Ma 5051 — Real Variables and Functional Analysis Problem Set #1 — Due September 10, 2009

Prof. Sawyer — Washington University

Text references are to Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd edn, John Wiley & Sons, 1999.

1. (Problem 5, page 24) Let $\mathcal{M} = \mathcal{M}(\mathcal{E})$ be the σ -algebra of subsets of X generated by subsets $\mathcal{E} \subseteq P(X)$. Then

$$\mathcal{M} = (\text{Set union}) \{ \mathcal{M}(\mathcal{C}_0) : \text{countable } \mathcal{C}_0 \subseteq \mathcal{E} \}$$

where $\mathcal{M}(\mathcal{C})$ means the smallest σ -algebra containing \mathcal{C} . (*Hint*: Show that the right-hand side above is a σ -algebra.)

2. Let $X = (X, \rho)$ be a separable metric space and set $S_r(x) = \{ y : \rho(x, y) < r \}$ for real r > 0 and $x \in X$. Then the Borel σ -algebra $\mathcal{B}(X)$ (generated by the class τ of all open sets $\mathcal{O} \subseteq X$) satisfies

$$\mathcal{M}\{S_r(x): r > 0, x \in X\} = \mathcal{B}(X)$$

(Note that this may not be true if X is not separable.)

3. (Problem 12, page 27) Let (X, \mathcal{M}, μ) be a finite measure space. Recall that $E \bigtriangleup F = (E - F) \cup (F - E)$.

(a) If $E, F \in \mathcal{M}$ and $\mu(E \triangle F) = 0$, then $\mu(E) = \mu(F)$.

(b) Say that $E \sim F$ if $\mu(E \bigtriangleup F) = 0$. Then \sim is an equivalence relation on \mathcal{M} .

(c) Define $\rho(E, F) = \mu(E \triangle F)$ if $E, F \in \mathcal{M}$. Then $\rho(E, G) \leq \rho(E, F) + \rho(F, G)$ for all $E, F, G \in M$ and hence ρ defines a metric on the space \mathcal{M}/\sim of equivalence classes.

4. Set $\mu^*(E) = \sqrt{\operatorname{card}(E)}$ for subsets $E \subseteq X$ where $\operatorname{card}(E)$ means the number of elements of E. (Thus $0 \leq \operatorname{card}(E) \leq \infty$.)

(a) Show that $\mu^*(E)$ is an outer measure on X.

(b) Define $\mathcal{F}(\mu^*)$ as the class of all μ^* -measurable subsets $A \subseteq X$ (see Section 1.4 in the text). Then $\mathcal{F}(\mu^*) = \{\phi, X\}$. (*Hint*: Consider sets E with two points.)

Carathéodory's Theorem (Theorem 1.11 in the text) asserts that, for any outer measure μ^* , $\mathcal{F}(\mu^*)$ is a σ -algebra and μ^* is a measure on $\mathcal{F}(\mu^*)$. Note that the conclusion in this case is not deep.