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1. Introduction. Assume that we have survival data {Xia } for K differ-
ent treatment groups (1 ≤ i ≤ na, 1 ≤ a ≤ K). The values Xia may be
uncensored or censored. If Xia is uncensored , then Lia = Xia is the true
death or failure time. If Xia is censored , then the true lifetime Lia > Xia is
otherwise unknown. Censoring is assumed to be independent of Lia (given
Lia > Xia) and independent of the sample.

We are interested in testing H0 that the true survival times Lia all
have the same distribution, against the alternative that E(La) 6= E(L1) for
some a.

We assume K = 2 for simplicity, which is the most common case of
a treatment and a control group. In this case, we are testing H0 against
H1 : E(L1) 6= E(L2).

2. Permutation Tests in Survival Analysis. For a permutation test, we
first assign numbers Via (called scores) to each observation Xia in such a way
that Via depends only on Xia, its censoring status, and the set of values Xia

as a whole, but is independent of permutations of the data. The scores Via

are typically ranks or midranks or functions of ranks or midranks within the
entire sample, usually modified for censored observations.

The traditional nonparametric Wilcoxon rank-sum (K = 2) and Kruskal-
Wallis (K > 2) tests without censored values use Via = Ria, where Ria is
the rank or midrank of Xia in the entire sample, so that 1 ≤ Ria ≤ N
for N =

∑K
a=1 na. Gehan-Wilcoxon scores are a generalization of the sym-

metrized ranks Rs
ia = 2Ria − (N + 1) that allow for censoring.

Scores for the K samples are defined by

Va =
na∑

i=1

Via, a = 1, 2, . . . , K (2.1)

Statistical tests and P-values for H0 depend on an assumed probability model
for the observed values given H0. Here the implicit probability model is
that, given H0, all possible permutations of the data Xia among the different
samples are equally likely, keeping the same number of values in each sample.
Under our assumptions about the scores Via, the same is true for permutation
of the scores.

For K = 2, permutation-test P-values are found by comparing the ob-
served value V1 for the first sample score with the randomized values of V1
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resulting from permutations of the scores Via among the K samples. The
upper and lower P-values of V1 are

Pup =
#{Randomized V1 : V1 ≥ Observed V1 }

Total number of permutations
(2.2)

Plo =
#{Randomized V1 : V1 ≤ Observed V1 }

Total number of permutations

where # means “number of”. The two-sided P-value of the observed score V1

is twice the smaller of Pup and Plo, or

P = 2min{Pup, Plo }
If Pup < Plo, then the observed V1 is on the “upper tail” of the randomized
distribution of V1, and P = 2Pup. This is usually equivalent to V1 ≥ V for

V =
1
N

A∑
a=1

na∑

i=1

Via (2.3)

If the sample sizes na are large and na/N are bounded from below, then a
central limit theorem for permutations states that

ZP =
V1 − n1V√

Var(V1)
≈ N(0, 1) (2.4)

where V is as in (2.3) and

Var(V1) =
n1n2

N(N − 1)

A∑
a=1

na∑

i=1

(Via − V )2 (2.5)

In (2.5), “≈ N(0, 1)” means distributed as a standard normal. The expres-
sions V and Var(V1) in (2.4)–(2.5) are mean and variance of V1 under random
permutations. The Gehan-Wilcoxon scores have V = 0, which simplifies (2.4)
and (2.5).

3. Cox-Mantel Tests in Survival Analysis. Another family of tests is
based on viewing the observations Xia for K = 2 as a series of contests be-
tween the two samples. Specifically, we consider a series of 2×2 contingency
tables at each of the distinct observed death times ti:

[
di1 Ni1 − di1

di2 Ni2 − di1

]
Ni1

Ni2

di Ni − di Ni

(3.1)
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In (3.1), the rows correspond to the two samples (a = 1, 2). The first column
has the numbers of individuals in each sample who were observed to die or
fail at time ti. The row sums are the numbers of individuals in each sample
who were “at risk” at time ti, which is the same as

Nia = #{ j : Xja ≥ ti }

Using this definition, individuals who died at time ti are considered to be
“at risk” at time ti, as well as those individuals who were last seen alive at
(that is, were censored at) time ti. The second column has the number of
individuals who were “at risk” at time ti but did not die.

Given the 2× 2 tables (3.1), the (weighted) Cox-Mantel statistic for the
first sample is

V1 =
r∑

i=1

wi

(
di1 − diNi1

Ni

)
(3.2)

where

(i) 0 = t0 ≤ t1 < t2 < ti < . . . < tr are the distinct times at which observed
deaths (uncensored values) Xia occur in either sample,

(ii) di is the total number of observed (uncensored) deaths at time ti in all
samples,

(iii) Ni is the size of the total “risk set” at time ti,
(iv) dia, Nia are the same as da, Na but in the ath sample only.
(v) wi ≥ 0 are arbitrary weights.

The usual Cox-Mantel or log-rank test has weights wi = 1. The Wilcoxon
form of the Cox-Mantel test has weights wi = Ni (see below).

The statistic (3.2) is the same as a (weighted) Mantel-Haenszel statistic
for stratified 2 × 2 tables. The only difference is that the 2 × 2 tables are
assumed independent in the Mantel-Haenszel test, whereas here the tables
are slightly dependent in (3.2). This is because the risk-set sizes Ni1, Ni2, Ni

depend on the number of deaths at previous times. However, the 2×2 tables
are conditionally independent given the prior risk set sizes, which turns out to
be sufficient to apply the large-sample approximation of the Mantel-Haenszel
test.

The probability model for H0 for the Cox-Mantel test is that, at each
distinct observed failure time ti, all individuals in the two risk sets of sizes
Ni1, Ni2 at time ti are equally likely to die with some unknown probabil-
ity pi. Using the sample estimator p̂i = di/Ni for pi, the expected number
of individuals in sample #1 who die at time ti is p̂iNi1 = (di/Ni)Ni1. Thus
di1 − (di/Ni)Ni1 is the deviation of the observed deaths from its expected
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value given H0. In particular, E(V1) = 0 given H0 for V1 in (3.2). The ex-
pected value is conditional (in each term) on the risk set sizes Ni1, Ni2 and
the total number of deaths di at that time.

Under these assumptions, the observed counts di1 can be assumed to
have a hypergeometric distribution conditional on di, Ni1, and Ni2, exactly as
in the Mantel-Haenszel test. The variance of V1 is the sum of the conditional
variances for each term, which is

Var(V1) =
r∑

i=1

w2
i

di(Ni − di)Ni1Ni2

N2
i (Ni − 1)

(3.4)

where the ith term is w2
i times the variance of the corresponding hypergeo-

metric distribution. Note that the numerator of the fractions in (3.4) are the
products of the four row and column sums in (3.1). If N is large and na/N
are bounded from below, the expression

ZC =

r∑

i=1

wi

(
di1 − diNi1

Ni

)

√√√√
r∑

i=1

w2
i

di(Ni − di)Ni1Ni2

N2
i (Ni − 1)

(3.5)

has a standard normal distribution.

4. Cox-Mantel Scores are Permutation Scores. We now prove that
the weighted Cox-Mantel statistic (3.2) (that is, the numerator of (3.5) )
can always be written in a natural way as a sum of permutation-test-like
scores Vja as in (2.1).

We first note that the risk set sizes Ni1 can be found by summing over
the times tj ≥ ti:

Ni1 =
r∑

j=i

(dj1 + cj1) (4.1)

where cj1 is the number of censored observations X1k with tj ≤ X1k < tj+1,
where t0 = 0 and tr+1 = ∞ for convenience. Then by (3.2) and (4.1)

V1 =
r∑

i=1

wi

(
di1 − diNi1

Ni

)
(4.2)

=
r∑

i=1

widi1 −
r∑

i=1

wi
di

Ni

r∑

j=i

(dj1 + cj1)
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=
r∑

i=1

widi1 −
r∑

i=1

(di1 + ci1)
i∑

j=1

wj
dj

Nj

=
r∑

i=1


wi −

i∑

j=1

wj
dj

Nj


 di1 −

r∑

i=1




i∑

j=1

wj
dj

Nj


 ci1

Since the first sample size n1 =
∑r

j=1(dj1+cj1) as in (4.1), the last expression
can be viewed as a sum over all of the individuals in the first sample. That
is,

V1 =
n1∑

j=1

Vj1

where

Vja =





wi −
∑i

k=1 wk
dk

Nk
If Xja = ti is observed

−∑i
k=1 wk

dk

Nk
If Xja is censored and ti ≤ Xja < ti+1

(4.3)
Note that the Vja in (4.3) do not depend explicitly on the sample designa-
tor a. They are also constant within ties groups (including censoring state)
of the values Xja. This shows that the Cox-Mantel statistic (3.1) can be
written as a sample permutation-like score (2.1).

5. Examples. (Example 1.) The Wilcoxon form of the Cox-Mantel statis-
tic (3.1) uses weights wi = Ni. Then by (4.3)

Vja =

{
Ni −

∑i
k=1 dk If Xja = ti is observed

−∑i
k=1 dk If Xja is censored and ti ≤ Xja < ti+1

If there are no ties and no censoring, then dk = 1 and the risk set sizes are
Ni = N − i + 1. Then

Vja = Ni − i = N − 2i + 1 = −(
2i− (N + 1)

)

which is exactly the negative of the symmetrized Wilcoxon rank-sum rank
of Vja. If there are ties but no censoring, then Vja are minus the Wilcoxon
midranks. (Exercise: Prove this.)

The difference in sign results from the fact that if (for example) sam-
ple #1 dies at a faster rate, then its Wilcoxon ranks will be smaller (and thus
V1 < V ) while the entries di1 in the 2× 2 tables in (3.3) will be larger than
expected (and hence V1 > 0). Except for the sign, the sample scores V1 are
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the same. Of course, you could make the signs the same by using V1 for one
test and the analog of V2 for the other test, but the difference in definitions
may be more confusing than the difference in signs. It is not uncommon for
signs to vary in survival analysis statistics due to different ways of counting
deaths.

In general, with ties and censoring, Vja with wi = Ni can be written

Vja = #{ (k, b) : Xkb ≥ ti } − #{ (k, b) : Observed death Xkb ≤ ti }

if Xja = ti is observed and

Vja = −#{ (k, b) : Observed death Xkb ≤ Xja }

if Xja is censored. This is exactly the Mantel form of the Gehan-Wilcoxon
statistic. (Exercise: Prove that the two sets of formulas for Vja are the
same.)

Example 2. The log-rank form of the Cox-Mantel statistic (3.1) uses weights
wi = 1. Then

Vja =





1−∑i
k=1

dk

Nk
If Xja = ti is observed

−∑i
k=1

dk

Nk
If Xja is censored and ti ≤ Xja < ti+1

If there are no ties and no censored observations, then dk = 1 and Nk =
N − k + 1 as before. Then

i∑

k=1

dk

Nk
=

i∑

k=1

1
N − k + 1

=
N∑

k=N−i+1

1
k
≈ log

(
N

N − i + 1

)

The “log” in the log-rank test comes from this logarithmic approximation.

6. Conclusion. The sample scores for the Gehan-Wilcoxon test and the
Wilcoxon form of the Cox-Mantel test — that is, the numerators of the
test statistics (2.4) and (3.1) — are exactly the same except for the sign.
However, the probability models for the two tests differ.

The means of the sample scores given H0 are zero in both cases, but
the variances — that is, the expression (2.5) (with V = 0) and (3.4) —
are generally different. In practice, the values of the large-sample normal
statistics ZP in (2.4) and ZC in (3.5) are usually similar but slightly different.
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7. Which is Best: Gehan-Wilcoxon or Log Rank? The Cox-Mantel
statistic (3.1) with wi = 1 puts equal weight on deaths at all observed death
times while the Gehan-Wilcoxon test (in effect) uses weights wi = Ni for all
deaths.

Consider a general probability model in which, for given observed death
times ti, each extant individual of sample #1 dies with probability pi1 at
time ti and each extant individual of sample #2 dies with probability pi2.
Note that pi1 and pi2 do not specify death rates, since the death times ti can
be spaced out or bunched in without affecting pi1 and pi2.

If pi1 = p1 and pi2 = p2 are constant in time, then it can be shown
that the log-rank test is more powerful than the Gehan-Wilcoxon test for
detecting H1 : p1 6= p2. However, if pia = Cipa where Ci = Ni, then the
Gehan-Wilcoxon test can be shown to be more powerful. That is the Gehan-
Wilcoxon test is more powerful if initial death rates are higher, but not if
death rates are constant over time.

From the form of (3.1), if you want to put equal emphasis on all deaths,
you should use the log-rank test. If, conversely, you want to put more em-
phasis on earlier deaths (perhaps later deaths are more likely to be due to
unrelated causes), then the Gehan-Wilcoxon test may be preferable.


