Math 318 Exam II March 28, '07

Name:__

ID Number:_____________________________________

Do your work on this exam booklet. There is one page provided for each problem. Extra paper is available for scratch work. On questions 2, 3, and 4 give enough detail so that it is possible to follow your work.

<table>
<thead>
<tr>
<th>1</th>
<th>2a</th>
<th>2b</th>
<th>2c</th>
<th>3a</th>
<th>3b</th>
<th>3c</th>
<th>4a</th>
<th>4b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. (20 points) True or False.

1a. It is impossible to find 4 linearly independent vectors in \(\mathbb{R}^3 \).

1b. If \(T \) is a linear map of \(\mathbb{R}^3 \) to \(\mathbb{R}^3 \) which is not the zero map then the function \(f(\vec{x}) = \| T\vec{x} \| \) does not have a maximum on the set \(\{ \vec{x} \in \mathbb{R}^3 : \| \vec{x} \| < 1 \} \).

1c. In the vector space of polynomials of degree at most 4 the polynomials \(p(x) = x^2 \), \(q(x) = x \) and \(r(x) = 2x^2 - 3x \) are linearly independent.

1d. The set in of all vectors \([\vec{x}, \vec{y}] \) in \(\mathbb{R}^2 \) which satisfy the conditions \(xy = 0 \) and \(-1 \leq x - y \leq 1 \) is compact.

1e. If \(f(\vec{x}) \) is a continuous function on the set \(S = \{ [\vec{x}, \vec{y}] : x^2 + y^2 \leq 1 \leq \} \) then \(f \) has a maximum value on the set \(S \) and that maximum value is taken at a point \(\vec{a} \) where \(Df(\vec{a}) = 0 \).

Question 1 answers:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

2. (35 points) Do 2 of 3.

2a. Perform a series of elementary operations on the rows of the matrix

\[
\begin{pmatrix}
2 & 1 \\
2 & -1 \\
4 & 4 \\
\end{pmatrix}
\]

to obtain the reduced echelon form of the matrix. What is the rank of the matrix?

2b. For which numbers \(a, b, \) and \(c \) does the system of equations

\[
\begin{align*}
2x + y &= 3 \\
2x - y &= 1 \\
4x + cy &= a
\end{align*}
\]
2x + y = a \\
2x - y = b \\
4x + 4y = c

have a solution.

2c. Suppose \(\vec{v_1}, \vec{v_2}, \) and \(\vec{v_3} \) are a basis of \(\mathbb{R}^3 \). Define \(\vec{w_1}, \vec{w_2}, \) and \(\vec{w_3} \) by
\[
\vec{w_1} = \vec{v_2} + \vec{v_3} \\
\vec{w_2} = \vec{v_1} + \vec{v_3} \\
\vec{w_3} = \vec{v_1} + \vec{v_2}.
\]
Must it be true \(\vec{w_1}, \vec{w_2}, \) and \(\vec{w_3} \) are a basis of \(\mathbb{R}^3 \)? Give a complete justification for your answer.

3. (35 points) Do 2 of 3.

3a. Find the maximum and minimum value of the function \(f(x, y) = x + 3y \) on the closed box \(\{(x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, 0 \leq y \leq 1\} \).

3b. Find and classify the critical points of the function \(f(x, y) = x^3 + y^2 - x - 2xy \).

3c. Use the method of Lagrange multipliers to maximize the function \(f(x, y) = xy^2 \) subject to the constraint \(x^2 + y^2 = 3 \).

4. (10 points) Do 1 of 2.

4a. Suppose \(\vec{u} \) and \(\vec{v} \) are linearly independent vectors in \(\mathbb{R}^4 \). For which numbers \(\alpha, \beta \) are the two vectors \(\vec{w} = \vec{u} + \vec{v} \) and \(\vec{z} = \alpha \vec{u} + \beta \vec{v} \) linearly independent.

4b. Recall that if \(T \) is a linear map from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) then the norm of \(T \), \(\| T \| \), is defined to be
\[
\| T \| = \max_{\| x \|=1} \| T x \|.
\]
Show that if \(S \) is another linear map from \(\mathbb{R}^n \) to \(\mathbb{R}^m \) then
\[
\| S - T \| \leq \| S \| + \| T \|.
\]
1. 2a. Perform a series of elementary operations on the rows of the matrix

\[
\begin{pmatrix}
2 & 1 \\
2 & -1 \\
4 & 4 \\
\end{pmatrix}
\]

to obtain the reduced echelon form of the matrix. What is the rank of the matrix?
2b. For which numbers a, b, and c does the system of equations

\begin{align*}
2x + y &= a \\
2x - y &= b \\
4x + 4y &= c
\end{align*}

have a solution.
2c. Suppose $\vec{v}_1, \vec{v}_2,$ and \vec{v}_3 are a basis of \mathbb{R}^3. Define \vec{w}_1, \vec{w}_2, and \vec{w}_3.

\[
\vec{w}_1 = \vec{v}_2 + \vec{v}_3 \\
\vec{w}_2 = \vec{v}_1 + \vec{v}_3 \\
\vec{w}_3 = \vec{v}_1 + \vec{v}_2
\]

Must it be true \vec{w}_1, \vec{w}_2, and \vec{w}_3 are a basis of \mathbb{R}^3? Give a complete justification for your answer.
3a. Find the maximum and minimum value of the function $f(x, y) = x + 3y$ in the closed box \(\{ (x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, 0 \leq y \leq 1 \} \).
3b. Find and classify the critical points of the function \(f(x, y) = x^3 + y^2 - x - 2xy \).
3c. Use the method of Lagrange multipliers to maximize the function $f(x, y) = xy^2$ subject to the constraint $x^2 + y^2 = 3$.
4a. Suppose \(\vec{u} \) and \(\vec{v} \) are linearly independent vectors in \(\mathbb{R}^4 \). For which numbers \(\alpha, \beta \) are the two vectors \(\vec{w} = \vec{u} + \vec{v} \) and \(\vec{z} = \alpha \vec{u} + \beta \vec{v} \) linearly independent.
4b. Recall that if T is a linear map from \mathbb{R}^n to \mathbb{R}^m then the norm of T, $\|T\|$ is defined to be

$$
\|T\| = \max_{\|x\|=1} \|Tx\|.
$$

Show that if S is another linear map from \mathbb{R}^n to \mathbb{R}^m then

$$
\|S - T\| \leq \|S\| + \|T\|.
$$