Math450 HW1 Answers - Spring 2009

Stanley Sawyer - Washington University - Vs. February 16, 2009

1. (a) Exercise 1 and (b) Exercise 3 at the end of Section 2.1, page 21 on the textbook. (Verify that two formulas were solutions of particular partial differential equations. The verifications are not difficult.)
2. (Solve $\left.u_{t}+c u_{x}=x t, u(x, 0)=f(x)\right)$ (An inhomogeneous first-order partial differential equation.) Solving first-order PDEs, both inhomogeneous or homogeneous, can be broken into three steps:
Step 1: Find the characteristics $x(t)=x\left(t, x_{0}\right)$ in terms of t and the initial point $x(0)=x_{0}$. In this case, the characteristic equation is $(d / d t) x=c$ with $x(0)=x_{0}$, so that the characteristics are

$$
\begin{equation*}
x(t)=x\left(t, x_{0}\right)=x_{0}+c t \tag{1}
\end{equation*}
$$

The usefulness of characteristics is that

$$
(d / d t) u(x(t), t)=(d x / d t) u_{x}+u_{t}=u_{t}+c u_{x}=x(t) t
$$

where the right-hand side that does not depend on any derivatives, so that finding $v(t)=u(x(t), t))$ along characteristics reduces to, at worst, solving a second first-order ordinary differential equation.
Step 2: Find $u(x, t)$ along each characteristic. Here

$$
(d / d t) u(x(t), t)=x(t) t=\left(x_{0}+c t\right) t=x_{0} t+c t^{2}
$$

or, if $v(t)=u(x(t), t)$, then $(d / d t) v(t)=x_{0} t+c t^{2}$. Thus

$$
v(t)=u\left(x\left(t, x_{0}\right), t\right)=(1 / 2) x_{0} t^{2}+(1 / 3) c t^{3}+v(0)
$$

Here $v(0)=u\left(x\left(0, x_{0}\right), 0\right)=u\left(x_{0}, 0\right)=f\left(x_{0}\right)$, so that

$$
u(x(t), t)=u\left(x_{0}+c t, t\right)=(1 / 2) x_{0} t^{2}+(1 / 3) c t^{3}+f\left(x_{0}\right)
$$

Step 3: Change coordinates from $\left(x_{0}, t\right)$ back to (x, t) to derive a formula for $u(x, t)$ (without reference to characteristics). This can be done by finding the inverse $p(x, t)$ of $x\left(t, x_{0}\right)$ for fixed $t>0$ so that

$$
x=x\left(t, x_{0}\right) \quad \text { if and only if } \quad x_{0}=p(x, t)
$$

In this case, $x=x\left(t, x_{0}\right)=x_{0}+c t$ if and only if $x_{0}=p(x, t)$ for $p(x, t)=$ $x-c t$, so that the solution is

$$
\begin{aligned}
u(x, t) & =(1 / 2)(x-c t) t^{2}+(1 / 3) c t^{3}+f(x-c t) \\
& =(1 / 2) x t^{2}-(1 / 6) c t^{3}+f(x-c t)
\end{aligned}
$$

3. (Solve $u_{t}+\frac{1}{x} u_{x}=0, u(x, 0)=f(x)$, for $x>0$) Following the three steps of Problem 2,

Math450 HW1 Answers

Step 1: Here the characteristics satisfy $(d / d t) x=1 / x$, or $x(d / d t) x=$ $(1 / 2)(d / d t) x^{2}=1$, so that $x\left(t, x_{0}\right)^{2}=2 t+2 C=2 t+x_{0}^{2}$, so that the characteristic with $x(0)=x_{0}$ is

$$
x\left(t, x_{0}\right)=\sqrt{x_{0}^{2}+2 t}
$$

Step 2: Along characteristics, $(d / d t) u(x(t), t)=0$, so that

$$
u\left(x\left(t, x_{0}\right), t\right)=u\left(x_{0}, 0\right)=f\left(x_{0}\right)
$$

Step 3: Change coordinates from $\left(x_{0}, t\right)$ back to (x, t) to derive a formula for $u(x, t)$ without reference to characteristics. If

$$
\begin{equation*}
x=x\left(t, x_{0}\right) \quad \text { if and only if } \quad x_{0}=p(x, t) \tag{2}
\end{equation*}
$$

then $u(x, t)=f(p(x, t))$ in this case (and for many homogeneous first-order PDEs in general). Here $x=\sqrt{x_{0}^{2}+2 t}$ so that $x^{2}=x_{0}^{2}+2 t$ and $x_{0}=p(x, t)=$ $\sqrt{x^{2}-2 t}$. Thus

$$
u(x, t)=f\left(\sqrt{x^{2}-2 t}\right)
$$

for $x>0$ and $0 \leq t<(1 / 2) x^{2}$.
4. (Solve $\left.u_{t}+c u_{x}=u^{2}, u(x, 0)=f(x)\right)$ Following the same three steps,

Step 1: As in Problem 2, the characteristics are $x\left(t, x_{0}\right)=x_{0}+c t$.
Step 2: $v(t)=u(x(t), t))$ satisfies

$$
(d / d t) v(t)=u_{t}+c u_{x}=u(x(t), t)^{2}=v(t)^{2}
$$

or $v(t)^{-2}(d / d t) v(t)=-(d / d t)(1 / v(t))=1$. Thus $-1 / v(t)=t+C$ or

$$
v(t)=u\left(x\left(t, x_{0}\right), t\right)=-1 /(t+C)=1 /\left(C_{1}-t\right), \quad C_{1}=-C
$$

Thus

$$
v(0)=u\left(x_{0}, 0\right)=f\left(x_{0}\right)=1 / C_{1} \quad \text { and so } \quad C_{1}=1 / f\left(x_{0}\right)
$$

which leads to

$$
u\left(x\left(t, x_{0}\right), t\right)=1 /\left(C_{1}-t\right)=\frac{f\left(x_{0}\right)}{1-t f\left(x_{0}\right)}
$$

Step 3: As in Problem 2, $x_{0}=p(x, t)=x-c t$ if and only if $x=x\left(t, x_{0}\right)=$ $x_{0}+c t$, so that the solution is

$$
u(x, t)=\frac{f(p(x, t))}{1-t f(p(x, t))}=\frac{f(x-c t)}{1-t f(x-c t)}
$$

which is valid as long as $t f(x-c t)<1$ along $y(t)=x-c t$ (and otherwise blows up).
5. (Show that $u_{t}+u u_{x}=0, u(x, 0)=f(x)$ cannot have a continuouslydifferentiable solution for all $t>0$ if there exist $x_{1}<x_{2}$ such that also $f\left(x_{2}\right)<f\left(x_{1}\right)$.) Following the recipe above,
Step 1: The characteristics satisfy $(d / d t) x\left(t, x_{0}\right)=u(x(t), t)$. However, along a characteristic,

$$
(d / d t) u(x(t), t)=u_{t}+u u_{x}=0
$$

so that $u(x(t), t)=u\left(x_{0}, 0\right)=f\left(x_{0}\right)$. Thus along characteristics

$$
(d / d t) x\left(t, x_{0}\right)=u(x(t), t)=f\left(x_{0}\right)
$$

and the characteristics satisfy

$$
\begin{equation*}
x\left(t, x_{0}\right)=x_{0}+f\left(x_{0}\right) t \quad \text { for all } x_{0}, t>0 \tag{3}
\end{equation*}
$$

Step 2: As in Step 1, $u\left(x\left(t, x_{0}\right), t\right)=f\left(x_{0}\right)$ is constant along characteristics. If $x_{1}<x_{2}$ and $f\left(x_{2}\right)<f\left(x_{1}\right)$, then by (3) there exists $t>0$ such that

$$
\begin{equation*}
x_{1}+f\left(x_{1}\right) t=x_{2}+f\left(x_{2}\right) t \tag{4}
\end{equation*}
$$

For that value of t

$$
\begin{aligned}
f\left(x_{1}\right) & =u\left(x\left(t, x_{1}\right), t\right)=u\left(x_{1}+f\left(x_{1}\right) t, t\right) \\
& =u\left(x_{2}+f\left(x_{2}\right) t, t\right)=u\left(x\left(t, x_{2}\right), t\right)=f\left(x_{2}\right) \neq f\left(x_{1}\right)
\end{aligned}
$$

This is a contradiction, which implies that $u_{t}+u u_{x}=0$ cannot have a continuously-differentiable solution for $t>0$ with $u(x, 0)=f(x)$. Any function $u(x, t)$ that is continuously differentiable in both arguments satisfies $(d / d t)\left(u\left(x\left(t, x_{0}\right) t\right)=0\right.$ in this case, which is what leads to the contradiction.
6. (Show that $u_{t}+u u_{x}=0, u(x, 0)=f(x)$ has a continuously-differentiable solution for all $t>0$ if $f^{\prime}(x)>0$ for all x.) If $f^{\prime}(x)>0$ for all x, then $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$. In particular, equation (4) above cannot happen for $t>0$.

Fix $t>0$. Since $f^{\prime}(x)>0$, the function $\phi\left(x_{0}\right)=x_{0}+f\left(x_{0}\right) t$ is strictly increasing as a function of x_{0}. Since $\phi\left(x_{0}\right) \rightarrow-\infty$ as $x_{0} \rightarrow-\infty$ and $\phi\left(x_{0}\right) \rightarrow$ ∞ as $x_{0} \rightarrow \infty$, it follows that the equation

$$
x=\phi\left(x_{0}\right)=x_{0}+f\left(x_{0}\right) t
$$

Math450 HW1 Answers
is uniquely solvable for x_{0} for any x and fixed $t>0$. Writing the unique solution as $x_{0}=p(x, t)$, we have

$$
\begin{equation*}
x=x\left(t, x_{0}\right) \quad \text { if and only if } \quad x_{0}=p(x, t) \tag{5}
\end{equation*}
$$

It follows from the fact that

$$
\frac{\partial}{\partial x_{0}}\left(x_{0}+f\left(x_{0}\right) t\right)=1+f^{\prime}\left(x_{0}\right) t \neq 0
$$

for all x_{0} and $t>0$ that $p(x, t)$ is continuously differentiable in x and t. It then follows from Step 2 of Problem 5 that

$$
u(x, t)=f(p(x, t))
$$

is a continuously differentiable solution of $u_{t}+u u_{x}=0$ for all $t>0$ with $u(x, 0)=f(x)$.

