Ma 5051 - Real Variables and Functional Analysis

Solutions for Problem Set \#1 due September 10, 2009

Prof. Sawyer - Washington University
See m5051hw1.tex for problem text.

1. Since the reverse set inclusion follows from $\mathcal{C}_{0} \subseteq \mathcal{E}$ implies $\mathcal{M}\left(\mathcal{C}_{0}\right) \subseteq \mathcal{M}(\mathcal{E})$, it is sufficient to prove

$$
\begin{equation*}
\mathcal{M}(\mathcal{E}) \subseteq(\text { Set union })\left\{\mathcal{M}\left(\mathcal{C}_{0}\right): \text { countable } \mathcal{C}_{0} \subseteq \mathcal{E}\right\} \tag{1}
\end{equation*}
$$

Let \mathcal{M}_{1} be the right-hand side of (1). If we can show that $\mathcal{E} \subseteq \mathcal{M}_{1}$ and that \mathcal{M}_{1} is a σ-algebra, then $\mathcal{E} \subseteq \mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}_{1}$ from the definition of $\mathcal{M}(\mathcal{E})$ and (1) would follow.

Since any $E \in \mathcal{E}$ implies $E \in\{E\} \subseteq \mathcal{M}(\{E\})$, we conclude $\mathcal{E} \subseteq \mathcal{M}_{1}$. To show that \mathcal{M}_{1} is a σ-algebra, we need to show (i) $\phi \in \mathcal{M}_{1}$, (ii) $A \in \mathcal{M}_{1}$ implies $A^{c} \in \mathcal{M}_{1}$, and (iii) $\left\{A_{i}\right\} \subseteq \mathcal{M}_{1}$ implies $\cup_{i=1}^{\infty} \in \mathcal{M}_{1}$. For (i), $\phi \in \mathcal{M}\left(\mathcal{C}_{0}\right)$ for any \mathcal{C}_{0} even if $\mathcal{C}_{0}=\phi$, so $\phi \in \mathcal{M}_{1}$. For (ii), if $A \in \mathcal{M}_{1}$, then $A \in \mathcal{M}\left(\mathcal{C}_{0}\right)$ for some countable $\mathcal{C}_{0} \subseteq \mathcal{E}$, so $A^{c} \in \mathcal{M}\left(\mathcal{C}_{0}\right) \subseteq \mathcal{M}_{1}$. For (iii), assume $A_{i} \in \mathcal{M}\left(C_{i}\right)$ for countable sets $\mathcal{C}_{i} \subseteq \mathcal{E}$. Then $C=\cup_{i=1}^{\infty} C_{i} \subset \mathcal{E}$ is also countable, and $A_{i} \in \mathcal{M}(\mathcal{C})$ for all i. Thus $\cup_{i=1}^{\infty} A_{i} \in \mathcal{M}(\mathcal{C}) \subseteq \mathcal{M}_{1}$, which show that \mathcal{M}_{1} is a σ-algebra, which completes the proof of the result.
2. Let $\mathcal{E}=\left\{S_{r}(x): r>0, x \in X\right\}$. Since $\mathcal{E} \subseteq \tau, \mathcal{M}(\mathcal{E}) \subseteq \mathcal{M}(\tau)$. I now claim $\tau \subseteq \mathcal{M}(\mathcal{E})$, which would prove $\mathcal{M}(\tau) \subseteq \mathcal{M}(\mathcal{E})$ and hence $\mathcal{M}(\tau)=\mathcal{M}(\mathcal{E})$. Let $\left\{y_{n}: n=1,2, \ldots\right\} \subseteq X$ be a sequence with $\overline{\left\{y_{n}\right\}}=X$. Let $\mathcal{O} \in \tau$ be an arbitrary open set. If $y_{m} \in \mathcal{O}$, let $r_{m}=d\left(y_{m}, \partial \mathcal{O}\right)=\sup r: S_{r}\left(y_{m}\right) \subseteq \mathcal{O}$. Then $r_{m}>0$ and $S_{r_{m}}\left(y_{m}\right) \subseteq \mathcal{O}$. For a general $y \in \mathcal{O}$, there exist $y_{m_{i}} \in \mathcal{O}$ such that $y_{m_{i}} \rightarrow y$ as $i \rightarrow \infty$. Then $r=d(y, \partial \mathcal{O})>0$ and $\liminf _{i \rightarrow \infty} r_{y_{i}} \geq r$. It follows that $y \in S_{y_{m_{i}}}$ for sufficiently large i and hence

$$
\begin{equation*}
\mathcal{O}=\cup S_{r_{m}}\left(y_{m}\right): y_{m} \in \mathcal{O} \tag{2}
\end{equation*}
$$

since the right-hand side of (2) is countable, it follows that $\mathcal{O} \in \mathcal{M}(\mathcal{E})$ and hence $\mathcal{M}(\tau)=\mathcal{M}(\mathcal{E})$. (One could also argue from the fact that a separable metric space is second countable.)
3. First, given $E, F, G \in \mathcal{M}$, note that $E-G \subseteq(E-F) \cup(F-G)$. The same set inequality with E, F, G replaced by G, F, E implies

$$
\begin{equation*}
\mu(E M G) \leq \mu(E M F)+\mu(F M G) \tag{3}
\end{equation*}
$$

. where $E M G=(E-G) \cup(G-E)$.
(a) Note $E \subseteq F \cup(E-F)$ and $F \subseteq E \cup(F-E)$. If $\mu(E M F)=0$, then $\mu(E) \leq \mu(F) \leq \mu(E)$ and $\mu(E)=\mu(F)$.
(b) For \sim to be an equivalence relation of \mathcal{M}, we need that for all $E, F, G \in \mathcal{M}$, (i) $E \sim E$ (for all $E \in \mathcal{M}$), (ii) $E \sim F$ implies $F \sim E$, and (iii) if $E \sim F$ and $F \sim G$, then $E \sim G$. Since $E \sim F$ means $\mu(E M F)=0$ and $E M F=F M E$, (i) and (ii) follow, and (iii) follows from (3).
(c) Define $\rho(E, F)=\mu(E \Delta F)$. Then $\rho(E, G) \leq \rho(E, F)+\rho(F, G)$ by (3) and ρ defines a metric on the space of equivalence classes \mathcal{M} / \sim by basic properties of equivalence classes.
4. Set $\mu^{*}(E)=\sqrt{\operatorname{card}(E)}$ for $E \subseteq X$.
(a) We must show that (i) $\mu^{*}(\phi)=0$, (ii) $E \subseteq F$ implies $\mu^{*}(E) \leq \mu^{*}(F)$, and (iii) $\mu^{*}\left(\cup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} \mu^{*}\left(E_{i}\right)$ for arbitrary sets $E, F, E_{i} \subseteq X$. Properties (i) and (ii) follow from the fact that $\mu^{*}(E)$ is a monotonic function of the number of elements in E. For (iii),

$$
\begin{aligned}
\mu^{*}\left(\bigcup_{i=1}^{\infty} E_{i}\right) & =\sqrt{\operatorname{card}\left(\bigcup_{i=1}^{\infty} E_{i}\right)} \leq \sqrt{\sum_{i=1}^{\infty} \operatorname{card}\left(E_{i}\right)} \\
& =\sqrt{\sum_{i=1}^{\infty} x_{i}} \leq \sum_{i=1}^{\infty} \sqrt{x_{i}}, \quad x_{i}=\sqrt{\operatorname{card}\left(E_{i}\right)}
\end{aligned}
$$

follows from the inequality

$$
\sum_{i=1}^{\infty} x_{i} \leq\left(\sum_{i=1}^{\infty} \sqrt{x_{i}}\right)^{2}=\sum_{i=1}^{\infty} x_{i}+\sum \sum_{i<j} \sqrt{x_{i} x_{j}}
$$

(b) Assume $x \in A$ and $y \notin A$ for $A \in \mathcal{F}\left(\mu^{*}\right)$ and set $E=\{x, y\}$. Then the condition for $A \in \mathcal{F}\left(\mu^{*}\right)$ is

$$
\begin{equation*}
\mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \tag{4}
\end{equation*}
$$

for all subsets $E \subseteq X$. If $x \in A$ and $y \notin A$ and $E=\{x, y\}$, then $\mu^{*}(E)=\sqrt{2}$ and $\mu^{*}(E \cap A)=\mu^{*}\left(E \cap A^{c}\right)=1$, which contradicts (5). Thus $A \in \mathcal{F}\left(\mu^{*}\right)$ can only occur if $A=\phi$ or $A=X$, so that $\mathcal{F}\left(\mu^{*}\right)=\{\phi, X\}$.

