1. Find all the values of $\sin^{-1}(-i)$.

2. Find the determinant of the following matrix.

\[
\begin{pmatrix}
2 & 0 & 1 & 0 \\
0 & 3 & 0 & 1 \\
1 & 0 & 4 & 0 \\
0 & 1 & 0 & 5
\end{pmatrix}
\]

3. An $n \times n$ matrix A is called skew-symmetric if $A^T = -A$. Show that A^2 is a symmetric matrix if A is a skew-symmetric matrix.

4. Evaluate $\int_0^\infty e^{-2t} \sin 3tdt$.

5. Find the general solutions of the following differential equations $y'' + y = 2007$.

6. Consider a function

$f(x) = 2$, for $-\pi < x < 0$, $f(x) = 2007$, for $x = 0$, $f(x) = -2$, for $0 < x \leq \pi$

and its Fourier series $FS(f)$. Find the value of $FS(f)$ at $x = 0$.

7. Consider a function

$f(x) = 1$, for $-\pi < x \leq 0$, $f(x) = 0$, for $0 < x \leq \pi$

and its Fourier series $FS(f)$. Find the value of $\int_{-\pi}^{\pi} FS(f)(x)(\sin 2006x)dx$.

8. Find the direction of the line normal to the surface $x^{2007}y^{2007}z^{2007} + 1 = 0$ at the point $(1, 1, -1)$.

9. Let S be the curved surface $x^2 + y^2 + z^2 = 4$ and $V = xyi + yzj + zk$, evaluate $\int \int_S (\nabla \times V) \cdot n \sigma$.

10. Evaluate.

$\int_0^\infty \frac{zd\lambda}{(1 + z^2)^3}$

11. Evaluate

$\lim_{n \to \infty} \frac{\Gamma(n + \frac{3}{2})}{\sqrt{n}\Gamma(n + 1)} = \frac{1}{\sqrt{\pi}}$

12. Let a_{ij} be $1 \leq i, j \leq n$ skew symmetric tensor. Evaluate $\delta_{ij}a_{ij}$. **
** Choose 2 questions between questions 1 and question 6, and solve them. Each questions are 25 points.

1. If \(|z_1| < 1\) and \(|z_2| < 1\), show that

\[
\left| \frac{z_1 - z_2}{1 - \bar{z}_1 z_2} \right| < 1.
\]

2. Let \(A\) be a \(2 \times 2\) real matrix defined as

\[
A = \begin{pmatrix} 2 & 1 \\ 1 & -2 \end{pmatrix}.
\]

Consider \(A^{2007} = aA + bI_2\). Determine \(a\) and \(b\).

3. Write and solve the Euler equation to make the following integral stationary.

\[
\int_{x_1}^{x_2} \frac{yy'}{1 + yy'} dx
\]

4. Find the solution of the following differential equation by using the Laplace transform.

\[
y'' + 16y = 8 \cos 4t \quad y_0 = 0, y'_0 = 8
\]

5. Find the solution of the following differential equation.

\[
(D^2 - 6D + 9) y = 12xe^{3x}
\]

6. Evaluate \(\int_S (\nabla \times V) \cdot n \, d\sigma\) where \(S\) is the curved surface of the hemisphere \(x^2 + y^2 + z^2 = 9, \ z \geq 0\) and \(V = (xy^{2007} - yz^{2007})i + (yz^{2007} - zx^{2007})j + (zx^{2007} - xy^{2007})k\).
** Choose 2 questions between questions 1 and question 6, and solve them. Each questions are 30 points.

1. In the following, as you can see something is wrong. Find what and why is wrong.

 Consider
 \[
 \frac{1}{\sqrt{-1}} = \frac{1}{1}.
 \]
 Take square root,
 \[
 \sqrt{\frac{1}{\sqrt{-1}}} = \sqrt{\frac{-1}{1}}.
 \]
 And
 \[
 \frac{1}{\sqrt[3]{\sqrt{-1}}} = \frac{1}{\sqrt[3]{1}}.
 \]
 With cross product,
 \[
 1 = (\sqrt{-1})^2 = -1.
 \]

2. Consider a linear transformation \(A : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) defined as

 \[
 A = \begin{pmatrix}
 \frac{3}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
 \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
 \end{pmatrix}
 \]

 Show this is an orthogonal transformation and find the axes of the rotation.

3. Consider a curve joining two points \(x_1 \) and \(x_2 \) on \(x \)-axis with properly given length \(l \),
 fine the Euler equation whose solution is the equation of curve so that the surface of
 revolution formed by rotating the curve about the \(x \)-axis has minimum area.

4. Evaluate \(\int \int_S \mathbf{V} \cdot n d\sigma \) where \(S \) is the part of the surface \(z = 1 - x^2 - y^2 \) that is above
 the \((x, y) \) plane and \(\mathbf{V} = xi + yj + zk \).

5. Consider the Bessel function \(J_\nu (x) \), evaluate \(J_\frac{\pi}{2} \) (show your work in detail).

6. Let \(a_{ij} \) be \(1 \leq i, j \leq 2007 \) tensor defined as \((i, j) \) entry of the following matrix.

 \[
 \begin{pmatrix}
 1 & 2 & 3 & \ldots & 2007 \\
 0 & 1 & 2 & \ldots & 2006 \\
 0 & 0 & 1 & \ldots & 2005 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & 0 & \ldots & 1
 \end{pmatrix}
 \]

 Evaluate \(a_{ik}a_{kl} \).