Ma 5051 - Real Variables and Functional Analysis

Model Solutions for Problem Set \#4 due October 1, 2009

Prof. Sawyer - Washington University

In the following, assume that (X, \mathcal{M}) is a measurable space: That is, X is a set and \mathcal{M} a σ-algebra of subsets of X. Define $\int_{E} f(x) d \mu=\int I_{E}(x) f(x) d \mu$ for measures μ on $\mathcal{M}, E \in \mathcal{M}$, and $f \in L^{+}(X, \mathcal{M})$.

1. According to page 43 of the text, a mapping $f: X \rightarrow \bar{R}=[-\infty, \infty]$ for a measurable space (X, \mathcal{M}) is measurable (or $(\mathcal{M}, \mathcal{B}(\bar{R}))$-measurable) if $f^{-1}(A)=$ $\{x: f(x) \in A\} \in \mathcal{M}$ for all sets $A \in \mathcal{B}(\bar{R})$. Here $\mathcal{B}(\bar{R})$ is the Borel sets in \bar{R}, which is the same as the Borel hull of (that is, the smallest σ-algebra containing) $\mathcal{E}=\{[-\infty, x]: x \in R\}$. Note that $\{-\infty\}=\bigcap_{n=1}^{\infty}[-\infty,-n]$ and $\{\infty\}=\left(\bigcup_{n=1}^{\infty}[-\infty, n]\right)^{c}$, and that $\mathcal{B}(\bar{R})$ is the smallest σ-algebra containing $\mathcal{B}(R)$ and the two sets $\{ \pm \infty\}$ containing one point each.
(a) If $f(x)$ is $(\mathcal{M}, \mathcal{B}(\bar{R}))$-measurable, then $A=A_{-}=\{-\infty\}, A=A_{+}=\{\infty\}$, and all sets $A \in \mathcal{B}(R)$ satisfy $A \in \mathcal{B}(\bar{R})$. Thus $f^{-1}(A) \in \mathcal{M}$ in all three cases.
(b) If a collection of sets $\mathcal{E} \subseteq \mathcal{B}(\bar{R})$ satisfies (i) $f^{-1}(A) \in \mathcal{M}$ for all $A \in \mathcal{E}$ and (ii) $\mathcal{B}(\mathcal{E})$ (the Borel hull of \mathcal{E}) equals $\mathcal{B}(\bar{R})$, as is the case here, then f is $(\mathcal{M}, \mathcal{B}(\bar{R}))$-measurable.
2. Proof I (of two different proofs): The point $x \in Y$ if and only if $f_{n}(x)$ converges as $n \rightarrow \infty$, which is the same as saying that $\left\{f_{n}(x)\right\}$ satisfies Cauchy's condition. Thus

$$
Y=\bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{a \geq m} \bigcap_{b \geq m}\left\{x:\left|f_{a}(x)-f_{b}(x)\right|>1 / k\right\}
$$

This is measurable since each set $\left\{x:\left|f_{a}(x)-f_{b}(x)\right|>1 / k\right\}$ is measurable.
Proof II: By Proposition (2.7), both $g_{1}(x)=\liminf _{n \rightarrow \infty} f_{n}(x)$ and $g_{2}(x)=$ $\limsup _{n \rightarrow \infty} f_{n}(x)$ are measurable. Thus $Y=\left\{x: g_{1}(x)=g_{2}(x)\right\}=\bigcap_{k=1}^{\infty}\{x$: $\left.g_{2}(x)-g_{1}(x)<1 / k\right\}$ is also measurable.
3. Assume for definiteness that $f(x)$ is monotonically increasing.

Let $E_{\lambda}=f^{-1}((-\infty, \lambda])=\{x: f(x) \leq \lambda\}$. Then $x_{1}<x_{2}$ and $x_{2} \in E_{\lambda}$ implies $f\left(x_{1}\right) \leq f\left(x_{2}\right) \leq \lambda$ and hence $x_{1} \in E_{\lambda}$. If $x_{\max }=\sup \left\{x: x \in E_{\alpha}\right\}$, then either $E_{\lambda}=\left(-\infty, x_{\max }\right) \in \mathcal{B}(R)$ or $E_{\lambda}=\left(-\infty, x_{\max }\right] \in \mathcal{B}(R)$ (both can occur). Hence $f(x)$ is Borel measurable.
4. (a) The set function $\nu(E)=\int_{E} f(x) d \mu$ for $E \in \mathcal{M}$ satisfies (i) $\nu(E) \geq 0$ for all $E \in \mathcal{M}$ since $f \in \mathcal{L}^{+}(X, \mathcal{M})$ and (ii) $\nu(\phi)=0$. Now assume $E=\bigcup_{n=1}^{\infty} E_{n}$ where
$E_{n} \in \mathcal{M}$ are disjoint. Then $I_{E}(x)=\sum_{n=1}^{\infty} I_{E_{n}}(x)$ and

$$
\begin{aligned}
\nu(E) & =\int I_{E}(x) f(x) d \mu=\int \sum_{n=1}^{\infty} I_{E_{n}}(x) f(x) d \mu \\
& =\sum_{n=1}^{\infty} \int I_{E_{n}}(x) f(x) d \mu=\sum_{n=1}^{\infty} \nu\left(E_{n}\right)
\end{aligned}
$$

by Theorem 2.15, which is equivalent to the monotone convergence theorem. Thus $\nu(E)$ is a measure on \mathcal{M}.
(b) Let $\phi(x)=\sum_{j=1}^{M} c_{j} I_{E_{j}}(x)$ be a simple functions with $c_{j} \geq 0$. Since $\nu\left(E_{j}\right)=\int_{E_{j}} f(x) d \mu=\int I_{E_{j}}(x) f(x) d \mu$, it follows that $\int \phi(x) d \nu=\sum_{j=1}^{M} c_{j} \nu\left(E_{j}\right)=$ $\sum_{j=1}^{M} c_{j} \int I_{E_{j}}(x) f(x) d \mu=\int \phi(x) f(x) d \mu$. If $g \in L^{+}(X, \mathcal{M})$ is arbitrary, there exist simple functions with $0 \leq \phi_{n}(x) \uparrow g(x)$ for all x by Theorem 2.10. It then follows from the monotone convergence theorem that $\int g(x) d \nu=\int g(x) f(x) d \mu$.
5. Let $f_{n}(x)=f(x) I_{E_{n}}(x)$ for $E_{n}=\{f(x)>1 / n\}$. Then

$$
\left.\mu\left(E_{n}\right) \leq n \int f(x) d \mu\right)<\infty
$$

and $0 \leq f_{n}(x) \uparrow f(x)$ as $n \rightarrow \infty$. Thus, by the monotone convergence theorem, $0 \leq \int f_{n}(x) d \mu=\int_{E_{n}} f(x) d \mu \uparrow \int f(x) d \mu<\infty$. Since $\int f(x) d \mu<\infty$, we can choose n such that $\int f(x) d \mu-\int_{E_{n}} f(x) d \mu<\epsilon$ and set $E=E_{n}$.

