Ma 5051 — Real Variables and Functional Analysis

Model Solutions for Problem Set #4 due October 1, 2009

Prof. Sawyer — Washington University

In the following, assume that (X, \mathcal{M}) is a measurable space: That is, X is a set and \mathcal{M} a σ -algebra of subsets of X. Define $\int_E f(x)d\mu = \int I_E(x)f(x)d\mu$ for measures μ on $\mathcal{M}, E \in \mathcal{M}$, and $f \in L^+(X, \mathcal{M})$.

1. According to page 43 of the text, a mapping $f: X \to \overline{R} = [-\infty, \infty]$ for a measurable space (X, \mathcal{M}) is measurable (or $(\mathcal{M}, \mathcal{B}(\overline{R}))$ -measurable) if $f^{-1}(A) = \{x : f(x) \in A\} \in \mathcal{M}$ for all sets $A \in \mathcal{B}(\overline{R})$. Here $\mathcal{B}(\overline{R})$ is the Borel sets in \overline{R} , which is the same as the Borel hull of (that is, the smallest σ -algebra containing) $\mathcal{E} = \{[-\infty, x] : x \in R\}$. Note that $\{-\infty\} = \bigcap_{n=1}^{\infty} [-\infty, -n]$ and $\{\infty\} = (\bigcup_{n=1}^{\infty} [-\infty, n])^c$, and that $\mathcal{B}(\overline{R})$ is the smallest σ -algebra containing $\mathcal{B}(R)$ and the two sets $\{\pm\infty\}$ containing one point each.

(a) If f(x) is $(\mathcal{M}, \mathcal{B}(\overline{R}))$ -measurable, then $A = A_{-} = \{-\infty\}, A = A_{+} = \{\infty\}$, and all sets $A \in \mathcal{B}(R)$ satisfy $A \in \mathcal{B}(\overline{R})$. Thus $f^{-1}(A) \in \mathcal{M}$ in all three cases.

(b) If a collection of sets $\mathcal{E} \subseteq \mathcal{B}(\overline{R})$ satisfies (i) $f^{-1}(A) \in \mathcal{M}$ for all $A \in \mathcal{E}$ and (ii) $\mathcal{B}(\mathcal{E})$ (the Borel hull of \mathcal{E}) equals $\mathcal{B}(\overline{R})$, as is the case here, then f is $(\mathcal{M}, \mathcal{B}(\overline{R}))$ -measurable.

2. Proof I (of two different proofs): The point $x \in Y$ if and only if $f_n(x)$ converges as $n \to \infty$, which is the same as saying that $\{f_n(x)\}$ satisfies Cauchy's condition. Thus

$$Y = \bigcap_{k=1}^{\infty} \bigcup_{m=1}^{\infty} \bigcap_{a \ge m} \bigcap_{b \ge m} \{ x : |f_a(x) - f_b(x)| > 1/k \}$$

This is measurable since each set $\{x : |f_a(x) - f_b(x)| > 1/k\}$ is measurable.

Proof II: By Proposition (2.7), both $g_1(x) = \liminf_{n \to \infty} f_n(x)$ and $g_2(x) = \limsup_{n \to \infty} f_n(x)$ are measurable. Thus $Y = \{x : g_1(x) = g_2(x)\} = \bigcap_{k=1}^{\infty} \{x : g_2(x) - g_1(x) < 1/k\}$ is also measurable.

3. Assume for definiteness that f(x) is monotonically increasing. Let $E_{\lambda} = f^{-1}((-\infty, \lambda]) = \{x : f(x) \leq \lambda\}$. Then $x_1 < x_2$ and $x_2 \in E_{\lambda}$ implies $f(x_1) \leq f(x_2) \leq \lambda$ and hence $x_1 \in E_{\lambda}$. If $x_{\max} = \sup\{x : x \in E_{\alpha}\}$, then either $E_{\lambda} = (-\infty, x_{\max}) \in \mathcal{B}(R)$ or $E_{\lambda} = (-\infty, x_{\max}] \in \mathcal{B}(R)$ (both can occur). Hence f(x) is Borel measurable.

4. (a) The set function $\nu(E) = \int_E f(x)d\mu$ for $E \in \mathcal{M}$ satisfies (i) $\nu(E) \ge 0$ for all $E \in \mathcal{M}$ since $f \in \mathcal{L}^+(X, \mathcal{M})$ and (ii) $\nu(\phi) = 0$. Now assume $E = \bigcup_{n=1}^{\infty} E_n$ where

Ma 5051– Real Variables and Functional Analysis— October 1, 2009 2 $E_n \in \mathcal{M}$ are disjoint. Then $I_E(x) = \sum_{n=1}^{\infty} I_{E_n}(x)$ and

$$\nu(E) = \int I_E(x)f(x)d\mu = \int \sum_{n=1}^{\infty} I_{E_n}(x)f(x)d\mu$$
$$= \sum_{n=1}^{\infty} \int I_{E_n}(x)f(x)d\mu = \sum_{n=1}^{\infty} \nu(E_n)$$

by Theorem 2.15, which is equivalent to the monotone convergence theorem. Thus $\nu(E)$ is a measure on \mathcal{M} .

(b) Let $\phi(x) = \sum_{j=1}^{M} c_j I_{E_j}(x)$ be a simple functions with $c_j \geq 0$. Since $\nu(E_j) = \int_{E_j} f(x) d\mu = \int I_{E_j}(x) f(x) d\mu$, it follows that $\int \phi(x) d\nu = \sum_{j=1}^{M} c_j \nu(E_j) = \sum_{j=1}^{M} c_j \int I_{E_j}(x) f(x) d\mu = \int \phi(x) f(x) d\mu$. If $g \in L^+(X, \mathcal{M})$ is arbitrary, there exist simple functions with $0 \leq \phi_n(x) \uparrow g(x)$ for all x by Theorem 2.10. It then follows from the monotone convergence theorem that $\int g(x) d\nu = \int g(x) f(x) d\mu$.

5. Let $f_n(x) = f(x)I_{E_n}(x)$ for $E_n = \{ f(x) > 1/n \}$. Then $\mu(E_n) \leq n \int f(x)d\mu < \infty$

and $0 \leq f_n(x) \uparrow f(x)$ as $n \to \infty$. Thus, by the monotone convergence theorem, $0 \leq \int f_n(x)d\mu = \int_{E_n} f(x)d\mu \uparrow \int f(x)d\mu < \infty$. Since $\int f(x)d\mu < \infty$, we can choose n such that $\int f(x)d\mu - \int_{E_n} f(x)d\mu < \epsilon$ and set $E = E_n$.