Ma 5051 — Real Variables and Functional Analysis

Problem Set #5 — Due October 8, 2009

Prof. Sawyer — Washington University

Let (X, \mathcal{M}, μ) be a measure space. Recall $\int_A f(x)d\mu = \int I_A(x)f(x)d\mu$ for $A \in \mathcal{M}$ and $f \in L^+ \cup L^1$, where $I_A(x)$ is the indicator function of A.

1. (Problem 20, page 59) Assume $f_n, g_n, f, g \in L^1, f_n(x) \to f(x)$ and $g_n(x) \to g(x)$ a.e. as $n \to \infty$, $|f_n(x)| \leq g_n(x)$, and $\int g_n(x)d\mu \to \int g(x)d\mu$. Then show $\int f_n(x)d\mu \to \int f(x)d\mu$. (*Hint*: Rework the proof of the dominated convergence theorem.

2. (Problem 21, page 59) Assume $f_n, f \in L^1$ and $f_n(x) \to f(x)$ a.e. Then show that $\int |f_n - f| d\mu \to 0$ if and only if $\int |f_n(x)| d\mu \to \int |f(x)| d\mu$. (*Hint*: Use the previous problem.)

3. (Problem 26, page 60) If $f \in L^1(R, \mathcal{B}(R), m)$ for Lebesgue measure m and $F(x) = \int_{-\infty}^x f(y) dy$, then F(x) is a continuous function on R.

4. (Problem 28ac, page 60) Compute the following limits and justify the calculations:

(a)
$$\lim_{n \to \infty} \int_0^\infty (1 + (x/n))^{-n} \sin(x/n) dx$$

(c) $\lim_{n \to \infty} \int_0^\infty n \sin(x/n) [x(1+x^2)]^{-1} dx$

5. (Problem 31ac, page 60) Derive the following formulas by expanding part of the integrand into an infinite series and justifying term-by-term integration. Exercise 29 may be useful.

(a) For
$$a > 0$$
, $\int_{-\infty}^{\infty} e^{-x^2} \cos(ax) dx = \sqrt{\pi} e^{-a^2/4}$
(c) For $a > 1$, $\int_{0}^{\infty} x^{a-1} (e^x - 1)^{-1} dx = \Gamma(a)\zeta(a)$, where $\zeta(a) = \sum_{n=1}^{\infty} n^{-a}$.