Math 5021, Fall 2013

Assignment 4, 1 October 2013

PROGRESS: This week we are finishing Chapter 2 and will probably start Chapter 3.

DUE: This assignment is due Tuesday, 8 October at the start of class.

PROBLEMS:

- 1. We proved the Maximum Modulus Theorem in class: If f is a nonconstant function in Hol(Ω) for some region Ω then |f(z)| cannot have a local maximum in Ω . A strict analog for the minimum modulus fails. If $f(z_0) = 0$ then |f(z)| has a local minimum at z_0 . Formulate and prove a theorem which says that this is the only obstacle to a Minimum Modulus Theorem.
- 2. Use your Minimum Modulus Theorem to give a proof of the Fundamental Theorem of Algebra.
- 3. Suppose $a \in \mathbb{D}$. Define $B_a(z)$ by

$$B_a(z) = \frac{z-a}{1-\bar{a}z}.$$

- (a) Note that B_a is holomorphic in $\{z : |z| \le 1\}$. Show that $|B_a(z)| = 1$ if |z| = 1. Conclude that $|B_a(z)| \le 1$ in \mathbb{D} .
- (b) Use this function to prove a Schwartz type lemma for functions f which are holomorphic in \mathbb{D} and are zero at z = a. (i.e. $B_a(z)$ will play the role in the proof that was played by z.)
- 4. Continue the notation of the previous problem. Suppose f is holomorphic in $\overline{\mathbb{D}}$ and that |f(z)| = 1 when |z| = 1. Show that there is a finite set $\{a_i\}_{i=1}^N \subset \mathbb{D}$ (which may include repetitions) so that

$$f(z) = \prod_{i=1}^{N} B_{a_i}(z).$$

5. Using the previous result if you like, show that an entire function which has modulus one on the unit circle must be a monomial.