Ma 5051 — Real Variables and Functional Analysis Solutions for Problem Set #2 due September 17, 2009

Prof. Sawyer — Washington University

See m5051hw2.tex for problem text.

1. Let $\{A_j : j = 1, 2, ...\}$ be a sequence of disjoint sets in $\mathcal{M}(\mu^*)$, where $\mathcal{M}(\mu^*)$ means the set of μ^* -measurable sets, and let $B = \bigcup_{j=1}^{\infty} A_j$. Under these assumptions, the proof of Proposition 1.11 on page 30 contains the inequality

$$\mu^*(E) \ge \sum_{j=1}^{\infty} \mu^*(E \cap A_j) + \mu^*(E \cap B^c)$$

Thus $\mu^*(E \cap B) \ge \sum_{j=1}^{\infty} \mu^*(E \cap A_j)$ by replacing E by $E \cap B$. Since μ^* is countably subadditive, $\mu^*(E \cap B) = \sum_{j=1}^{\infty} \mu^*(E \cap A_j)$, which was to be proven.

2. (a) By definition

$$\mu^*(E) = \inf\left\{\sum_{i=1}^{\infty} \mu_0(A_i) : E \subseteq \bigcup_{i=1}^{\infty} A_i, \ A_i \in \mathcal{A}\right\}$$
(1)

In general if $E \subseteq \bigcup_{i=1}^{\infty} A_i$, then $\widetilde{A}_i = A_i - \bigcup_{j=1}^{i-1} A_j \in \mathcal{A}$ where $\{\widetilde{A}_i\}$ are disjoint, and $\sum_{i=1}^{\infty} \mu_0(\widetilde{A}_i) \leq \sum_{i=1}^{\infty} \mu_0(A_i)$. Thus it is sufficient in (1) to assume that the A_i are disjoint.

If $\mu^*(E) = \infty$, then $A = \sum_{i=1}^{\infty} A_i$ for any (disjoint) covering for sets $A_i \in \mathcal{A}$ satisfies $\mu^*(A) = \infty$, which implies $\mu^*(E) \leq \mu^*(A) + \epsilon$. If $\mu^*(E) < \infty$, choose a (disjoint) covering $A = \bigcup_{i=1}^{\infty} A_i$ with $\mu^*(A) \leq \mu^*(E) + \epsilon$.

(b) This requires argument in both directions. Note $\mu^*(E) < \infty$. For either direction, choose $Q_n = \bigcup_{j=1}^{\infty} A_{nj}$ for disjoint $A_{nj} \in \mathcal{A}$ as in part (a) so that $E \subseteq Q_n$ and $\mu^*(Q_n) \leq \mu^*(E) + 1/n$. Since the sets $B_n = \bigcap_{i=1}^n Q_i$ are decreasing $(B_{n+1} \subseteq B_n)$ and $\mu^*(B_1) = \mu^*(Q_1) < \infty$, it follows from Theorem 1.8 part (d) (page 25) that $\mu^*(B_n) \downarrow \mu^*(B)$ where $B = \bigcap_{i=1}^{\infty} Q_i = \bigcap_{i=1}^{\infty} \bigcup_{j=1}^{\infty} A_{ij}$. Hence $E \subset B$, $B \in \mathcal{A}_{\sigma\delta}$, and $\mu^*(B) = \lim \mu^*(B_n) = \mu^*(E)$.

A set $H \subseteq X$ with $\mu^*(H) = 0$ is called a μ^* -null set. The proof of Prop. 1.11 (Carathéodory's Theorem) on page 30 contains a proof that every μ^* -null set is μ^* -measurable. The argument is that, for every subset $E \subset X$,

$$\mu^{*}(E) \leq \mu^{*}(E \cap H) + \mu^{*}(E \cap H^{c}) \leq \mu^{*}(E \cap H^{c}) \leq \mu^{*}(E)$$

since $\mu^*(E \cap H) \leq \mu^*(H) = 0$. Hence $\mu^*(E \cap H^c) = \mu^*(E)$ and $\mu^*(E) = \mu^*(E \cap H) + \mu^*(E \cap H^c)$ for every subset $E \subseteq X$, which proves that $H \in \mathcal{M}(\mu^*)$.

For the two directions to be proven: If E is μ^* -measurable, then H = B - E is also μ^* -measurable and, since $E \subseteq B$ and $\mu^*(E) < \infty$, $\mu^*(H) = \mu^*(B) - \mu^*(E) = 0$, which was to be proven. Conversely, if E = B - H where $\mu^*(H) = 0$, then B and Hare both μ^* -measurable. Thus E is measurable since $\mathcal{M}(\mu^*)$ is a σ -algebra, which was to be proven.

(c) If X is σ -finite, then $X = \bigcup_{k=1}^{\infty} X_k$ where $X_k \in \mathcal{A}$ with $\mu_0(X_k) < \infty$. Since \mathcal{A} is an algebra, we can assume that the X_k are disjoint. Then by part (b) there exist $B_k = \bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} A_{kij}$ for $A_{kij} \subseteq X_k$, $A_{kij} \in \mathcal{A}$ such that $\mu^*(E \cap X_k) = \mu^*(B_k)$. Since the X_k are disjoint,

$$B = \bigcup_{k=1}^{\infty} B_k = \bigcup_{k=1}^{\infty} \bigcap_{i=1}^{\infty} \bigcup_{j=1}^{\infty} A_{kij} = \bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} A_{kij}$$

implies $B \in \mathcal{A}_{\sigma\delta}$. (*Proof*: If $x \in X$, then $x \in X_{k_0}$ for only one value of k_0 , and, since $A_{kij} \subseteq X_k$, the unions over k above reduce to fixing $k = k_0$.)

If E is μ^* -measurable, then $E \cap X_k$ is μ^* -measurable with $\mu^*(E \cap X_k) \leq \mu(X_k) < \infty$. Thus $E \cap X_k = B_k - H_k$ where $B_k \in \mathcal{A}_{\sigma\delta}$ and $\mu^*(H_k) = 0$. Thus E = B - H where $B \in \mathcal{A}_{\sigma\delta}$ as above and $H = \bigcup_{k=1}^{\infty} H_k$ satisfies $\mu^*(H) \leq \sum_{k=1}^{\infty} \mu^*(H_k) = 0$, which was to be proven in that direction. If E = B - H where $\mu^*(H) = 0$, then E is μ^* -measurable since both B and H are μ^* -measurable, which was to be proven in that direction.

3. This also requires argument in both directions. If *E* is measurable, then $\mu^*(E) + \mu^*(E^c) = \mu_0(X)$ and $\mu_*(E) = \mu^*(E)$.

Conversely, suppose that $\mu_*(E) = \mu^*(E)$. Then $\mu^*(E) + \mu^*(E^c) = \mu_0(X) < \infty$. By Problem 2, there exist $B_1, B_2 \in \mathcal{A}_{\sigma\delta}$ such that

$$E \subseteq B_1, \quad \mu^*(E) = \mu^*(B_1)$$
 (2)
 $E^c \subseteq B_2, \quad \mu^*(E^c) = \mu^*(B_2)$

Since $\mu^*(E) + \mu^*(E^c) = \mu_0(X)$, then $\mu^*(B_1) + \mu^*(B_2) = \mu_0(X)$, so that $\mu^*(B_2^c) = \mu_0(X) - \mu^*(B_2) = \mu^*(B_1)$. By (2), $B_2^c \subseteq E \subseteq B_1$. It follows that $\mu^*(B_1 - E) \leq \mu^*(B_1 - B_2^c) = \mu^*(B_1) - \mu^*(B_2^c) = 0$. Hence $H = B_1 - E$ is a null set and $E = B_1 - H$, which implies that E is μ^* -measurable.

4. (a) If $A \in \mathcal{M}$ and $\mu(X) < \infty$, then $\mu(A) + \mu(A^c) = \mu(X)$. By the definition of measurability, $\mu^*(A \cap F) + \mu^*(A^c \cap F) = \mu^*(F)$ for all subsets $F \subset X$, including

F = E. Since $\mu^*(E) = \mu(X)$, $\mu^*(A \cap E) \leq \mu(A)$, and $\mu^*(A^c \cap E) \leq \mu(A^c)$, it follows that $\mu^*(A \cap E) = \mu(A)$ and $\mu^*(A^c \cap E) = \mu(A^c)$, since if (for example) $\mu^*(A \cap E) < \mu(A)$ we could not have $\mu^*(E) = \mu(X)$.

(b) To show that \mathcal{M}_E is a σ -algebra of subsets of E, we need to show (i) $\phi \in \mathcal{M}_E$, (ii) $B \in \mathcal{M}_E$ implies $B^c = E - B \in \mathcal{M}_E$, and (iii) $B_n \in \mathcal{M}_E$ implies $B = \bigcup_{n=1}^{\infty} B_n \in \mathcal{M}_E$. For (i), note $\phi = \phi \cap E \in \mathcal{M}_E$. For (ii), $B = A \cap E$ ($A \in \mathcal{M}$) implies $E - B = E - A \cap E = A^c \cap E \in \mathcal{M}_E$. For (iii), $B_n = A_n \cap E$ implies $B = A \cap E \in \mathcal{M}_E$ for $A = \bigcup_{n=1}^{\infty} A_n$, so that \mathcal{M}_E is a σ -algebra.

To show that $\nu = \mu^*$ is a measure on \mathcal{M}_E , we need to show (i) $\nu(\phi) = 0$ and (ii) if $\{A_i \cap E\}$ are disjoint for $A_i \in \mathcal{M}$, then $\mu^*(A \cap E) = \sum_{i=1}^{\infty} \mu^*(A_i \cap E)$. For (i), $\nu(\phi) = \mu^*(\phi) = 0$. For (ii), even though $\{A_i\}$ may not be disjoint, we have for $i \neq j$ that $\mu(A_i \cap A_j) = \mu^*(A_i \cap A_j \cap E) = \mu^*((A_i \cap E) \cap (A_j \cap E)) = \mu^*(\phi) = 0$ by part (a) and $\{A_i\}$ are disjoint within null sets. Let $N = \sum_{i \neq j} A_i \cap A_j$. Then N is a countable union of null sets so that $\mu(N) = 0$. Also, $(A_i - N) \cap (A_j - N) =$ $A_i \cap A_j - N = \phi$ for $i \neq j$, so that $\{A_i - N\}$ are disjoint. Thus, if $A = \sum_{i=1}^{\infty} A_i$,

$$\mu(A) = \mu(A - N) = \sum_{i=1}^{\infty} \mu(A_i - N) = \sum_{i=1}^{\infty} \mu(A_i)$$

and by part (a)

$$\nu(A \cap E) = \mu(A) = \sum_{i=1}^{\infty} \mu(A_i) = \sum_{i=1}^{\infty} \mu^*(A_i \cap E) = \sum_{i=1}^{\infty} \nu(A_i \cap E)$$

Thus $\nu(A)$ is countably additive on \mathcal{M}_E , which was to be proven.