# Ma 5051 - Real Variables and Functional Analysis 

Problem Set \#5 - Due October 8, 2009
Prof. Sawyer - Washington University
Let $(X, \mathcal{M}, \mu)$ be a measure space. Recall $\int_{A} f(x) d \mu=\int I_{A}(x) f(x) d \mu$ for $A \in \mathcal{M}$ and $f \in L^{+} \cup L^{1}$, where $I_{A}(x)$ is the indicator function of $A$.

1. (Problem 20, page 59) Assume $f_{n}, g_{n}, f, g \in L^{1}, f_{n}(x) \rightarrow f(x)$ and $g_{n}(x) \rightarrow g(x)$ a.e. as $n \rightarrow \infty,\left|f_{n}(x)\right| \leq g_{n}(x)$, and $\int g_{n}(x) d \mu \rightarrow \int g(x) d \mu$. Then show $\int f_{n}(x) d \mu \rightarrow \int f(x) d \mu$. (Hint: Rework the proof of the dominated convergence theorem.
2. (Problem 21, page 59) Assume $f_{n}, f \in L^{1}$ and $f_{n}(x) \rightarrow f(x)$ a.e. Then show that $\int\left|f_{n}-f\right| d \mu \rightarrow 0$ if and only if $\int\left|f_{n}(x)\right| d \mu \rightarrow \int|f(x)| d \mu$. (Hint: Use the previous problem.)
3. (Problem 26, page 60) If $f \in L^{1}(R, \mathcal{B}(R), m)$ for Lebesgue measure $m$ and $F(x)=\int_{-\infty}^{x} f(y) d y$, then $F(x)$ is a continuous function on $R$.
4. (Problem 28ac, page 60) Compute the following limits and justify the calculations:
(a) $\lim _{n \rightarrow \infty} \int_{0}^{\infty}(1+(x / n))^{-n} \sin (x / n) d x$
(c) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} n \sin (x / n)\left[x\left(1+x^{2}\right)\right]^{-1} d x$
5. (Problem 31ac, page 60) Derive the following formulas by expanding part of the integrand into an infinite series and justifying term-by-term integration. Exercise 29 may be useful.
(a) For $a>0, \int_{-\infty}^{\infty} e^{-x^{2}} \cos (a x) d x=\sqrt{\pi} e^{-a^{2} / 4}$
(c) For $a>1, \int_{0}^{\infty} x^{a-1}\left(e^{x}-1\right)^{-1} d x=\Gamma(a) \zeta(a)$, where $\zeta(a)=\sum_{n=1}^{\infty} n^{-a}$.
