Ma 5051 — Real Variables and Functional Analysis Solutions for Problem Set #1 due September 10, 2009

Prof. Sawyer — Washington University

See m5051hw1.tex for problem text.

1. Since the reverse set inclusion follows from $C_0 \subseteq \mathcal{E}$ implies $\mathcal{M}(C_0) \subseteq \mathcal{M}(\mathcal{E})$, it is sufficient to prove

(1)
$$\mathcal{M}(\mathcal{E}) \subseteq (\text{Set union}) \{ \mathcal{M}(\mathcal{C}_0) : \text{countable } \mathcal{C}_0 \subseteq \mathcal{E} \}$$

Let \mathcal{M}_1 be the right-hand side of (1). If we can show that $\mathcal{E} \subseteq \mathcal{M}_1$ and that \mathcal{M}_1 is a σ -algebra, then $\mathcal{E} \subseteq \mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}_1$ from the definition of $\mathcal{M}(\mathcal{E})$ and (1) would follow.

Since any $E \in \mathcal{E}$ implies $E \in \{E\} \subseteq \mathcal{M}(\{E\})$, we conclude $\mathcal{E} \subseteq \mathcal{M}_1$. To show that \mathcal{M}_1 is a σ -algebra, we need to show (i) $\phi \in \mathcal{M}_1$, (ii) $A \in \mathcal{M}_1$ implies $A^c \in \mathcal{M}_1$, and (iii) $\{A_i\} \subseteq \mathcal{M}_1$ implies $\bigcup_{i=1}^{\infty} \in \mathcal{M}_1$. For (i), $\phi \in \mathcal{M}(\mathcal{C}_0)$ for any \mathcal{C}_0 even if $\mathcal{C}_0 = \phi$, so $\phi \in \mathcal{M}_1$. For (ii), if $A \in \mathcal{M}_1$, then $A \in \mathcal{M}(\mathcal{C}_0)$ for some countable $\mathcal{C}_0 \subseteq \mathcal{E}$, so $A^c \in \mathcal{M}(\mathcal{C}_0) \subseteq \mathcal{M}_1$. For (iii), assume $A_i \in \mathcal{M}(\mathcal{C}_i)$ for countable sets $\mathcal{C}_i \subseteq \mathcal{E}$. Then $C = \bigcup_{i=1}^{\infty} C_i \subset \mathcal{E}$ is also countable, and $A_i \in \mathcal{M}(\mathcal{C})$ for all *i*. Thus $\bigcup_{i=1}^{\infty} A_i \in \mathcal{M}(\mathcal{C}) \subseteq \mathcal{M}_1$, which show that \mathcal{M}_1 is a σ -algebra, which completes the proof of the result.

2. Let $\mathcal{E} = \{S_r(x) : r > 0, x \in X\}$. Since $\mathcal{E} \subseteq \tau$, $\mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}(\tau)$. I now claim $\tau \subseteq \mathcal{M}(\mathcal{E})$, which would prove $\mathcal{M}(\tau) \subseteq \mathcal{M}(\mathcal{E})$ and hence $\mathcal{M}(\tau) = \mathcal{M}(\mathcal{E})$. Let $\{y_n : n = 1, 2, \ldots\} \subseteq X$ be a sequence with $\overline{\{y_n\}} = X$. Let $\mathcal{O} \in \tau$ be an arbitrary open set. If $y_m \in \mathcal{O}$, let $r_m = d(y_m, \partial \mathcal{O}) = \sup r : S_r(y_m) \subseteq \mathcal{O}$. Then $r_m > 0$ and $S_{r_m}(y_m) \subseteq \mathcal{O}$. For a general $y \in \mathcal{O}$, there exist $y_{m_i} \in \mathcal{O}$ such that $y_{m_i} \to y$ as $i \to \infty$. Then $r = d(y, \partial \mathcal{O}) > 0$ and $\liminf_{i \to \infty} r_{y_i} \ge r$. It follows that $y \in S_{y_{m_i}}$ for sufficiently large i and hence

(2)
$$\mathcal{O} = \cup S_{r_m}(y_m) : y_m \in \mathcal{O}$$

since the right-hand side of (2) is countable, it follows that $\mathcal{O} \in \mathcal{M}(\mathcal{E})$ and hence $\mathcal{M}(\tau) = \mathcal{M}(\mathcal{E})$. (One could also argue from the fact that a separable metric space is second countable.)

3. First, given $E, F, G \in \mathcal{M}$, note that $E - G \subseteq (E - F) \cup (F - G)$. The same set inequality with E, F, G replaced by G, F, E implies

(3)
$$\mu(EMG) \le \mu(EMF) + \mu(FMG)$$

. where $EMG = (E - G) \cup (G - E)$.

(a) Note $E \subseteq F \cup (E - F)$ and $F \subseteq E \cup (F - E)$. If $\mu(EMF) = 0$, then $\mu(E) \leq \mu(F) \leq \mu(E)$ and $\mu(E) = \mu(F)$.

(b) For ~ to be an equivalence relation of \mathcal{M} , we need that for all $E, F, G \in \mathcal{M}$, (i) $E \sim E$ (for all $E \in \mathcal{M}$), (ii) $E \sim F$ implies $F \sim E$, and (iii) if $E \sim F$ and $F \sim G$, then $E \sim G$. Since $E \sim F$ means $\mu(EMF) = 0$ and EMF = FME, (i) and (ii) follows, and (iii) follows from (3).

(c) Define $\rho(E, F) = \mu(E \triangle F)$. Then $\rho(E, G) \le \rho(E, F) + \rho(F, G)$ by (3) and ρ defines a metric on the space of equivalence classes \mathcal{M}/\sim by basic properties of equivalence classes.

4. Set $\mu^*(E) = \sqrt{\operatorname{card}(E)}$ for $E \subseteq X$.

(a) We must show that (i) $\mu^*(\phi) = 0$, (ii) $E \subseteq F$ implies $\mu^*(E) \leq \mu^*(F)$, and (iii) $\mu^*(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} \mu^*(E_i)$ for arbitrary sets $E, F, E_i \subseteq X$. Properties (i) and (ii) follow from the fact that $\mu^*(E)$ is a monotonic function of the number of elements in E. For (iii),

$$\mu^* \left(\bigcup_{i=1}^{\infty} E_i \right) = \sqrt{\operatorname{card} \left(\bigcup_{i=1}^{\infty} E_i \right)} \leq \sqrt{\sum_{i=1}^{\infty} \operatorname{card} (E_i)}$$
$$= \sqrt{\sum_{i=1}^{\infty} x_i} \leq \sum_{i=1}^{\infty} \sqrt{x_i}, \quad x_i = \sqrt{\operatorname{card} (E_i)}$$

follows from the inequality

$$\sum_{i=1}^{\infty} x_i \leq \left(\sum_{i=1}^{\infty} \sqrt{x_i}\right)^2 = \sum_{i=1}^{\infty} x_i + \sum_{i< j} \sqrt{x_i x_j}$$

(b) Assume $x \in A$ and $y \notin A$ for $A \in \mathcal{F}(\mu^*)$ and set $E = \{x, y\}$. Then the condition for $A \in \mathcal{F}(\mu^*)$ is

(4)
$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)$$

for all subsets $E \subseteq X$. If $x \in A$ and $y \notin A$ and $E = \{x, y\}$, then $\mu^*(E) = \sqrt{2}$ and $\mu^*(E \cap A) = \mu^*(E \cap A^c) = 1$, which contradicts (5). Thus $A \in \mathcal{F}(\mu^*)$ can only occur if $A = \phi$ or A = X, so that $\mathcal{F}(\mu^*) = \{\phi, X\}$.