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In the following, assume that (X,M) is a measurable space: That is, X is a set and
M a σ-algebra of subsets of X. Define

∫
E

f(x)dµ =
∫

IE(x)f(x)dµ for measures µ
on M, E ∈M, and f ∈ L+(X,M).

1. According to page 43 of the text, a mapping f : X → R = [−∞,∞] for a
measurable space (X,M) is measurable (or (M,B(R))-measurable) if f−1(A) =
{x : f(x) ∈ A } ∈ M for all sets A ∈ B(R). Here B(R) is the Borel sets
in R, which is the same as the Borel hull of (that is, the smallest σ-algebra con-
taining) E = { [−∞, x] : x ∈ R }. Note that {−∞} =

⋂∞
n=1[−∞,−n] and

{∞} = (
⋃∞

n=1[−∞, n])c, and that B(R) is the smallest σ-algebra containing B(R)
and the two sets {±∞} containing one point each.

(a) If f(x) is (M,B(R))-measurable, then A = A− = {−∞}, A = A+ = {∞},
and all sets A ∈ B(R) satisfy A ∈ B(R). Thus f−1(A) ∈M in all three cases.

(b) If a collection of sets E ⊆ B(R) satisfies (i) f−1(A) ∈ M for all A ∈ E
and (ii) B(E) (the Borel hull of E) equals B(R), as is the case here, then f is
(M,B(R))-measurable.

2. Proof I (of two different proofs): The point x ∈ Y if and only if fn(x) converges
as n → ∞, which is the same as saying that { fn(x) } satisfies Cauchy’s condition.
Thus

Y =
∞⋂

k=1

∞⋃
m=1

⋂

a≥m

⋂

b≥m

{x : |fa(x)− fb(x)| > 1/k }

This is measurable since each set {x : |fa(x)− fb(x)| > 1/k } is measurable.
Proof II: By Proposition (2.7), both g1(x) = lim infn→∞ fn(x) and g2(x) =

lim supn→∞ fn(x) are measurable. Thus Y = {x : g1(x) = g2(x) } =
⋂∞

k=1{x :
g2(x)− g1(x) < 1/k } is also measurable.

3. Assume for definiteness that f(x) is monotonically increasing.
Let Eλ = f−1( (−∞, λ] ) = {x : f(x) ≤ λ }. Then x1 < x2 and x2 ∈ Eλ implies
f(x1) ≤ f(x2) ≤ λ and hence x1 ∈ Eλ. If xmax = sup{x : x ∈ Eα }, then either
Eλ = (−∞, xmax) ∈ B(R) or Eλ = (−∞, xmax] ∈ B(R) (both can occur). Hence
f(x) is Borel measurable.

4. (a) The set function ν(E) =
∫

E
f(x)dµ for E ∈ M satisfies (i) ν(E) ≥ 0 for all

E ∈ M since f ∈ L+(X,M) and (ii) ν(φ) = 0. Now assume E =
⋃∞

n=1 En where



Ma5051– Real Variables and Functional Analysis— October 1, 2009 . . . . . . . . . . . . 2

En ∈M are disjoint. Then IE(x) =
∑∞

n=1 IEn
(x) and

ν(E) =
∫

IE(x)f(x)dµ =
∫ ∞∑

n=1

IEn
(x)f(x)dµ

=
∞∑

n=1

∫
IEn

(x)f(x)dµ =
∞∑

n=1

ν(En)

by Theorem 2.15, which is equivalent to the monotone convergence theorem. Thus
ν(E) is a measure on M.

(b) Let φ(x) =
∑M

j=1 cjIEj (x) be a simple functions with cj ≥ 0. Since
ν(Ej) =

∫
Ej

f(x)dµ =
∫

IEj (x)f(x) dµ, it follows that
∫

φ(x)dν =
∑M

j=1 cjν(Ej) =
∑M

j=1 cj

∫
IEj (x)f(x)dµ =

∫
φ(x)f(x)dµ. If g ∈ L+(X,M) is arbitrary, there exist

simple functions with 0 ≤ φn(x) ↑ g(x) for all x by Theorem 2.10. It then follows
from the monotone convergence theorem that

∫
g(x)dν =

∫
g(x)f(x)dµ.

5. Let fn(x) = f(x)IEn(x) for En = { f(x) > 1/n }. Then

µ(En) ≤ n

∫
f(x)dµ) < ∞

and 0 ≤ fn(x) ↑ f(x) as n →∞. Thus, by the monotone convergence theorem,
0 ≤ ∫

fn(x)dµ =
∫

En
f(x)dµ ↑ ∫

f(x)dµ < ∞. Since
∫

f(x)dµ < ∞, we can
choose n such that

∫
f(x)dµ− ∫

En
f(x)dµ < ε and set E = En.


