems of §1.2 is motivated by informal
principles which actually justify a stronger system that proves the well-foundedness
of an ordered set that is isomorphic to Γ0. In the case of Σ, H , and R, the informal
principle is “a is an ordinal notation implies Sa is sound”, which is needed to justify
(∗) but in fact justifies (∗∗) (see §1.5). In H+, R+, and RA∗ the principle is “a
is an ordinal notation implies proof trees of height a are sound”. In P + ∃/P
we accept that it is legitimate to substitute arbitrary predicates for set variables,
which justifies full comprehension. Ref∗(PA(P )) assumes an informal grasp of a
self-applicative concept of truth, which justifies the inference of a statement that
asserts the truth of every theorem proven true by Ref∗(PA(P )). U(NFA) informally
assumes the legitimacy of generalized inductive definitions, which actually justifies
ID1.

Second, I stated that the responses on record to the objection in §1.4 are brief,
vague, and unpersuasive. The only such responses of which I am aware are Kreisel’s
answers in [27], [31], and [32] (see §1.5 (a), (b), (c)) and Feferman’s answer about
P+∃/P in [14] (see §1.7 (c)). In [27] and [14] the response is barely more than a flat
assertion with no real explanation given; in [31] it is a cryptic passage whose most
reasonable interpretation is clearly self-defeating; and in [32] it is merely an implau-
sible speculation. With regard to Ref∗(PA(P )) and U(NFA), as far as I am aware
the objection has not even been discussed in the literature, except tangentially by
an argument in [15] that the Ref∗ construction should not be iterated.

Finally, I said that each of the formal systems of §1.2 is manifestly impredicative
in some way. The most blatant example of this is the least fixed point operator in
U(NFA), but in all three of P + ∃/P , Ref∗(PA(P )), and U(NFA) there is a basic
impredicativity involving the ability to substitute second order formulas for free set
variables. In Ref∗(PA(P )) and U(NFA) this is hidden by employing a substitution
rule involving a “schematic” predicate symbol, but elsewhere treating this predicate
symbol in a way that only makes sense if it is thought of as a classical predicate
indicating membership in a fixed set.15

As I mentioned in §1.3, the reason one needs a substitution rule is because one
wants to convert statements of transfinite induction into statements of transfinite
recursion so that one can construct iterative hierarchies. In the autonomous systems
this is accomplished by simply postulating that a statement of transfinite induction
legitimates a transfinite application of reflection principles, which allows one to pass
to a stronger system that proves the existence of the next hierarchy. Thus, every
system uses an impredicative step to get from transfinite induction to transfinite
recursion. This is not surprising, as there is a predicatively essential difference
between induction and recursion (see the end of §2.3).

15I should point out that Feferman has in several places called attention to impredicative
aspects of various of his systems. The impredicativity of the autonomous systems is commented
on in ([14], p. 85), ([15], p. 3), and elsewhere. (“the well-ordering statement . . . on the face of it
only impredicatively justifies the transfinite iteration of accepted principles up to a.” “. . . prima
facie impredicative notions such as those of ordinals or well-orderings.”) The impredicativity of
P + ∃/P is noted in ([14], p. 92). (“In P we think of ‘X’ as ranging over predicates recognized
to have a definite meaning; this would not seem to admit the properties expressed by formulas of

L∃.”) The impredicativity of Ref∗(PA(P )) is noted in ([15], pp. 41 and 42). (“one may question
substituting possibly indeterminate formulas . . . this seems to me to be the weakest point of the
case for reflective closure having fundamental significance.” “this may involve some equivocation
between the notions of being definite . . . and being determinate.”)
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There is still a question as to why so many different attempted fomalizations of
predicative reasoning happen to have proof-theoretic ordinal Γ0. One answer is that
they all employ essentially the same well-ordering proof and to a substantial extent
appear to have been built around different versions of this proof. This is most obvi-
ous in the case of P +∃/P , with its completely unclear and unmotivated distinction
between the validity of theorems proven in P versus those proven in ∃/P . Another
possible answer is that the earlier systems all access the same ordinals because they
embody the same fallacies revolving around the idea of autonomous generation of
ordinals, while the later systems were formulated against the background of the
earlier systems which were already thought to have attained the correct answer.
This could have made it difficult to free oneself from a conclusion that had already
been established. However, a properly functioning scientific community should be
expected to debate and criticize major ideas, not to passively accept them. This
does not seem to have been done in a serious way in the present case.

In hindsight, it is perfectly clear what happened. When Feferman and Schütte
first published their result about Γ0 and autonomous systems, in the early 1960s,
neither they nor Kreisel were aware of the induction versus recursion issue. Kreisel
recognized the problem sometime before 1968 and Feferman sometime before 1979,
but there was no public acknowledgement that the analysis was fatally flawed.
Instead, Feferman spent the next 25 years trying to develop alternative routes to
the same conclusion, but never really succeeding. The foundations community
accepted the conclusion without challenge because it was simple and convenient.

2. The principles of predicativism

In the first part of this paper I criticized several formal systems which have been
put forward as models of predicative reasoning. Part of the problem there is a lack of
clarity as to what kinds of reasoning are legitimately available to the predicativist.
This is especially seen in the P +∃/P systems which bizarrely disallow almost, but
not quite all, use of second order quantifiers. So I would now like to make some
general comments on what kinds of reasoning predicativism, as I understand it,
endorses.

According to my understanding of predicativism, the key informal motivating
principles are (i) the universe of sets is only available in stages, with each stage
building on previous ones, and (ii) constructions, computations, definitions, etc., of
length ω are legitimate.

2.1. Predicatively valid logic. Classical logic is not well suited to reasoning
about a variable universe which is only available in stages. Since the general ex-
tension process by which new sets are recognized cannot be completely formalized,
we do not expect every assertion about sets to necessarily have a well-defined truth
value. Rather, we should regard the family of true statements as another variable
entity which is always capable of enlargement, much like the mathematical universe
itself. This makes intuitionistic logic the appropriate tool for general predicative
reasoning.

Of course, this is not to say that the predicative notion of truth can be identified
with intuitionistic truth. Predicativists accept derivations of length ω and intu-
itionists do not. Conversely, for reasons I do not understand, it seems that most
intuitionists accept impredicative constructions. Nevertheless, I maintain that the
logical apparatus of intuitionism is exactly suitable for predicativism. Predicatively
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the law of excluded middle is initially suspect for any statement that quantifies over
all subsets of ω.

On the other hand, we do regard statements relativized to any well-defined par-
tial universe as having definite truth values. For example, we can be sure that any
arithmetical statement is definitely true or false since we can imagine checking it
mechanically. This is so even if the statement contains set variables as parameters,
since for any particular n ∈ ω and X ⊆ ω the atomic formula “n ∈ X” has a definite
truth value. Thus, at the level of arithmetical statements our logic is classical.

Similar considerations were discussed in [9], leading to the suggestion that pred-
icativists can adopt the numerical omniscience scheme

(∀n) (A(n) ∨ ¬A(n)) → [(∀n)A(n) ∨ (∃n)¬A(n)]

(where hereA is any formula of second order arithmetic and n is a number variable).
Together with the assumption of A ∨ ¬A for every atomic formula A, this implies
the law of the excluded middle for every arithmetical formula.

For a specific example of the presumable failure of the law of the excluded middle,
notice that well-ordering assertions can apparently fail to have a well-defined truth
value because the inherent ambiguity of the mathematical universe could lead to
uncertainty about whether or not a given totally ordered set has a proper progres-
sive subset. If no such subset is currently available, indefiniteness about whether
such a subset will appear in some future enriched universe could be a reasonable
consequence of the fact that we do not know how new sets might arise. An even
sharper example is given by the set S = {n : An is true} where (An) is some
recursive enumeration of the sentences of second order arithmetic. The set S is
obviously impredicative since it is a set of numbers whose definition quantifies over
all sets of numbers, but if we accepted (∀n)(An ∨ ¬An) then we ought to be able
to form S, for the same reason that we accept the numerical omniscience scheme.
This shows that A∨ ¬A must not be assumed to hold in every case.

A word about terminology. If we do not assume the law of the excluded middle
then we may have to consider assertions whose sense is understood but which
are not known to have definite truth values. To keep this distinction clear I will
say an assertion is definite if it has a definite truth value and meaningful if its
sense is understood. Thus, every definite assertion must be meaningful and every
meaningful assertion is potentially definite.

2.2. Second order quantification. First order (numerical) quantification is pred-
icatively unproblematic. The legitimacy of second order quantification is perhaps
less clear since we do not regard the power set of ω as a fixed, well-defined entity
over which set variables could be imagined ranging. This has been a recurrent
concern in the literature on predicativity. For instance, it was cited as motivation
for the strong restrictions on second order quantification in [14].

To what extent, if any, are second order quantifiers acceptable? First, because
the concept “set of numbers” is predicatively cogent, we should at least be able
to make some limited constructive sense of existential quantification. There are
situations in which we can recognize that we are (in principle) able to construct
a set of numbers with some property, and this should license some use of second
order existential quantifiers. This was also the position taken in [14].

In addition, we do seem to be able to predicatively accept some statements as
being true of any set of numbers. Despite the unfixed nature of the mathematical
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universe, we can still affirm general assertions like 0 ∈ X ∨ 0 6∈ X as holding for any
conceivable X ⊆ ω. Not only is this statement true for all currently available sets,
it must remain true in any future universe. We can be sure that we will never come
across a set of numbers for which the assertion fails because its truth is inherent in
the concept “set of numbers”. As another example, given any X ⊆ ω, we can surely
affirm the existence of its complement. Thus, we ought to be able to somehow
express that for every X there is a Y such that n ∈ Y ↔ n 6∈ X . Finally, the
principle of induction in the form 0 ∈ X ∧ (∀n)(n ∈ X → n′ ∈ X) → (∀n)(n ∈ X)
is recognizably true for any X ⊆ ω. Given that we accept processes of length ω, we
can be certain that any set which satisfies the induction premise must contain every
number since we can imagine verifying this conclusion mechanically. Again, this
must hold not only for all currently available sets but for all sets in any conceivable
future universe.

In [19], following Russell, a distinction is drawn between the concepts “for all”
(ranging over a well-defined collection) and “for any” (ranging over a “potential
totality”). I find this distinction helpful, but in the present setting I do not accept
Russell’s suggestion, adopted in [14], that the “for any” intuition is captured by
using free set variables. Consider the following example. We have already agreed
that predicativists can acknowledge that any subset X of ω has a complement Y .
But they should then also agree that Y has properties like: for any Z, Z ⊆ Y if and
only if Z ∩X = ∅. Indeed, given any X and Z we can imagine constructing Y and
then verifying the claimed relation between X , Y , and Z. Since the construction
of Y did not depend on Z this means that we can affirm the statement

(∀X)(∃Y )(∀Z)(Z ⊆ Y ↔ Z ∩X = ∅)

under the interpretation ∀ = “for any” and ∃ = “there can be constructed a”. This
shows that alternating second order quantifiers can make predicative sense. More-
over, the idea cannot be expressed without using at least one universal quantifier,
which shows that Russell’s free variable suggestion is inadequate here.

A more natural suggestion is to allow use of both universal and existential second
order quantifiers and to reason using an intuitionistic predicate calculus. Given
the conception of predicativism developed above and the interpretation of second
order quantifiers just indicated, this logical apparatus appears perfectly acceptable.
Intuitionistic logic legitimates the predicative use of set quantifiers.

2.3. Predicative well-ordering. In the previous section I explained why a sec-
ond order induction statement is predicatively legitimate. For which formu-
las A of second order arithmetic would a similar argument lead us to accept
A(0) ∧ (∀n)(A(n) → A(n′)) → (∀n)A(n)?

If it contains set variables, the formulaA(n) might not have a definite truth value.
However, once we have proven A(0) we must at least agree that this instance is
definitely true. If, moreover, we have also proven (∀n)(A(n) → A(n′)) then we
can be successively brought to the same conclusion about A(1), A(2), etc., and
recognizing this, we should therefore accept (∀n)A(n) as true. Regarding the family
of true statements as a variable entity always capable of enlargement, this shows
that predicativists should accept induction for every formula A(n).

This may need further explanation in light of my insistence in §1.7 (b) that it
is generally not valid to substitute arbitrary, possibly indefinite, formulas for set
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variables. I stand on this assertion: for example, (∀n)(n ∈ X ∨ n 6∈ X) is pred-
icatively true but (∀n)(A(n) ∨ ¬A(n)) is presumably not if, e.g., A(n) asserts that
n is a Church-Kleene ordinal notation. However, this does not entail that possi-
bly indefinite formulas can never appear in true statements. Predicativists should
accept complete induction (provided they are using intuitionistic logic) since they
can generally recognize that the truth of the premise of any induction statement
would entail the truth of its conclusion even if the latter was not initially known to
be definite.

Next let us consider the extent to which predicativists can understand the general
concept of a well-ordered set. It is sometimes said that the well-ordering concept
is not available to predicativists because it involves quantification over power sets.
On the other hand, it seems to be generally accepted that predicativists are able
to affirm relatively strong versions of the statement that ω is well-ordered. If we
agree with the conclusions of §2.2 then statements of transfinite induction of the
form (∀X)TI(X, a) (transfinite induction up to a on a subset of ω equipped with
a total order �) are predicatively meaningful.16 Here I use the abbreviations

TI(X, a) ≡ Prog(X) → (∀b ≺ a)(b ∈ X)

Prog(X) ≡ (∀b) [(∀c ≺ b)(c ∈ X) → b ∈ X ] .

I argued above that complete induction on ω is predicatively valid. Note,
however, that if we know {b : b ≺ a} is well-ordered, i.e., we have verified
(∀X)TI(X, a), we cannot in general infer TI(A, a) (≡ Prog(A) → (∀b ≺ a)A(b)
where Prog(A) ≡ (∀b)[(∀c ≺ b)A(c) → A(b)]) for arbitrary formulas A. The latter
scheme is genuinely stronger because (∀X)TI(X, a) only asserts induction for sets
that are by assumption well-defined, whereas TI(A, a) can hold if A is not definite,
and it can even be used to prove that A(b) is definite for all b ≺ a. It may in fact be
the case that whenever there is a predicatively valid proof of (∀X)TI(X, a) there is
also a proof of TI(A, a) for any meaningful formula A. However, there is no clear
reason why this should be the case, and simply passing from the weaker statement
to the stronger one seems to me clearly predicatively illegitimate.

2.4. Schematic assertions. Even the complete induction scheme does not entirely
capture a predicative understanding of induction on ω since it only covers formulas
that can be written in the language that is currently in use. If the expressive
power of the language were strengthened in a predicatively meaningful way, then
a predicativist should accept the induction scheme for all formulas of the new
language too.

This issue is addressed in [15] and [17] by a proposal to use a “schematic” pred-
icate symbol P and to express the principle of induction in a single schematic
formula. Together with an informal commitment to continue to accept all substitu-
tion instances of this statement if the language is enriched in any meaningful way,
this does seem to fully capture a predicative understanding of induction on ω —

16There are several predicatively equivalent versions of this condition. In intuitionistic logic
with arithmetical comprehension, the numerical omniscience scheme, and A ∨ ¬A for all atomic
A, for any a ∈ ω and any ordering on ω the statement (1) (∀X)TI(X, a) is equivalent to (2) the
assertion that {b : b ≺ a} has no proper progressive subsets and also to (3) the assertion that
for all X, if there exists b ≺ a in X then there is a least such b. Assuming dependent choice for
arithmetical formulas, the preceding are also equivalent to (4) the assertion that every decreasing
sequence in {b : b ≺ a} is eventually constant and (5) the assertion that there is no strictly
decreasing sequence in {b : b ≺ a}.
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but only from an external perspective, not to the predicativist. The problem is
this. If we can accept as meaningful a formula A(P ) which contains a schematic
predicate symbol P that ranges over all formulas that we can accept as meaningful,
then in particular it should apply to the case when P is replaced by A(P ) itself.
Even the meaningfulness of the original statement A(P ) is predicatively doubtful
if it could itself appear as one of its own substitution instances, just the kind of
“vicious circle” that predicativism forbids. This shows yet another way in which
the systems Ref∗(PA(P )) and U(NFA) are impredicative.

There should be no problem in using a schematic predicate symbol to range over
all formulas of a previously accepted language, or even a previously accepted set of
languages, as this would present no possibility of circularity. However, because of
the inherently impredicative quality of a self-applicative predicate variable it seems
to me that the general concept “meaningful predicate” is not itself predicatively
meaningful and that it is therefore not possible for a predicativist to legitimately
make assertions about all meaningful predicates (cf. §2.2). This leads to the conclu-
sion that predicativists have an open-ended ability to affirm induction statements
on ω but are not capable of formally expressing this fact.

The difficulties involved with schematic predicates shed light on the predicative
unacceptability of some formal systems which superficially have a strong predicative
flavor. For example, in [28] and [30] the possibility is raised that under intuitionistic
logic theories of generalized inductive definitions might be predicatively valid, and
this idea does have superficial appeal. However, on close examination there is a
clear circularity even in the intuitionistic case. This is seen as follows.

Suppose we want to introduce a predicate symbol for a class defined by some
inductive definition. Classically we could define this class “from above” as the
intersection of all classes satisfying the relevant closure condition, but this is clearly
impredicative. In the intuitionistic setting we instead conceive of the class as an
incomplete entity that can always be enlarged by repeatedly applying the closure
condition, which seems to be a predicatively legitimate idea. The problem is in
verifying the minimality property of this class. LetA be any formula in the language
of first order arithmetic enriched by a predicate symbol IX which is to represent
the class X being defined; assuming A satisfies the same closure condition as X ,
we must affirm (∀n)(IX(n) → A(n)). Now what is immediately clear from our
conception of X is that this statement is progressive in the sense that if it holds at
all previous stages in the construction of X then it will still hold at the immediately
following stage since A satisfies the same closure condition as X . This suggests that
the statement should be verified by a transfinite induction and we must therefore
imagine the stages in the construction of X as corresponding to elements of a
well-ordered set. The difficulty then lies in specifying what we mean by “well-
ordered”. If we had the ability to make assertions like TI(P, a) where P is a
schematic predicate variable, then we could take “well-ordered” to mean “supports
transfinite induction for a schematic predicate”, and we should then be able to carry
out the transfinite induction needed to prove minimality. But if the most we can say
of any totally ordered set is that it supports transfinite induction for all formulas
of a given previously accepted language, then X cannot be conceived as being
built up along sets that support transfinite induction for formulas of a language
that includes IX . This would be circular because the well-ordering assertion would
refer to the class X which it is being used to define. But proving the minimality
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statement requires that we be able to carry out transfinite induction for formulas
of this language. Hence there is no (or at least no obvious) way to predicatively
verify minimality.

Kripke-Platek set theory with intuitionistic logic, KPi, also has a superficial
predicative plausibility, but it too fails to be predicative. Here the culprit is the
KPi foundation scheme. For a statement of the KPi axioms that is intuitionistically
suitable, see, e.g., [5]. Their intuitionistic justification involves a conception of
an incomplete universe of sets which is built up in stages. In order to verify any
instance of the foundation scheme we would therefore need to carry out a transfinite
induction with respect to the well-ordered sets along which this universe is being
constructed. But the formula being proven by induction is a formula of the language
of KPi and would implicitly make reference to the universe being defined. Thus, in
order to verify the foundation scheme we would need to build up the KPi universe
along sets that are known to be well-ordered with respect to formulas which refer
to that universe. Again, this is circular and hence impredicative.17

3. Truth theories

As I discussed in §§1.3 and 1.10, all of the formal systems of §1.2 employ impred-
icative methods in order to pass from transfinite induction to transfinite recursion.
This presents a basic obstacle to obtaining predicative ordinals by means of the
techniques employed by those systems. My goal in this section is to develop new
methods of producing predicative well-ordering proofs.

Without using some kind of reflection principle I doubt that predicativists can
get very far beyond ε0. In order to progress significantly further we need a system-
atic way of iterating the process of reflecting on the truth of a given theory to get
a slightly stronger theory. One might hope to do this using a self-applicative truth
predicate, as in [15]. On its face, the predicative legitimacy of a self-applicative
truth theory is problematic — indeed, this seems just the sort of thing that predica-
tivist principles tend to forbid. We can try to get around the prima facie circularity
of such a theory by regarding the truth predicate as partial and built up in stages,
giving it the flavor of a generalized inductive definition. Now I argued in §2.4 that
theories of generalized inductive definitions are impredicative, but the difficulty
with such theories is their assertion of minimality axioms, which we do not require
of a truth predicate. To the contrary, the concept of belonging to an inductively
defined class does not seem predicatively objectionable on its own; for example,
according to §2.3 the assertion “n is a Church-Kleene ordinal notation” is predica-
tively meaningful (though presumably not definite). A parallel could also be drawn
with the predicative conception of the power set of ω as a necessarily incomplete
entity that can always be enlarged. Therefore, it seems that provided intuitionistic
logic is used, self-applicative truth theories could be predicatively justifiable. The
systems of [15] are firmly embedded in classical logic, but I suppose it is likely that
there is an intuitionistic version of, say, the Ref(PA) construction of [15] that could

17According to reference [13] it is the ∆0 collection scheme which makes the KPi axioms
impredicative. Footnote 7 of [13] refers to [29] for justification of this point, but the relevant
comment in footnote 4 of [29] explicitly locates impredicativity in the fact that “the interpretation
of the logical constants, in particular of →, is classical”. This seems to imply that if intuitionistic
logic were used then the KPi axioms would be predicatively valid, so that weakening the logical
axioms from classical to intuitionistic would render acceptable non-logical axioms which allow one
to access ordinals beyond Γ0. Apparently this possibility was never pursued.
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be accepted as predicatively legitimate. However, such a theory would have proof-
theoretic ordinal only in the neighborhood of ε0. So self-applicative truth theories
do not seem a promising route to obtaining strong predicative well-ordering proofs.

Perhaps surprisingly, I find that it is possible to predicatively prove rela-
tively strong well-ordering assertions using hierarchies of Tarskian (i.e., non self-
applicative) truth predicates. The remainder of this paper will develop this ap-
proach.18

The idea will be to work our way up the ordinals, proving not just well-ordering
of their notations in the usual setwise sense, but well-ordering in the predicatively
much stronger sense of supporting induction for all properties expressible in the
language. In order to avoid circularities, which in general are predicatively highly
problematic, any such proof will take place in a Tarskian “metasystem” which
contains a truth predicate for the target system. But in order to turn this into an
iterative process it is necessary to implement a hierarchy of truth predicates.

I will be working with formal systems of second order arithemtic, and the easiest
way to implement a truth predicate for such a system is to introduce a predicate
symbol T which takes a natural number as its argument, with the intended meaning
of T (n) being “the formula with Gödel number n is true”. (In everything that
follows, “predicate” will mean a formula with exactly one free number variable and
no free set variables.) But I will pass over technicalities such as Gödel numbers in
this paper. If the argument were made in greater detail we would need to be able,
within the system, to perform basic syntactic constructions on numerically encoded
strings. E.g., if pAq and pBq are the codes for two formulas A and B, and pA∧Bq
is the code for their conjunction, then we require the ability to calculate pA ∧ Bq
from pAq and pBq. More precisely, we must be able to express and reason about a
numerical function of two arguments which yields pA ∧ Bq when given the inputs
pAq and pBq. Probably primitive recursive arithmetic would suffice for everything
we need to do along these lines. I will omit these kinds of details from the present
account.

The truth predicates I will be discussing are never self-applicative; they only
apply to the sentences of some target language to which they do not belong. But
they are substantial; for instance, within the truth theory of the target system S we
will be able to prove (a formalization of) the statement that every theorem provable
in S is true. Since we can also prove in this truth theory that, say, 0 = 1 is not true,
we will then be able to derive that 0 = 1 is not a theorem of S. In other words, the
truth theory of S will always prove that S is consistent, which we know that S, if it
really is consistent, cannot do. This shows that truth theories increase deductive
strength.

This raises the question of what more can be achieved by iterating the con-
struction. We would expect to produce a hierarchy of truth theories of increasing
deductive strength, a quality that can be measured by asking what the provable or-
dinals of the system are. Here we say that α is a provable ordinal of a system S if (1)
there is a Turing machine that outputs (in suitably encoded form) a well-ordering
of N which is isomorphic to α, and (2) we can prove in S that the output of this
Turing machine is a well-ordering of N. (Again, in what follows we will actually
prove well-ordering in the strong sense of supporting transfinite induction up to α

18The argument given below fixes an error, pointed out to me by Asger Ipsen, in a proof that
appeared in an earlier version of the manuscript.
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for all predicates in the language.) The ordinal strength of S is the supremum of its
provable ordinals.19

The subtlety here is that, given an arbitrary hierarchy of truth theories, there
may be a limit as to how much of the hierarchy we trust. Intuitively, we convince
ourselves that a theory in the hierarchy is sound by a transfinite induction argument,
meaning that before accepting its theorems we would need its index to be, not just
an ordinal, but a provable ordinal, in a strong enough sense to justify taking this
step. As we work our way up the hierarchy, we expect to accumulate ever-larger
provable ordinals, leading us to accept ever-higher theories in the hierarchy. This
should give some (oversimplified) understanding of how our well-ordering proofs are
going to work.

3.1. The system Tar(S). Throughout this discussion S will be a theory in a lan-

guage of second order arithmetic which extends ACAi, the system ACA equipped
with intuitionistic logic. We use intuitionistic logic for the reasons articulated in
Section 2. (The analysis would still go through if classical logic were used, though,
or even if we worked with first, not second, order systems of arithmetic.)

The simplest way to augment S with a truth predicate would be to add a predi-
cate symbol T , together with, for each formula A of the language of S, the axiom
A ↔ T (pAq). This would implement Tarski’s “T-scheme”, so that it would qualify
as a truth predicate in Tarski’s sense, but it would accomplish almost nothing. We
would have produced a conservative extension of the original theory, yielding no
new theorems expressible in the original, unaugmented language. Even simple as-
sertions like “for all sentences A and B, if A and B are both true then so is A∧B”
could not be proven, as only finitely many instances of the T-scheme could be used
in any proof, which clearly is not sufficient to draw this conclusion.

We need to be able to reason about truth globally. So I define Tar(S) to be the
formal system system whose language LT is the language L of S augmented by a
single predicate symbol T , and whose nonlogical axioms are the nonlogical axioms
of S together with

• a single axiom which affirms20 T (pAq) for all the axioms A of S
• a single axiom which affirms

T (pAq) ∧ T (pBq) → T (pCq)

for any A,B, C ∈ L for which there is a deduction rule of S that infers C
from A and B

• for every formulaA = A(x) in LT with free number variable x (and possibly
other free variables not shown), the induction axiom

(A(0) ∧ (∀n)(A(n) → A(n+ 1))) → (∀n)A(n)

19The reason for working in second order arithmetic is that the standard definition of well-
ordering cannot be expressed in first order terms. However, “supports transfinite induction for all
predicates in the language” is perfectly good in the first order setting. So actually our analysis
could be carried out using first order arithmetic, with Peano arithmetic replacing ACAi.

20Literally, the statement “(∀n)T (f(n))” for some primitive recursive function f which enu-
merates the Gödel numbers of the axioms of S. But I will not make any more comments of this
sort in what follows.
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• the ω-rule, a single axiom which states that for every predicate A in L (i.e.,
every formula in L with exactly one free number variable) we have

(∀n)T (pA(n̂)q) ↔ T (p(∀n)A(n)q),

where n̂ represents a canonical constant term that evaluates to n
• the T-scheme, which consists of one axiom of the form

A ↔ T (pAq)

for each sentence A in L.

The intention is to interpret T (pAq) as affirming the truth of A, or of the uni-
versal closure of A if it has any free variables.

3.2. Justifying Tar(S). How do we justify accepting Tar(S), given that we accept
S?

By “accept” I mean something like: we understand that we have the right, indeed
that we are rationally compelled, to affirm every theorem of S. Why should we feel
the same way about Tar(S)?

The question seems a little murky because Tar(S) invokes the notion of “truth”,
which is surprisingly subtle, and still the subject of philosophical debate. I have
my own explanation of the nature of truth, but I will not call on it here. Instead, I
will argue that a basic grasp of infinitary reasoning would allow us to accept Tar(S)
without requiring prior familiarity with any notion of truth.

Indeed, predicativism (given the natural numbers) allows reasoning which admits
countably infinite sets and constructions — and sentences and derivations. This
alone is enough to justify passing from S to Tar(S), provided the language of S has
only countably many sentences. Because then we could enumerate these formulas as
A1, A2, . . . and informally define the desired predicate T by the infinite conjunction

(T (pA1q) ↔ A1) ∧ (T (pA2q) ↔ A2) ∧ · · ·

(where A denotes the universal closure of A). The axioms of Tar(S) could then be
straightforwardly justified. For instance, consider “T (pAq), for every axiom A of
S”. This, of course, demands that we have already accepted all the axioms of S,
but given this, and given the definition of T , we can infer T (pB1q) ∧ T (pB2q)∧ · · ·
where the Bn’s enumerate the axioms of S, and from there the single statement
“T (pAq), for every axiom A of S”.

A similar justification can be given for the second axiom, which states that
deduction under T is valid. For the induction scheme, which is applied to the
language of Tar(S), not just of S, we do not need to assume anything about T . All
we have to do is imagine being given the premises A(0) and (∀n)(A(n) → A(n+1)),
for some formula A with exactly one free variable, in the language of Tar(S). We
can easily see how to construct a proof from this of A(1), then a proof of A(2), etc.,
yielding finally (with one final transfinite inference) (∀n)A(n). (Cf. §2.4.)

Given our definition of T , the ω-rule is straightforwardly justifiable along similar
lines. This completes my sketch of a justification of Tar(S), given S. No prior ideas
about “truth” were needed to do this. I suppose all the material that follows could
be reworked in terms of countably infinite logic, without mentioning truth at all,
but I have not tried to do this.

I mentioned above that it will be a theorem of Tar(S) that every theorem of S
is true. This is proven by induction on the number of steps in the derivation of a
theorem of S. The theorems provable in a single step are precisely the axioms of S,
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which we know are all true, and the truth of theorems provable at any subsequent
step then follows inductively from the fact that T respects the deduction rules of
S. The assertion that 0 = 1 is not true is an immediate consequence of the forward
implication in ‘T (p0 = 1q) ↔ 0 = 1”.

3.3. The system Tarski(S). Now let us iterate the Tar(S) construction. Start
with a computable total ordering � of N. The intention is to iterate along a well-
ordering of N, but we do not assume in advance that � is well-ordered. We do need
to know that it is a total ordering, that it has a least element, that every element
has an immediate successor, and so on. We must be able to express operations of
addition, multiplication, and exponentiation which correspond to the usual ordinal
operations. One can prove in Peano arithmetic that any of the usual notation
systems for the standard “large” countable ordinals has all the properties we need.

In the sequel, any notation for sum, product, or exponent will always refer to
these (presumptively) ordinal operations, not to the usual arithmetical operations

on N. Also, I will use the notation Ñ for “N equipped with the ordering �”, and
(hopefully without too great a risk of confusion) use the symbols “0”, “1”, . . ., “ω”,
. . ., “Γ0”, . . . to refer both to the abstract ordinals and to their representatives in

Ñ.
The language of Tarski(S), which I denote L, will be the language of S augmented

by a family of predicate symbols Ta, for a ∈ Ñ, and one additional predicate symbol
Acc. The idea is that the Ta’s should be the truth predicates in the hierarchy and
that Acc(a) represents our acceptance of the hierarchy up to a (with respect to the
ordering �).

For each a ∈ Ñ we let La be the language of S augmented by only the predicate
symbols Tb with b ≺ a. It is the formulas of La to which we want to apply Ta.

We would like a hierarchy of formal systems Sa with Sa+1 = Tarski(Sa) and
Sa = Tarski(

⋃
b≺a Sb) at limits. This could be achieved by a recursive construction,

but it is simpler (and also a slightly different, better result) to define them all at
once, in the following way.

For each a ∈ Ñ let Sa be the formal system whose language is La+1 (so it
includes the predicate Ta) and whose nonlogical axioms are the nonlogical axioms
of S together with axioms about Ta:

• the statement “Ta(pAq) for all the axioms A of S”
• the statement “Ta(pAq)∧Ta(pBq) → Ta(pCq) for all A,B, C ∈ La for which
there is a deduction rule that infers C from A and B”

• a single axiom which says that Ta holds of every instance of the induction
scheme for formulas in La

• the statement “(∀n)Ta(pA(n̂)q) ↔ Ta(p(∀n)A(n)q) for every predicate A
in La”

• for every sentence A in La, the truth definition

A ↔ Ta(pAq)

and axioms about Tb for b ≺ a:

• the single statement “for all b ≺ a and every sentence A ∈ Lb we have
Ta(pA ↔ Tb(pAq)q)”.

• for each b ≺ a, the statement “Tb(pAq) ↔ Ta(pAq) for all A ∈ Lb”
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Sa is the theory whose acceptance is expressed in Tarski(S) by Acc(a). The
appropriate axiom for Acc(·) is

(∀b ≺ a)Acc(b) ↔ Acc(a).

I will call this condition “progressivity∗” and write “Prog∗(Acc)”. (Note that it
is stronger than the usual notion of progressivity, which affirms only the forward
implication. This choice simplifies the analysis given below a little.) Indeed, S0
is precisely Tar(S), and for any a ≻ 0, although Sa is not exactly the same as
Tar(

⋃
b≺a Sb) (because of the final “Tb(pAq) ↔ Ta(pAq) for all A ∈ Lb” scheme),

essentially the same argument can be used to justify accepting it given that we
have accepted

⋃
b≺a Sb. So there is a straightforward justification of progressivity∗

of Acc.
It is easy to see that for every b ≺ a it is a theorem of Sa that all the axioms of

Sb are true. Together with the truth of all deduction rules for formulas in La, this
yields the following fact.

Proposition 3.1. For every b ≺ a, it is a theorem of Sa that every theorem of Sb
is true.

Now I am ready to describe the axioms of Tarski(S). Its language was defined
earlier; its nonlogical axioms will consist of

• the nonlogical axioms of S
• the axiom Prog∗(Acc)
• the induction scheme for all formulas in the language of S augmented by
Acc

• for each a and each axiom A of Sa the statement “Acc(â) → A”.

Since the meanings of the Ta predicates are not initially specified, I exclude them
from the induction scheme. For the record, I think this precaution is philosophically
unnecessary, but for my purposes there is no harm in being conservative, as none
of the results proven below is affected by this restriction. We could be even more
conservative and forbid any reasoning about formulas containing Ta until Acc(â)
has been proven, by, for each a and each axiomA of Sa, replacing the “Acc(â) → A”
axiom with a deduction rule that infers A from Acc(â). This also would not affect
the validity of anything that follows in any essential way.

3.4. The Veblen hierarchy. We can now start to think about the provable ordi-
nals of Tarski(S). Let us do this in terms of the Veblen hierarchy (φα).

We have fixed a computable total ordering � of N. Now fix an element c0 ∈ Ñ

which is greater than ω and is stable under ordinal exponentiation, i.e., if a, b ≺ c0
then ab ≺ c0. Again, we don’t have to know that {c ∈ Ñ : c ≺ c0} is well-ordered.

Recall that a predicate A is progressive* if for all a ∈ Ñ

(∀b ≺ a)A(b) ↔ A(a);

I will also say it is progressive∗ up to c0 if (∀b ≺ a)A(b) ↔ A(a) for all a ≺ c0.
For each a, c ≺ c0 define a predicate Bc

a in the language Lωa·c+1 by

Bc
a(b) := (∀A ∈ Lp

ωa·c)Tωa·c(pProg
∗(A) → A(φa(b))q)

where Lp
a denotes the set of numerical predicates in La, i.e., formulas with exactly

one free number variable and no free set variables. For fixed a, the predicates Bc
a

say essentially the same thing as c varies: that any progressive∗ predicate holds
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of φa(b). The only difference is the languages to which they are applied. This is
necessary because we will want to apply some Bc

a’s to others.
Let C be the predicate in the language Lc0+1

C(a) := (∀c ≺ c0)Tc0(pProg
∗(Bc

a)q).

Recalling that Bc
a and Bc′

a differ only in the languages to which they are applied,
the crude intuition for C(a) is that it says the assertion that anything progressive∗

holds of φa(b) is itself progressive
∗ in b. The key theorem we have to prove is that

C is itself progressive∗!
(The reason the strong “progressivity∗” version of progressivity defined above

helps is that, under this definition, if A is progressive∗ and A holds of a, then
the “shifted” predicate A→a(·) = A(a + ·) is also progressive∗. Our version of
progressivity ensures that if A(a) fails then A(a′) also fails for all a′ ≻ a, so this
shifting can only occur within the initial, truly progressive∗ part.)

The proof of Theorem 3.5 below is a little long because each a and each b can
be zero, a successor, or a limit, leading to nine separate cases which are nearly
all genuinely different. (For limit values of b, the argument is essentially the same
regardless of what a is.) For the sake of readability I have split up the proof into
three lemmas. The crucial case appears in Lemma 3.4, when a and b are both
successors. (It is only here that the “ωa · c” expression in Bc

a becomes important.
The point is that the index ωa+1 · c will always be a limit of indices of the form
ωa · c′, even when c is a successor.)

In the following proofs we will assume Acc(ĉ0), which means that all the axioms
for Tc0 are available. In particular, we have the T-scheme for Tc0 . So we can pass
freely between A and Tc0(pAq) for any sentence A of Lc0 . What we cannot do is
to reason under Tc0 about predicates such as C which do not belong to Lc0 . Note
that in the definition of C(a) given above we cannot use the ω-rule to import the
quantifier ∀c ≺ c0 into Tc0 , because Bc

a is a distinct predicate for every a and c, so
an expression like “(∀c ≺ c0)Prog

∗(Bc
a)” would not be a well-formed formula. But

if we are working under Tc0 , we can simultaneously reason about Bc
a for arbitrary

values of c. Indeed, this is just the sort of thing truth predicates are good for —
allowing us to reason schematically. I have included some comments about which
truth predicate we are reasoning under at which point, but the essence of the proofs
can be understood by ignoring all references to truth and just accepting that we
can reason schematically.

The next three lemmas are proven in Tarski(S).

Lemma 3.2. Acc(ĉ0) implies C(0).

Proof. Working in Tarski(S), assume Acc(ĉ0). Fix c ≺ c0; reasoning under Tc0 , we
must prove Prog∗(Bc

0), i.e., we must prove progressivity∗ in b of the statement

(1) (∀A ∈ Lp
c)Tc(pProg

∗(A) → A(ωb)q).

For b = 0 this is trivial; it just says that for any A ∈ Lp
c it is true (according to

Tc) that progressivity
∗ of A implies that A holds of ω0 = 1. The way we prove this

in Tarski(S) is by first proving in Tarski(S) — what can actually be done in ACAi

— a formalization of the statement that for any predicate A in Lc there is a proof
in the system Sc of the sentence “Prog∗(A) → A(1)”. We can do this by writing
out a proof template and then verifying its validity for any A. Combining this with
Proposition 3.1 (and using Acc(ĉ0)), we get (∀A ∈ Lp

c)Tc0(pProg
∗(A) → A(1)q),
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and then (∀A ∈ Lp
c)Tc(pProg

∗(A) → A(1)q). I wanted to spell all this out once,
but I will omit similar arguments in the sequel.

For limit values of b, assume we are given (∀b′ ≺ b)Tc(Bc
0(b

′)); that is, assume

Tc(pProg
∗(A) → A(ωb′)q)

for all A ∈ Lp
c and all b′ ≺ b. Using the ω-rule to bring the quantifier “∀b′ ≺ b”

under Tc, we get that for everyA ∈ Lp
c it is true (according to Tc) that progressivity

∗

of A implies A(ωb′) for all b′ ≺ b. Since ωb = supb′≺b ω
b′ , we infer from this (for

arbitrary A, under Tc) that progressivity
∗ of A implies A(ωb).

Finally, if b = b′ + 1 is a successor, assume that for every predicate A in Lc it is
true (according to Tc) that progressivity∗ of A implies that A holds of ωb′ . Since

Prog∗(A) ∧ A(ωb′) implies Prog∗(A→ωb
′

) (as noted a few paragraphs before this

lemma), it is then true thatA→ωb
′

holds of ωb′ , i.e., A holds of ωb′+ωb′ . Continuing

inductively, we get the truth for all n ≺ ω of A(ωb′ ·n), and progressivity∗ of A then

implies that A holds of ωb′ · ω = ωb′+1 = ωb. We have shown that Bc
0(b

′) implies
Bc
0(b

′ + 1). This completes the proof that (1) is progressive∗ in b and establishes
C(0). �

Lemma 3.3. Acc(ĉ0) implies that for any limit a ≺ c0 we have (∀a′ ≺ a)C(a′) →
C(a).

Proof. Working in Tarski(S), assume Acc(ĉ0). Fix a limit a ≺ c0 and assume
(∀a′ ≺ a)C(a′). This means that we are given the truth, according to Tc0 , of

Prog∗(Bc′

a′) for every a′ ≺ a and c′ ≺ c0, and we must show that for every c ≺ c0 it
is true according to Tc0 that Bc

a is progressive∗.
Fix c ≺ c0. First we check the case b = 0, where we have to verify Bc

a(0). Since
we are assuming, for every c′ ≺ c0 and a′ ≺ a, that it is true (according to Tc0) that

Bc′

a′ is progressive∗, in particular we have for all such c′ and a′ the truth of Bc′

a′(0).
Thus, for every predicate A in some Lωa′

·c′ with a
′ ≺ a and c′ ≺ c0 — which is to

say, every predicate A in Lc0 — we have that progressivity∗ of A implies the truth
of A(φa′(0)) for all a′ ≺ a. In particular, for any predicate A ∈ Lωa·c it is true
according to Tc0, and hence according to Tωa·c, that progressivity∗ of A implies
that A holds of supa′≺a φa′ (0) = φa(0). This verifies Bc

a(0). That was the b = 0
case.

Next we will show, reasoning under Tc0 , that if b is a limit and we have Bc
a(b

′) for
all b′ ≺ b, then we also have Bc

a(b). At this point we have two induction hypotheses
going, one for a′ ≺ a and one for b′ ≺ b. To verify Bc

a(b), let A be a predicate in
Lωa·c. Then Bc

a(b
′) for all b′ ≺ b tells us that according to Tωa·c, progressivity

∗ of
A implies that A holds of φa(b

′) for all b′ ≺ b. So according to Tωa·c, progressivity
∗

of A implies that A holds of supb′≺b φa(b
′) = φa(b), as desired. We did not even

need the induction hypothesis on a in this part.
The final case is for successor values of b. Say b = b′ + 1. Reasoning under Tc0,

we have to verify that Bc
a(b

′) implies Bc
a(b

′ + 1). For this we must use both (i)

the induction hypothesis on a (for every c′ ≺ c0 and a′ ≺ a the predicate Bc′

a′ is
progressive∗) and (ii) the induction hypothesis on b (we have Bc

a(b
′)). Now Bc

a(b
′)

says that every progressive∗ A ∈ Lωa·c holds of φa(b
′), and φa(b

′) is a fixed point of
every φa′ with a′ ≺ a, so we can also say that every progressive∗ A ∈ Lωa·c holds
of φa′(φa(b

′)) for all a′ ≺ a. This means that Bc′

a′(φa(b
′)) holds for all a′ ≺ a and

c′ ≺ c0 such that Lωa′
·c′ ⊆ Lωa·c.
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But for any a′ ≺ a, we can find a′′ such that a′ + a′′ = a, and then by putting
c′ = ωa′′

·c, we get ωa′

·c′ = ωa·c. So by the conclusion reached in the last paragraph,
for any a′ ≺ a there exists c′ ≺ c0 such that Lωa′

·c′ = Lωa·c and Bc′

a′(φa(b
′)) holds.

And since every such Bc′

a′ is progressive∗, by (i), it follows that Bc′

a′(φa(b
′) + 1) also

holds.
We are now in a position to affirm that for every a′ ≺ a, every progressive∗

A ∈ Lωa·c lies within the scope of some Bc′

a′ which satisfies Bc′

a′(φa(b
′) + 1), so that

A holds of φa′(φa(b
′) + 1). If a′ is a successor, a′ = a′′ + 1, then this means that A

holds of the next fixed point of φa′′ after φa(b
′). Thus, by progressivity∗, A holds of

the supremum of these fixed points over all a′′ ≺ a, which equals φa(b
′+1) = φa(b).

That verifies Bc
a(b) and completes the proof of C(a). �

Lemma 3.4. Acc(ĉ0) implies that for any a ≺ c0, C(a) implies C(a+ 1).

Proof. Working in Tarski(S), assume Acc(ĉ0). Fix a ≺ c0 and assume C(a), and
on the way to proving C(a + 1), fix c ≺ c0. Reasoning under Tc0 , we must prove
that Bc

a+1 is progressive∗, i.e., that for every b, if Bc
a+1(b

′) holds for all b′ ≺ b then
Bc
a+1(b) also holds.
If b = 0 then we simply have to show that Bc

a+1(0) holds, i.e., that any
progressive∗ A ∈ Lωa+1·c holds of φa+1(0). Since we have assumed C(a), we know

that for any c′ ≺ c0, according to Tc0 the predicate Bc′

a is progressive∗. In partic-
ular, for each n ≺ ω the predicate Bc+n

a is progressive∗. Thus Bc+n
a holds of 0, so

every progressive∗ predicate in Lωa(c+n) holds of φa(0), and hence of φa(0) + 1. In

particular, Bc+n−1
a holds of φa(0)+1. So every progressive∗ predicate in Lωa(c+n−1)

holds of φa(φa(0)+1). Inductively, every progressive∗ predicate in Lωa(c+n−k) holds

of φka(φa(0) + 1), which means (taking k = n) that every progressive∗ predicate in
Lωa·c holds of φ

n
a (φa(0)+1). Since n was arbitrary, it follows that every progressive∗

predicate in Lωa·c holds of supn≺ω φ
n
a(φa(0)+1) = φa+1(0). This finishes the b = 0

case.
Next, assuming that for some limit b we have Bc

a+1(b
′) for all b′ ≺ b, we must

verify Bc
a+1(b). This is easy, because we are given that any progressive∗ predicate

in Lωa+1·c holds of φa+1(b
′) for all b′ ≺ b, and so by progressivity∗ it holds of

supb′≺b φa+1(b
′) = φa+1(b). The corresponding cases in Lemmas 3.2 and 3.3 were

handled in the same way.
Finally, letting b be arbitrary, we must make the inference from Bc

a+1(b) to
Bc
a+1(b+1). So assume Bc

a+1(b) and fix A ∈ Lp

ωa+1·c
. We can write ωa+1 ·c = ωa ·ωc,

and since ωc is a limit, this shows that A must belong to Lωa·c′ for some c′ ≺ ωc.
Moreover, since ωc is a limit, we have c′ + n ≺ ωc for all n ≺ ω.

Now for each n ≺ ω the predicate Bc′+n
a belongs to Lωa+1·c, and is progressive∗

since we are assuming C(a), so the hypothesis of Bc
a+1(b) yields Bc′+n

a (φa+1(b)),

and then by progressivity∗ we get Bc′+n
a (φa+1(b) + 1). Applying this to Bc′+n−1

a ,

which lies in Lωa(c′+n−1)+1 ⊆ Lωa(c+n), then yields Bc′+n−1
a (φa(φa+1(b) + 1)), and

inductively we finally get Bc′

a (φ
n
a (φa+1(b)+1)). Since A ∈ Lωa·c′ , ifA is progressive∗

this entails A(φn+1
a (φa+1(b) + 1)), and as n was arbitrary A(φa+1(b + 1)) follows.

We have established Bc
a+1(b), as desired. �

Putting these lemmas together yields the following theorem.

Theorem 3.5. Tarski(S) proves that Acc(ĉ0) implies C is progressive∗ up to c0.
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Recall that we define γ0 = 0 and γn+1 = φγn
(0) for n ≥ 0, so that Γ0 = supn γn.

In what follows the term “transfinite induction up to a for S” will refer to the
scheme consisting of all sentences of the form “Prog∗â(A) → (∀b ≺ â)A(b)” as A
ranges over the predicates in the language of S, where “Prog∗â(A)” means “A is
progressive∗ up to â”.

Corollary 3.6. Let n ≥ 2. Then Tarski(S) plus transfinite induction up to γn for

Tarski(S) proves transfinite induction up to γn+1 for S.

Proof. Fix n. Since Acc is progressive∗, transfinite induction up to γn for Tarski(S)
yields (∀a ≺ γn)Acc(a), and then, with one further application of progressivity∗,
Acc(γn). Theorem 3.5 then yields, in Tarski(S) plus Acc(γn), that C is progressive∗

up to γn, and now the hypothesis on transfinite induction up to γn yields (∀a ≺
γn)C(a). In particular, we have (∀a ≺ γn)Tc0(B

0
a(0)).

Thus for any predicate A in L, we have

Tc0(Prog
∗(A) → (∀a ≺ γn)A(φa(0))),

hence
Prog∗(A) → (∀a ≺ γn)A(φa(0))

hence
Prog∗(A) → (∀b ≺ γn+1)A(b)

since supa≺γn
φa(0) = γn+1. We have proven transfinite induction up to γn+1 for

S. �

3.5. Iterating the Tarski(S) construction. Theorem 3.5 doesn’t get us very far
by itself, since it requires a strong assumption about Acc. What we must do now
is to “reflect” on the legitimacy of the Tarski construction. We have agreed that,
for arbitrary S, if we accept S then we should accept Tarski(S), and so we should

also accept Tarski2(S) = Tarski(Tarski(S)), then Tarski3(S) = Tarski(Tarski2(S)),
and so on. We could now formulate a “higher order” construction that iterates the
S 7→ Tarski(S) construction along �, which would be justified in the same way we
justified Tarski(S); I will return to this idea in the next section. At this point we
only need to do this for all finite n.

Theorem 3.7. Tarskiω(ACAi) =
⋃

n≺ω Tarskin(ACAi) proves Prog∗(A) → A(â)
for every a ≺ Γ0 and every predicate A in its language.

Proof. We make the argument for any second order theory S that extends ACAi.
Fix n ≺ ω. The main idea is to prove, in Tarskin(S), transfinite induction up to
γ2 = ε0 for Tarski

n−1(S), and then inductively apply Corollary 3.6 to get transfinite

induction up to γk+1 in Tarskin−k(S), for 1 ≤ k ≤ n, yielding finally transinite
induction up to γn+1 for S. At that point the full statement of the theorem will
follow easily.

The base case of transfinite induction up to γ2 is similar to Lemma 3.2, but
different enough to merit being written out. Taking S′ = Tarskin−1(S), we want
to prove, in Tarskin(S) = Tarski(S′), transfinite induction up to γ2 for S′. To do
this we introduce a jump predicate JA, for every predicate A in the language of S′,
defined by

JA(b) := (∀a)(A(a) → A(a+ ωb)).

This is a different predicate for each A. Now, for any A, we start by proving
in S′ that progressivity∗ of A implies progressivity∗ of JA. Fix A and assume
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it is progressive∗. Then JA(0) says that (∀a)(A(a) → A(a + 1)), and this is an
immediate consequence of progressivity∗ of A. If b is a limit, then JA(b

′) for all

b′ ≺ b says that for any a we have A(a) → A(a+ ωb′) for all b′ ≺ b, and this yields
A(a) → A(a+ ωb) for all a, by progressivity∗ of A again. Finally, assuming JA(b),
we must prove JA(b + 1). Here we use the reasoning that JA(b) tells us that A(a)
implies A(a+ωb), and also that A(a+ωb) implies A(a+ωb +ωb), and so on; that
is, an induction argument shows that JA(b) implies (∀a)(A(a) → A(a+ωb · n)) for
all n ≺ ω. One final appeal to progressivity∗ of A then yields JA(b) → JA(b+ 1).

For a given predicate A in the language of S′, we have shown, in S′, that
Prog∗(A) → Prog∗(JA). Now, reasoning in the one-step truth theory Tarski(S′),
we can see that T (Prog∗(A)) implies T (Prog∗(JA)) implies T (Prog∗(JJA)) implies
· · · , for any A. Thus, if A is progressive∗ then A(1) is true, JA(1) is true (which
implies that A(ω) is true), JJA(1) is true (which implies that JA(ω) is true, which
implies that A(ωω) is true), and so on. Inductively we get (∀n ≺ ω)T (A(ω(n))),

where ω(1) = ω and ω(n+1) = ωω(n)

. So T (Prog∗(A)) implies T (A(ε0)).
That was in Tar(S′). But in Tarski(S′) we have Prog∗(Acc), so in particular we

have Acc(0), which means that we can reason in the one-step truth theory Tar(S′).
Thus Tarskin(S) proves transfinite induction up to γ2 = ε0 for Tarskin−1(S).

From this point, we can apply Corollary 3.6 n − 1 times to obtain transfinite
induction up to γn+1 for S, where n was arbitrary. But Tarskiω(S) literally equals

Tarskiω(Tarskik(S)) for any k, so this argument actually yields transfinite induction

up to γn+1 for Tarski
k(S), for any k and any n. We conclude that Tarskiω(S) proves

Prog∗(A) → A(γn) for all n and all predicates A in its language. �

3.6. Going even further. The system Tarskiω(ACAi) is somewhat unnat-
ural because once we understand the passage from S to Tarski(S) we
can imagine iterating it along any ordinal, not just ω. Thus we get
Tarski(ACAi), Tarski2(ACAi) = Tarski(Tarski(ACAi)), . . ., Tarskiω(ACAi) =⋃

n<ω Tarskin(ACAi), . . ., Tarski2ω(ACAi), etc.

Let us consider the system Tarskiω
2

(ACAi). I must now introduce some notation.
Following [34], let an r-normal function be a strictly increasing continuous function
from some ordinal r to itself, and given such a function ψ let ψ1 be the function
that enumerates its fixed points, ψ2 the function that enumerates the fixed points of
ψ1, and so on. This yields a hierarchy of r-normal functions ψα. When ψ(α) = ωα,
this is just the usual Veblen hierarchy (φα).

But we can now move one step up and let ψ1 be the r-normal function which
enumerates the values ψ(0), ψ1(0), . . ., ψω(0), . . .. Let us call this new function
the Veblenization of the original function ψ. This induces a new hierarchy (ψα)
where ψα+1 is the Veblenization of ψα, and when α is a limit, ψα enumerates the
intersection of the ranges of ψβ for β ≺ α.

If we take ψ(a) = ωa, then ψ enumerates the sequence (φa(0)) and ψ
1
1 enumerates

the sequence (Γa). Setting γ0 = 0 and γn+1 = ψγn(0), we get the Ackermann
ordinal ψΩ2(0) as the limit of the sequence (γn).

We have already done the technical work needed to analyze Tarskiω
2

(ACAi).
The key point is that Corollary 3.6 actually shows something stronger: not only
can we go from γn to γn+1, we can actually prove, in Tarski(S) plus transfinite
induction up to ψ1(b) for Tarski(S) and progressivity∗ in a of transfinite induction
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up to ψ(a) for S, that we have transfinite induction up to ψ1(b + 1) for S, for any

r-normal function ψ and any b ∈ Ñ.
Set S′ = Tarskiω(S). The preceding yields, in S′ plus transfinite induction up to

ψ1(b) for S′ and progressivity∗ in a of transfinite induction up to ψ(a) for S, that
we have transfinite induction up to ψ1(b + 1) for S′. So we can prove in Tar(S′)
the single statement that transfinite induction up to ψ1(b) for S′ is progressive∗ in
b, for any r-normal function ψ for which we have progressivity∗ in a of transfinite
induction up to ψ(a) for S.

This straightforwardly leads to an analog of Corollary 3.6 which states that
Tarski(S′) plus transfinite induction up to γn for Tarski(S′) and progressivity∗ in a
of transfinite induction up to ψ(a) for S yields transfinite induction up to γn+1 for
S′. Then the proof of Theorem 3.7 can be adopted to show the following.

Theorem 3.8. Tarksiω((ACAi)′) = Tarskiω
2

(ACAi) proves Prog∗(A) → A(â) for
every a ≺ φΩ2(0) and every predicate in its language.

The Ackermann ordinal φΩ2 (0) is predicatively provable. This should not be
surprising to anyone with a basic familiarity with this ordinal. It clearly is “built
up from below” and therefore ought to be predicative.

Reasoning in a similar way, we can push this further:

Theorem 3.9. Tarskiω
ω

(ACAi) proves Prog∗(A) → A(â) for every a ≺ φΩω (0)
and every predicate in its language.

So the small Veblen ordinal φΩω (0) is also predicatively provable. Again, this
should not be a surprise.

As was mentioned in Section 3.3, we can consider the sequence Tarskiα(ACAi)
along a totally ordered set which we may suspect, but do not initially know, to
be well-ordered. Acceptability along this new iteration will be measured by a
new predicate Acc1, such that Acc1(a) is supposed to indicate the correctness of

Tarskiα(ACAi) where a is a notation for α. Each step of this iterated construction
passes from some system S to Tarski(S), so each of them has its own separate Acc
predicate. Incorporating the new, higher order, acceptability predicate Acc1, we get
a new, higher order, iterated Tarskian truth theory Tarski1(ACA

i). I conjecture
that Tarskiω1 (ACA

i) proves transfinite induction up to the large Veblen ordinal
φΩΩ(0), but I have not tried to prove this.

I expect that substantially larger ordinals can be accessed using predicative meth-
ods. This raises the possibility of a version of Hilbert’s program in which theories are
justified via predicative, rather than finitary or intuitionistic, consistency proofs.
The preceding results indicate that this program is interesting, substantial, and
open to exploration.
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