Ma 5051 - Real Variables and Functional Analysis

Solutions for Problem Set \#2 due September 17, 2009

Prof. Sawyer - Washington University

See m5051hw2.tex for problem text.

1. Let $\left\{A_{j}: j=1,2, \ldots\right\}$ be a sequence of disjoint sets in $\mathcal{M}\left(\mu^{*}\right)$, where $\mathcal{M}\left(\mu^{*}\right)$ means the set of μ^{*}-measurable sets, and let $B=\bigcup_{j=1}^{\infty} A_{j}$. Under these assumptions, the proof of Proposition 1.11 on page 30 contains the inequality

$$
\mu^{*}(E) \geq \sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)+\mu^{*}\left(E \cap B^{c}\right)
$$

Thus $\mu^{*}(E \cap B) \geq \sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)$ by replacing E by $E \cap B$. Since μ^{*} is countably subadditive, $\mu^{*}(E \cap B)=\sum_{j=1}^{\infty} \mu^{*}\left(E \cap A_{j}\right)$, which was to be proven.
2. (a) By definition

$$
\begin{equation*}
\mu^{*}(E)=\inf \left\{\sum_{i=1}^{\infty} \mu_{0}\left(A_{i}\right): E \subseteq \bigcup_{i=1}^{\infty} A_{i}, A_{i} \in \mathcal{A}\right\} \tag{1}
\end{equation*}
$$

In general if $E \subseteq \bigcup_{i=1}^{\infty} A_{i}$, then $\widetilde{A}_{i}=A_{i}-\bigcup_{j=1}^{i-1} A_{j} \in \mathcal{A}$ where $\left\{\widetilde{A}_{i}\right\}$ are disjoint, and $\sum_{i=1}^{\infty} \mu_{0}\left(\widetilde{A}_{i}\right) \leq \sum_{i=1}^{\infty} \mu_{0}\left(A_{i}\right)$. Thus it is sufficient in (1) to assume that the A_{i} are disjoint.

If $\mu^{*}(E)=\infty$, then $A=\sum_{i=1}^{\infty} A_{i}$ for any (disjoint) covering for sets $A_{i} \in \mathcal{A}$ satisfies $\mu^{*}(A)=\infty$, which implies $\mu^{*}(E) \leq \mu^{*}(A)+\epsilon$. If $\mu^{*}(E)<\infty$, choose a (disjoint) covering $A=\bigcup_{i=1}^{\infty} A_{i}$ with $\mu^{*}(A) \leq \mu^{*}(E)+\epsilon$.
(b) This requires argument in both directions. Note $\mu^{*}(E)<\infty$. For either direction, choose $Q_{n}=\bigcup_{j=1}^{\infty} A_{n j}$ for disjoint $A_{n j} \in \mathcal{A}$ as in part (a) so that $E \subseteq Q_{n}$ and $\mu^{*}\left(Q_{n}\right) \leq \mu^{*}(E)+1 / n$. Since the sets $B_{n}=\bigcap_{i=1}^{n} Q_{i}$ are decreasing $\left(B_{n+1} \subseteq\right.$ B_{n}) and $\mu^{*}\left(B_{1}\right)=\mu^{*}\left(Q_{1}\right)<\infty$, it follows from Theorem 1.8 part (d) (page 25) that $\mu^{*}\left(B_{n}\right) \downarrow \mu^{*}(B)$ where $B=\bigcap_{i=1}^{\infty} Q_{i}=\bigcap_{i=1}^{\infty} \bigcup_{j=1}^{\infty} A_{i j}$. Hence $E \subset B, B \in \mathcal{A}_{\sigma \delta}$, and $\mu^{*}(B)=\lim \mu^{*}\left(B_{n}\right)=\mu^{*}(E)$.

A set $H \subseteq X$ with $\mu^{*}(H)=0$ is called a μ^{*}-null set. The proof of Prop. 1.11 (Carathéodory's Theorem) on page 30 contains a proof that every μ^{*}-null set is μ^{*}-measurable. The argument is that, for every subset $E \subset X$,

$$
\mu^{*}(E) \leq \mu^{*}(E \cap H)+\mu^{*}\left(E \cap H^{c}\right) \leq \mu^{*}\left(E \cap H^{c}\right) \leq \mu^{*}(E)
$$

since $\mu^{*}(E \cap H) \leq \mu^{*}(H)=0$. Hence $\mu^{*}\left(E \cap H^{c}\right)=\mu^{*}(E)$ and $\mu^{*}(E)=\mu^{*}(E \cap$ $H)+\mu^{*}\left(E \cap H^{c}\right)$ for every subset $E \subseteq X$, which proves that $H \in \mathcal{M}\left(\mu^{*}\right)$.

For the two directions to be proven: If E is μ^{*}-measurable, then $H=B-E$ is also μ^{*}-measurable and, since $E \subseteq B$ and $\mu^{*}(E)<\infty, \mu^{*}(H)=\mu^{*}(B)-\mu^{*}(E)=0$, which was to be proven. Conversely, if $E=B-H$ where $\mu^{*}(H)=0$, then B and H are both μ^{*}-measurable. Thus E is measurable since $\mathcal{M}\left(\mu^{*}\right)$ is a σ-algebra, which was to be proven.
(c) If X is σ-finite, then $X=\bigcup_{k=1}^{\infty} X_{k}$ where $X_{k} \in \mathcal{A}$ with $\mu_{0}\left(X_{k}\right)<\infty$. Since \mathcal{A} is an algebra, we can assume that the X_{k} are disjoint. Then by part (b) there exist $B_{k}=\bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} A_{k i j}$ for $A_{k i j} \subseteq X_{k}, A_{k i j} \in \mathcal{A}$ such that $\mu^{*}\left(E \bigcap X_{k}\right)=$ $\mu^{*}\left(B_{k}\right)$. Since the X_{k} are disjoint,

$$
B=\bigcup_{k=1}^{\infty} B_{k}=\bigcup_{k=1}^{\infty} \bigcap_{i=1}^{\infty} \bigcup_{j=1}^{\infty} A_{k i j}=\bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} A_{k i j}
$$

implies $B \in \mathcal{A}_{\sigma \delta}$. (Proof: If $x \in X$, then $x \in X_{k_{0}}$ for only one value of k_{0}, and, since $A_{k i j} \subseteq X_{k}$, the unions over k above reduce to fixing $k=k_{0}$.)

If E is μ^{*}-measurable, then $E \bigcap X_{k}$ is μ^{*}-measurable with $\mu^{*}\left(E \cap X_{k}\right) \leq$ $\mu\left(X_{k}\right)<\infty$. Thus $E \bigcap X_{k}=B_{k}-H_{k}$ where $B_{k} \in \mathcal{A}_{\sigma \delta}$ and $\mu^{*}\left(H_{k}\right)=0$. Thus $E=B-H$ where $B \in \mathcal{A}_{\sigma \delta}$ as above and $H=\bigcup_{k=1}^{\infty} H_{k}$ satisfies $\mu^{*}(H) \leq$ $\sum_{k=1}^{\infty} \mu^{*}\left(H_{k}\right)=0$, which was to be proven in that direction. If $E=B-H$ where $\mu^{*}(H)=0$, then E is μ^{*}-measurable since both B and H are μ^{*}-measurable, which was to be proven in that direction.
3. This also requires argument in both directions. If E is measurable, then $\mu^{*}(E)+$ $\mu^{*}\left(E^{c}\right)=\mu_{0}(X)$ and $\mu_{*}(E)=\mu^{*}(E)$.

Conversely, suppose that $\mu_{*}(E)=\mu^{*}(E)$. Then $\mu^{*}(E)+\mu^{*}\left(E^{c}\right)=\mu_{0}(X)<\infty$. By Problem 2, there exist $B_{1}, B_{2} \in \mathcal{A}_{\sigma \delta}$ such that

$$
\begin{align*}
E \subseteq B_{1}, & \mu^{*}(E)=\mu^{*}\left(B_{1}\right) \tag{2}\\
E^{c} \subseteq B_{2}, & \mu^{*}\left(E^{c}\right)=\mu^{*}\left(B_{2}\right)
\end{align*}
$$

Since $\mu^{*}(E)+\mu^{*}\left(E^{c}\right)=\mu_{0}(X)$, then $\mu^{*}\left(B_{1}\right)+\mu^{*}\left(B_{2}\right)=\mu_{0}(X)$, so that $\mu^{*}\left(B_{2}^{c}\right)=$ $\mu_{0}(X)-\mu^{*}\left(B_{2}\right)=\mu^{*}\left(B_{1}\right)$. By (2), $B_{2}^{c} \subseteq E \subseteq B_{1}$. It follows that $\mu^{*}\left(B_{1}-E\right) \leq$ $\mu^{*}\left(B_{1}-B_{2}^{c}\right)=\mu^{*}\left(B_{1}\right)-\mu^{*}\left(B_{2}^{c}\right)=0$. Hence $H=B_{1}-E$ is a null set and $E=B_{1}-H$, which implies that E is μ^{*}-measurable.
4. (a) If $A \in \mathcal{M}$ and $\mu(X)<\infty$, then $\mu(A)+\mu\left(A^{c}\right)=\mu(X)$. By the definition of measurability, $\mu^{*}(A \cap F)+\mu^{*}\left(A^{c} \cap F\right)=\mu^{*}(F)$ for all subsets $F \subset X$, including
$F=E$. Since $\mu^{*}(E)=\mu(X), \mu^{*}(A \cap E) \leq \mu(A)$, and $\mu^{*}\left(A^{c} \cap E\right) \leq \mu\left(A^{c}\right)$, it follows that $\mu^{*}(A \cap E)=\mu(A)$ and $\mu^{*}\left(A^{c} \cap E\right)=\mu\left(A^{c}\right)$, since if (for example) $\mu^{*}(A \cap E)<\mu(A)$ we could not have $\mu^{*}(E)=\mu(X)$.
(b) To show that \mathcal{M}_{E} is a σ-algebra of subsets of E, we need to show (i) $\phi \in$ \mathcal{M}_{E}, (ii) $B \in \mathcal{M}_{E}$ implies $B^{c}=E-B \in \mathcal{M}_{E}$, and (iii) $B_{n} \in \mathcal{M}_{E}$ implies $B=\bigcup_{n=1}^{\infty} B_{n} \in \mathcal{M}_{E}$. For (i), note $\phi=\phi \cap E \in \mathcal{M}_{E}$. For (ii), $B=A \cap E(A \in \mathcal{M})$ implies $E-B=E-A \cap E=A^{c} \cap E \in \mathcal{M}_{E}$. For (iii), $B_{n}=A_{n} \cap E$ implies $B=A \cap E \in \mathcal{M}_{E}$ for $A=\bigcup_{n=1}^{\infty} A_{n}$, so that \mathcal{M}_{E} is a σ-algebra.

To show that $\nu=\mu^{*}$ is a measure on \mathcal{M}_{E}, we need to show (i) $\nu(\phi)=0$ and (ii) if $\left\{A_{i} \cap E\right\}$ are disjoint for $A_{i} \in \mathcal{M}$, then $\mu^{*}(A \cap E)=\sum_{i=1}^{\infty} \mu^{*}\left(A_{i} \cap E\right)$. For (i), $\nu(\phi)=\mu^{*}(\phi)=0$. For (ii), even though $\left\{A_{i}\right\}$ may not be disjoint, we have for $i \neq j$ that $\mu\left(A_{i} \cap A_{j}\right)=\mu^{*}\left(A_{i} \cap A_{j} \cap E\right)=\mu^{*}\left(\left(A_{i} \cap E\right) \cap\left(A_{j} \cap E\right)\right)=\mu^{*}(\phi)=0$ by part (a) and $\left\{A_{i}\right\}$ are disjoint within null sets. Let $N=\sum_{i \neq j} A_{i} \cap A_{j}$. Then N is a countable union of null sets so that $\mu(N)=0$. Also, $\left(A_{i}-N\right) \cap\left(A_{j}-N\right)=$ $A_{i} \cap A_{j}-N=\phi$ for $i \neq j$, so that $\left\{A_{i}-N\right\}$ are disjoint. Thus, if $A=\sum_{i=1}^{\infty} A_{i}$,

$$
\mu(A)=\mu(A-N)=\sum_{i=1}^{\infty} \mu\left(A_{i}-N\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

and by part (a)

$$
\nu(A \cap E)=\mu(A)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)=\sum_{i=1}^{\infty} \mu^{*}\left(A_{i} \cap E\right)=\sum_{i=1}^{\infty} \nu\left(A_{i} \cap E\right)
$$

Thus $\nu(A)$ is countably additive on \mathcal{M}_{E}, which was to be proven.

