1. (Problem 30, page 40) If \(E \in \mathcal{L} \) and \(0 < m(E) < \infty \), then for any \(\alpha < 1 \) there exists a nonempty open interval \(I = (a, b) \) such that \(m(E \cap I) > \alpha m(I) \).

(Note: \(\mathcal{L} = \mathcal{M}(\lambda^{*}) \) is the Lebesgue-measurable subsets of \(R^{1} \) and \(m = \lambda^{*} \); see page 37.)

2. (Like problem 26, page 40) Let \(E \in \mathcal{M}(\mu^{*}) \) for a Borel measure \(\mu \) on \(R^{1} \) with \(\mu(E) < \infty \) (writing \(\mu = \mu^{*} \) on \(\mathcal{M}(\mu^{*}) \)). Prove that, for any \(\epsilon > 0 \), there exists a finite union of cells \(A = \bigcup_{i=1}^{n} (a_{i}, b_{i}] \) such that \(\mu(E \triangle A) < \epsilon \).

3. Let \(a_{i}, b_{i} \ (1 \leq i \leq n) \) be real numbers with \(a_{i} \leq b_{i} \ (1 \leq i \leq n) \). Assume that \(\sum_{i=1}^{n} a_{i} = \sum_{i=1}^{n} b_{i} \). Prove that \(a_{i} = b_{i} \) for \(1 \leq i \leq n \).

4. Let \(F(x) = \lfloor x \rfloor \) be the greatest-integer function on \(R \). Note that \(F(x) \) is increasing and right continuous.

 (i) Are there any points \(a \in R \) for which \(\mu_{F}(\{a\}) > 0 \)? If so, which points \(a \)? What are the corresponding values of \(\mu_{F}(\{a\}) \)?

 (ii) Let \(A = \bigcup_{i=1}^{5} (\frac{i}{2} - \frac{1}{5}, \frac{i}{2} + \frac{1}{10}] \). Find \(\mu_{F}(A) \) and justify your answer. (Hint: Be careful!)

5. Let \(Q \) be the rationals. Set \((a, b]_{Q} = \{ q \in Q : a < q \leq b \} \) and let \(\Gamma_{Q} = \{ (a, b]_{Q} : a, b \in Q \} \). Define \(\nu(A) \) on \(\Gamma_{Q} \) by \(\nu((a, b]_{Q}) = b - a \).

 (i) Show that \(\Gamma_{Q} \) is a semi-ring of subsets of \(Q \) and that \(\nu \) is finitely additive on \(\Gamma_{Q} \).

 Use \(\nu \) on \(\Gamma_{Q} \) to define the outer measure \(\nu^{*}(E) \) for \(E \subseteq Q \).

 (ii) Show that \(\nu^{*}(\{x\}) = 0 \) for all \(x \in Q \)

 (iii) Show that \(\nu^{*}(E) = 0 \) for all subsets \(E \subseteq Q \).

In particular, it is not true that \(\nu^{*}(A) = \nu(A) \) for all \(A \in \Gamma_{Q} \). While it is true that \(\nu^{*}(A) \) is a measure on the \(\sigma \)-algebra of all subsets of \(Q \), this is not a particularly interesting statement since \(\nu^{*}(A) \) is identically zero.

 (iv) At what step or steps do the proofs of Propositions 1.15 or 1.13 break down?