Differential equations

Math 217 — Fall 2009

October Exam

This exam contains thirteen problems numbered 1 through 13. Problems 1 – 12 are multiple choice problems. Each problem counts 7 points. Problem 13 is a free-response question, which counts 16 points.

Problem 1

Compute the Wronskian of the functions $e^x \cos(x)$ and $e^x \sin(x)$.

A) 1 B) e^x C) e^{2x} D) $2e^x$ E) $e^x \cos(x) \sin(x)$ F) $2e^x \cos(x) \sin(x)$
Problem 2

Consider the functions \(y_1 = \cos^2(x), \ y_2 = \sin^2(x), \) and \(y_3 = \pi. \) Which of the following is true?

A) \(y_1, y_2 \) and \(y_3 \) are linearly independent on the real line.

B) \(y_1, y_2 \) and \(y_3 \) are linearly dependent on the real line.

C) \(y_1 \) and \(y_3 \) are linearly dependent on the real line.

D) \(y_2 \) and \(y_3 \) are linearly dependent on the real line.

E) There exist a constant \(k \) so that \(y_1(x) = ky_2(x) \) for all \(x. \)

F) The only constants \(c_1, c_2 \) and \(c_3 \) that satisfy \(c_1y_1 + c_2y_2 + c_3y_3 = 0 \) on the real line are \(c_1 = c_2 = c_3 = 0. \)
Problem 3

Suppose you have the following table of values for the two-variable function \(f(x, y) \).

<table>
<thead>
<tr>
<th>((x, y))</th>
<th>(f(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,0)</td>
<td>-1</td>
</tr>
<tr>
<td>(0,1)</td>
<td>1</td>
</tr>
<tr>
<td>(1,1)</td>
<td>2</td>
</tr>
<tr>
<td>(1,2)</td>
<td>5</td>
</tr>
</tbody>
</table>

If \(y_n\) is the \(n\)-th approximation using the improved Euler method with step size \(h = 1\) of the initial value problem

\[
\frac{dy}{dx} = f(x, y), \quad y(0) = 1,
\]

what is \(y_1\)?

A) 2
B) 1
C) 4
D) 5
E) -1
F) 7
Problem 4

Consider the equation
\[y^{(4)} + 2y' + 5y = g(t), \]
where \(g(t) \) is a non-zero function.

Suppose \(y_1, y_2 \) are solutions of the above nonhomogeneous differential equation, and \(y_3 \) is a solution of the corresponding homogeneous equation. Then only two of the following are solutions of the nonhomogeneous equation. Which two are they?

I) \(y_1 + y_2 \), \hspace{1cm} II) \(2y_1 - y_2 \), \hspace{1cm} III) \(y_1 + y_3 \), \hspace{1cm} IV) \(2y_1 - y_3 \).

A) I and II \hspace{1cm} B) I and III \hspace{1cm} C) I and IV \hspace{1cm} D) II and III \hspace{1cm} E) II and IV \hspace{1cm} F) III and IV
Problem 5

Find the solution to the initial value problem

\[y'' + y' = 0, \quad y(0) = 1, \quad y'(0) = 1. \]

A) 1 \quad B) e^{-x} \quad C) \frac{1}{2} + \frac{1}{2}e^{-x} \quad D) 2 - e^{-x} \quad E) 2e^{x} - 1 \quad F) \frac{3}{2} - \frac{1}{2}e^{x} \]
Problem 6

The function \(y = c_1 e^x + (c_2 + c_3 x) e^{-x} \) is a general solution of which of the following differential equations.

A) \(y^{(3)} - y = 0 \)
B) \(y'' + y''' - y - 1 = 0 \).
C) \(y^{(3)} - y'' + y' - y = 0 \).
D) \(y'' + 2y' + y = 0 \).
E) \(y^{(3)} + 2y'' + y' = 0 \).
F) \(y^{(3)} + y'' - y' - y = 0 \).
Problem 7

If \(y = Ax + B \) is a particular solution of \(y'' + y' + y = x - 1 \) what must \(A \) and \(B \) equal?

A) \(A = -1, \ B = 1 \)

B) \(A = 1, \ B = -1 \)

C) \(A = 1, \ B = 2 \).

D) \(A = -1, \ B = -2 \)

E) \(A = -2, \ B = 1 \).

F) \(A = 1, \ B = -2 \)
Problem 8

Find a particular solution of
\[y'' + 4y = 2\cos(2x). \]

A) \(2\cos(2x) \quad B) -\frac{1}{2}x\cos(2x) \quad C) \frac{1}{2}\cos(2x) \quad D) -\frac{1}{2}\sin(2x) \quad E) \frac{1}{2}x\sin(2x) \quad F) -2x\sin(2x) \]
Problem 9

Consider the differential equation

\[y'' - 4y = e^x - x^2. \]

Using the method of undetermined coefficients, what is the correct form of a particular solution?

A) \(y_p = Ae^x + Bx^2 \)
B) \(y_p = Bxe^x + C + Dx + Ex^2 \)
C) \(y_p = Ae^x + B + Cx + Dx^2 \)
D) \(y_p = (A + Bx)e^x + Cx + Dx^2 \)
E) \(y_p = (A + Bx)e^x + Cx^2 \)
F) \(y_p = Ae^x + Bx \)
Problem 10

A motorboat weights 32,000 kg and its motor provides a thrust of 5,000 Newton. Assume that the water resistance is 100 Newton of each meter per second of the speed \(v \) of the boat. If the boat starts from rest, what is the maximum velocity that it can attain?

A) 1000 m/s
B) 500 m/s
C) 100 m/s
D) 5,000 m/s
E) 32,000 m/s
F) 50 m/s
Problem 11

A body with mass $m = 1/2$ kg is attached to the end of spring stretched 2 meters by a force of 100 newtons (N). It is set in motion with initial position $x_0 = 1$ (m) and initial velocity $v_0 = -5$ (m/s). Find the amplitude of the position function of the body.

A) $\frac{1}{2}\sqrt{3}$ B) $\frac{1}{2}\sqrt{5}$ C) $\sqrt{3}$ D) $\sqrt{5}$ E) 1 F) 10
Problem 12

A spring-mass system is used as a scale as follows. The mass (whose weight one would like to know) is connected to a spring, the spring and mass is set in motion (we assume there is no friction or damping), and the period of the oscillations is observed.

During calibration it was found that a mass of 1 kg. corresponded to a period of 0.5 seconds. What is the mass of an object whose period is 1 second?

A) 0.25 kg. B) 0.5 kg. C) 1 kg. D) \(\sqrt{2} \) kg. E) 2 kg. F) 4 kg.
The following problem is a free-response question. You should justify your answers. Please write your answers only on these two pages.

Problem 13

A) Find a general solution to the homogeneous differential equation

\[y^{(3)} - y'' + y' - y = 0 \]

given that \(y = e^x \) is a solution.

B) Find a particular solution to

\[y^{(3)} - y'' + y' - y = xe^x + 2\sin(x) \]

and use part A) to write the general solution.