Ma 5051 — Real Variables and Functional Analysis Problem Set #4 — Due October 1, 2009

Prof. Sawyer — Washington University

In the following, assume that (X, \mathcal{M}) is a measurable space: That is, X is a set and \mathcal{M} a σ -algebra of subsets of X. Define $\int_E f(x)d\mu = \int I_E(x)f(x)d\mu$ for measures μ on $\mathcal{M}, E \in \mathcal{M}$, and $f \in L^+(X, \mathcal{M})$.

1. (Problem 1, page 48) Assume $f : X \to \overline{R} = [-\infty, \infty]$. Prove that f(x) is $(\mathcal{M}, \mathcal{B}(\overline{R}))$ -measurable if and only if $f^{-1}(\{-\infty\}) = \{x : f(x) = -\infty\} \in \mathcal{M}, f^{-1}(\{\infty\}) \in \mathcal{M}, \text{ and } f(x) \text{ is } (\mathcal{M}, \mathcal{B}(R))$ -measurable on $Y = \{x : |f(x)| < \infty\}.$

2. (Problem 3, page 48) If $\{f_n\}$ is a sequence of \mathcal{M} -measurable functions on X, then $Y = \{x : \lim_{n \to \infty} f_n(x) \text{ exists }\}$ is a measurable set.

3. (Problem 8, page 48) If $f : R \to R$ is monotone, then f(x) is Borel measurable. (*Hint*: Be careful!)

4. (Problem 14, page 52) For $f \in L^+(X, \mathcal{M})$, define $\nu(E) = \int_E f(x) d\mu$ for $E \in \mathcal{M}$. Prove that

- (a) ν is a measure on \mathcal{M}
- (b) For any $g \in L^+(X, \mathcal{M})$, $\int g(x)d\nu = \int g(x)f(x)d\mu$. (*Hint*: First suppose that g is simple. Proposition 2.10, which we'll cover next Tuesday, might be helpful.)

5. (Problem 16, page 52) Assume $f \in L^+(X, \mathcal{M})$ with $\int f(x)d\mu < \infty$ and perhaps $\mu(X) = \infty$. Prove that, for every $\epsilon > 0$, there exists some $E \in \mathcal{M}$ such that $\mu(E) < \infty$ and $\int_E f(x)d\mu > \int f(x)d\mu - \epsilon$. (Do not assume that X is σ -finite.)