Ma 5051 - Real Variables and Functional Analysis

Problem Set \#4 - Due October 1, 2009
Prof. Sawyer - Washington University
In the following, assume that (X, \mathcal{M}) is a measurable space: That is, X is a set and \mathcal{M} a σ-algebra of subsets of X. Define $\int_{E} f(x) d \mu=\int I_{E}(x) f(x) d \mu$ for measures μ on $\mathcal{M}, E \in \mathcal{M}$, and $f \in L^{+}(X, \mathcal{M})$.

1. (Problem 1, page 48) Assume $f: X \rightarrow \bar{R}=[-\infty, \infty]$. Prove that $f(x)$ is $(\mathcal{M}, \mathcal{B}(\bar{R}))$-measurable if and only if $f^{-1}(\{-\infty\})=\{x: f(x)=-\infty\} \in \mathcal{M}$, $f^{-1}(\{\infty\}) \in \mathcal{M}$, and $f(x)$ is $(\mathcal{M}, \mathcal{B}(R))$-measurable on $Y=\{x:|f(x)|<\infty\}$.
2. (Problem 3, page 48) If $\left\{f_{n}\right\}$ is a sequence of \mathcal{M}-measurable functions on X, then $Y=\left\{x: \lim _{n \rightarrow \infty} f_{n}(x)\right.$ exists $\}$ is a measurable set.
3. (Problem 8, page 48) If $f: R \rightarrow R$ is monotone, then $f(x)$ is Borel measurable. (Hint: Be careful!)
4. (Problem 14, page 52) For $f \in L^{+}(X, \mathcal{M})$, define $\nu(E)=\int_{E} f(x) d \mu$ for $E \in \mathcal{M}$. Prove that
(a) ν is a measure on \mathcal{M}
(b) For any $g \in L^{+}(X, \mathcal{M}), \int g(x) d \nu=\int g(x) f(x) d \mu$. (Hint: First suppose that g is simple. Proposition 2.10, which we'll cover next Tuesday, might be helpful.)
5. (Problem 16, page 52) Assume $f \in L^{+}(X, \mathcal{M})$ with $\int f(x) d \mu<\infty$ and perhaps $\mu(X)=\infty$. Prove that, for every $\epsilon>0$, there exists some $E \in \mathcal{M}$ such that $\mu(E)<\infty$ and $\int_{E} f(x) d \mu>\int f(x) d \mu-\epsilon$. (Do not assume that X is σ-finite.)
